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Abstract 

In this study we propose a sequential procedure for hypothesis testing on the pkC  process capability 

index. We compare the properties of the sequential test with the performances of non-sequential 

tests by performing an extensive simulation study. The results indicate that the proposed sequential 

procedure makes it possible to save a large amount of sample size, which can be translated into 

reduced costs, time and resources. 
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1. Introduction 

Process capability indices assess the relationship between the actual process performance and the 

manufacturing specifications, and are the tools most frequently used for measuring the capability of 

a manufacturing process. The analytical formulation of these indices is easy to understand and 

straightforward to apply. The process capability indices most widely used in industry today are 

(Montgomery, 2009): 
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where   is the process mean,   is the process standard deviation, LSL and USL are the 

specification limits,   2d USL LSL   is the half-length of the specification interval, 

  2m USL LSL   is the midpoint of the specification interval and T is the target value of the 

process. 

Process capability indices have received much interest in statistical literature over the last decades. 

Evidence of this interest is provided by several books and numerous articles. With reference to 

books, those of Kotz and Johnson (1993), Bothe (1997), Kotz and Lovelace (1998), Wheeler 

(1999), Polansky and Kirmani (2003), Pearn and Kotz (2006) can be included. Among the articles 

we quote the complete overview published by Kotz and Johnson (2002), the bibliographies by 

Spiring et al. (2003) and Yum and Kim (2011). 

Often, as a part of contractual agreement, suppliers are required to provide evidence that their 

processes satisfy a minimum level of capability. Such decision-making problem of demonstrating 

whether the process capability exceeds a pre-set capability requirement can be approached in terms 

of hypothesis testing. 

Literature concerning process capability hypothesis testing includes numerous interesting 

researches. Just to mention a few we quote: the pioneering work by Kane (1986); the tests on pkC  

investigated by Pearn and Chen (1999), Perakis and Xekalaki (2003), Pearn and Lin (2004), Chen 

and Hsu (2004) and Lin (2006); the Bayesian approach proposed by Fan and Kao (2006); the 

hypothesis testing studies on pmkC  by Pearn and Lin (2002) and Pearn et al. (2005); the model free 
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approach testing procedure proposed by Vännman and Kulachi (2008); the recently unified and 

comprehensive analysis of hypothesis testing with process capability indices by Lepore and 

Palumbo (2015); and finally, the sequential procedure for testing the equality of two indices pmC  by 

Hussein et al. (2012). 

In general, sequential methods for hypothesis testing (Tartakovsky et al. 2014) are appealing since 

they make it possible to reach decisions much more quickly, on average, than non-sequential 

procedures with the same discriminating power. This property, in the framework of the 

manufacturing industry, means that sequential procedures can lead to saving sample size, time and 

cost with consequent economic benefits and without any loss in quality. 

In this study, starting from some of the results obtained by Hussein et al. (2012) which provided a 

sequential approach for testing the equality of the indices pmC  for two processes, we propose a 

sequential procedure for hypothesis testing on the index pkC . 

We compared the sequential test properties with the performances of two non-sequential tests by 

performing an extensive simulation study. The results indicate that the proposed sequential test 

makes it possible to save a large amount of sample size, which can be translated into reduced costs, 

time and resources. 

The paper is organized as follows. In Section 2, we review two of the most used tests for assessing 

whether a process is capable or not based on the pkC  process capability index. In Section 3 we 

present the general sequential test procedure proposed by Hussein et al. (2012) and Hussein (2005). 

In Section 4 we develop and propose a sequential method for testing hypotheses on pkC . In Section 

5 we study the performances of the proposed test by performing a set of simulation studies. Section 

6 contains a discussion of the results and finally, our concluding remarks are reported in Section 7. 

 

2. Hypothesis testing on Cpk 

To demonstrate whether a process meets the capability requirements the hypotheses of interest are 

 0 ,0: pk pkH C c  the process is not capable (4) 

 
1 ,0: pk pkH C c  the process is capable (5) 

where ,0pkc  is the minimal requirement for 
pkC . 

For testing 0H  versus 
1H  Pearn and Chen (1999), assuming a normally distributed quality 

characteristic,  2,X N   , proposed a statistical test (PC-test) based on the distribution of the 

estimator 
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Given the type I error probability  , the critical value of the test is 
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where  1,n ct    is the upper   quantile of a non-central t with 1n   degrees of freedom and non-

centrality parameter 
,03c pknc  . 

The power of the PC-test can be computed as  
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where 
,13 pknc  . 

Lepore and Palumbo (2015), for testing 
0 ,0: pk pkH C c  versus 

1 ,0: pk pkH C c , discussed a test (LP-

test) based on the estimator (Vännman, 2006) 
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Under the assumption of a normally distributed quality characteristic, the authors obtained the 

cumulative distribution function of ˆ
pkC  as 
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where  1 1nt 
 and  1 2nt 

 are non-central t variables with 1n   degrees of freedom and non-

centrality parameters 
 

 1

1
3

1
pkn C







 


 and 

 

 2

1
3

1
pkn C










 respectively, 

X

d





 , 

3 1t n x  ,  2 11 / 2R n t     and 

 
 

 1

( 2)/2 0

2
, ;0,

2 2

R
f

f f

tx
Q t R x x dx

f f


  



 
   
  

  is the fQ -function proposed by Owen 

(1965), where   is the gamma function, and   and   are respectively the normal cumulative 

distribution function and probability density function. 

Lepore and Palumbo (2015) obtained the critical value for the test as  
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where  1; 0nt    is the upper   quantile of a non-central t distribution with 1n  degrees of 

freedom and non-centrality parameter 
0 ,03 pknc  . 

The power of the LP-test is then 
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given that ,1 ,0pk pk pkC c c  . 

 

3. A general sequential method. 

To describe the general sequential testing procedure proposed by Hussein et al. (2012) and Hussein 

(2005), we used 1 2, ,..., ,...,kx x x  to denote a sequence of multivariate independent observations 

collected over time. We assumed that these data came from a common multivariate distribution 

with density function  ;f x θ  where the vector of parameters θ  is unknown. 

We were interested in testing 

  0 :H h θ 0  versus  1 :H h θ 0  (14) 

 

where   : d qh θ , with q d , is a function with first order derivative matrix denoted by 

 H θ . 



6 
 

Let us assume that for dθ  with q d  the following regularity conditions hold: 

C1. The distribution function  ;F x θ  of the vector random variable X is identifiable over  . 

C2. There exists an open subset, 0  , containing the true value of the parameter under 0H , 

such that the partial derivatives 
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exist and are continuous for all lx , 0θ . 

C3. For each 0θ  and 1,2,3,...,k   the score equation 
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has a unique solution. 

C4. There are functions,  1M x  and  2M x , that have finite expectations under any of the 

parameter values, 0θ , such that 

 

    1ln ;
i

f x M x






θ ,    

2

2ln ;
i j

f x M x
 




 
θ ,    

3

2ln ;
i j k

f x M x
  




  
θ   

for all 0θ , 1 i  ,j k d . 

C5.    ln ; 0iE f x   θ , 1 i d  , 0θ . 
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Let us further assume that: 
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C9. The function  h θ  is continuously differentiable over 0  and its first-order derivative matrix 

 H θ , is bounded and of rank q. 

 

Let us now consider a fixed sample design with sample size equal to k and let us consider the 

Wald’s statistic 
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where ˆ
kθ  is a consistent estimator of θ . 

Hussein et al. (2012) in Theorem 1 showed that under 0H , and if conditions C1-C9 hold, there 
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and  .  denotes the integer part of its argument. 

The statistic kW  can therefore be approximated by a functional of Brownian motions. Furthermore, 

the authors derived the limiting distribution of kW . In detail they showed that (Corollary 1): 

 under the conditions of Theorem 1 
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where 
D

  denotes convergence in distribution; 

 replacing the unknown θ  in the term      1tH I H
θ θ θ  by any almost surely convergent 

estimator, Corollary 1 remains valid. 

Therefore, Hussein et al. (2012) defined as test statistic  
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where ˆ
kθ  is the maximum likelihood estimator of θ , and proposed the following  -level 

sequential test truncated at the maximal allowable sample size 0n . 

The sequential test procedure is performed as follows: 

 for 02,3,...,k n  compute of the statistic 

 *(1) *

0k kW k n W ; (21) 
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 the hypothesis 0H  is rejected the first time that 
*(1)

kW  exceeds the critical value w ; 

 if 
*(1)

kW  does not exceed w  by 0n  then do not reject 0H . 

The maximal sample size 0n  can be decided on the basis of financial, ethical or statistical reasons 

as, for example, to achieve a desired power level. 

Given the Type I error probability , the critical value w  can be obtained from Borodin and 

Salminen (1996). 

 

4. A sequential test for Cpk 

Let us now consider the hypothesis  

 
0 ,0: pk pkH C c  (22) 

versus 

 
1 ,0: pk pkH C c  (23) 

and assume that the quality characteristic of interest X is normally distributed:  2,X N   . 

For 0pkC  , 0H  is equivalent to 
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where  2, θ . Note that in this framework   : d qh θ  with d=2 and q=1. 

In the case at hand, where q=1, the statistic 
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and the partial derivative matrix of  h θ  computed at ˆ
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Therefore, given the value of   and the maximal allowable sample size 0n , the test is performed by 

computing, for k=2,3,…, 0n , the statistic  
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Let stopn  be the first integer k=2,3,…, 0n  for which  * 1

kW w : 

 we reject 0H  if 
 * 1

stopnW w : 

 we do not reject 
0H  if  * 1

kW  does not exceed w  by 0n . 

In this framework stopn  is the stopping sample size of the test. 

In the case at hand, where q=1, the critical value w  is obtained from the distribution of 

 0 1sup t B t  . In particular w  is such that (Feller 1970) 

 
   

2 2

2
0

1 2 14
1 exp

2 1 8

k

k

k

k w





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   

 
 

  (32) 

 

As an example, for = 0.02, 0.1 and 0.2, the values of w  are 2.576, 1.96 and 1.645 respectively. 

 

5. Simulation studies 

In this section we study the properties of the sequential procedure by comparing its performances, 

under 0H  and 1H , with those of the LP and PC-tests. More precisely, we compare the tests in terms 

of the sample size required for achieving a given value of power. 

Note that the sequential test is two sided with composite alternative hypothesis 
1 ,0: pk pkH C c , 

while the LP and PC-tests are unilateral. In order to correctly compare the performances of the tests, 

we considered cases under 
1H  where 

,1pk pkC c  with ,1 ,0pk pkc c . In this manner the sequential 

bilateral test with Type I error probability  can be compared with the non-sequential unilateral 

tests with Type I error probability equal to / 2u  . 

To study the properties of the sequential procedure under 1H , we examined several scenarios 

(details on how the scenarios were built are reported in Appendix A), which are also discussed in 

Lepore and Palumbo (2015), where several values of pkC  under 1H  ( ,1pkc ) were considered for the 

unilateral test with u =0.01, 0.05, 0.1 and ,0pkc =1.00, 1.33, 1.67. 

For the LP and PC-tests we determined the minimum sample size, ;0.80LPn  and ;0.80PCn , using 

formulas (9) and (13) respectively to achieve a power at least equal to or greater than 0.80: i.e.

 ,1 0.80LP pkc   and  ,1 0.80PC pkc  . 
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As far as the sequential test is concerned we used a set of simulation studies. For each value of  , 

,0pkc  and ,1pkc  we generated, using R (R core team 2013), 10
4
 replicates from a normally distributed 

quality characteristic. The aim of these simulations was to determine the smallest maximal 

allowable sample size, ˆ0; 0.80s
n   , which gives an empirical power ˆ

s  greater than 0.80: i.e. ˆ 0.80s 

. The empirical power ˆ
s  of the sequential test is estimated as the proportion of correctly rejected 

0H . 

In order to obtain ˆ0; 0.80s
n    we implemented an iterative search algorithm with an initial value for 

ˆ0; 0.80s
n    given by ;0.80start PCn n . The algorithm works as follows: 

1. With fixed startn  as the maximal allowable sample size of the sequential test, the empirical 

power of the test ˆ
s  is estimated as the proportion of correctly rejected 0H  on 

410m   simulations. 

2. If  

ˆ 0.80
0 0.025

0.80

s 
   

then ˆ0; 0.80s
n    is set equal to startn  and the search algorithm stops. At the same time the average 

stopping sample size avgn  was empirically assessed as the average of the stopping sample sizes stopn  

required by the sequential test to correctly reject 0H  when the maximal allowable sample size is 

equal to ˆ0; 0.80s
n   . 

3. Otherwise: if ˆ 0.80s  , then 1start startn n  ; if ˆ 0.80s  , then 1start startn n   and the 

algorithm starts other m simulations. 

 

The simulation results are summarized in Tables 1-9 where, for each combination of  , ,0pkc  and 

,1pkc , the following quantities are reported: ;0.80LPn  the minimum sample size required by the LP-test 

for achieving a power level 0.80 ; ;0.80PCn  the minimum sample size required by the PC-test for 

achieving a power level 0.80 ; ˆ0; 0.80s
n    the smallest maximal allowable sample size for the 

sequential test for achieving an empirical power ˆ 0.80s  ; avgn  the average of the stopping sample 

sizes stopn  required for the sequential test with maximal allowable sample size ˆ0; 0.80s
n    for 

concluding in favor of 
1H ; S.D.( )stopn  the standard deviation of the final sample sizes stopn ; ˆ

s  the 

estimated power of the sequential test. 
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,1pkc  ;0.80LPn  ;0.80PCn  ˆ0; 0.80s
n    avgn  S.D.( )stopn  ˆ

s  

1.20 >200 195 182 123.6 31.5 0.807 

1.30 107 94 88 59.4 15.7 0.817 

1.40 66 59 51 34.3 9.7 0.806 

1.50 46 41 35 23.2 7.0 0.810 

1.60 35 32 25 16.4 5.3 0.805 

1.70 28 26 19 12.3 4.3 0.802 

1.80 23 21 16 10.1 3.8 0.820 

1.90 20 18 13 8.2 3.1 0.817 

2.00 17 16 11 6.9 2.7 0.816 

Table 1: Simulation results under 
1H  with 

,1pk pkC c , when ,0 1.00pkc   

and =0.02 ( 2.576w  ). 

 

 

,1pkc  ;0.80LPn  ;0.80PCn  ˆ0; 0.80s
n    avgn  S.D.( )stopn  ˆ

s  

1.20 140 116 116 71.2 23.3 0.804 

1.30 68 57 56 33.6 12.2 0.820 

1.40 42 36 32 18.5 7.6 0.813 

1.50 29 25 21 11.8 5.3 0.816 

1.60 22 20 15 8.2 3.9 0.806 

1.70 18 16 11 6.0 2.9 0.815 

1.80 15 13 9 4.9 2.3 0.812 

1.90 13 12 7 4.0 1.7 0.801 

2.00 11 10 6 3.5 1.4 0.808 

Table 2: Simulation results under 
1H  with 

,1pk pkC c , when ,0 1.00pkc   

and =0.1 ( 1.96w  ). 
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,1pkc  ;0.80LPn  ;0.80PCn  ˆ0; 0.80s
n    avgn  S.D.( )stopn  ˆ

s  

1.20 104 84 83 46.7 18.6 0.803 

1.30 51 42 40 21.3 9.9 0.811 

1.40 31 26 22 11.2 5.8 0.806 

1.50 22 19 14 7.0 3.7 0.804 

1.60 17 14 10 5.0 2.6 0.810 

1.70 13 12 8 4.1 2.0 0.819 

1.80 11 10 6 3.3 1.4 0.807 

1.90 10 9 5 2.9 1.1 0.800 

2.00 8 8 4 2.6 0.8 0.801 

Table 3: Simulation results under 
1H  with 

,1pk pkC c , when ,0 1.00pkc   

and =0.2 ( 1.645w  ). 

 

 

,1pkc  ;0.80LPn  ;0.80PCn  ˆ0; 0.80s
n    avgn  S.D.( )stopn  ˆ

s  

1.60 199 178 171 116.1 29.8 0.811 

1.70 115 104 96 64.7 17.2 0.815 

1.80 75 68 62 41.7 11.2 0.809 

1.90 55 50 44 29.4 8.4 0.820 

2.00 42 39 33 21.8 6.6 0.814 

2.10 34 32 26 17.1 5.5 0.815 

2.20 29 27 21 13.7 4.7 0.808 

2.30 25 23 17 11.0 3.9 0.807 

Table 4: Simulation results under 
1H  with 

,1pk pkC c , when ,0 1.33pkc   

and =0.02 ( 2.576w  ). 
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,1pkc  ;0.80LPn  ;0.80PCn  ˆ0; 0.80s
n    avgn  S.D.( )stopn  ˆ

s  

1.60 124 108 107 65.8 21.5 0.820 

1.70 70 62 60 36.0 12.7 0.817 

1.80 47 41 39 23.0 8.8 0.819 

1.90 34 30 27 15.5 6.5 0.818 

2.00 27 24 19 10.6 4.9 0.804 

2.10 22 20 15 8.2 3.9 0.807 

2.20 18 17 12 6.5 3.1 0.809 

2.30 16 14 10 5.5 2.6 0.816 

Table 5: Simulation results under 
1H  with 

,1pk pkC c , when ,0 1.33pkc   

and =0.1 ( 1.96w  ). 

 

 

,1pkc  ;0.80LPn  ;0.80PCn  ˆ0; 0.80s
n    avgn  S.D.( )stopn  ˆ

s  

1.60 92 77 77 43.2 17.3 0.808 

1.70 52 44 44 23.7 10.6 0.816 

1.80 35 30 27 14.1 7.0 0.811 

1.90 25 22 19 9.7 5.1 0.816 

2.00 20 18 13 6.5 3.5 0.802 

2.10 16 14 10 5.0 2.6 0.809 

2.20 14 12 8 4.1 2.0 0.804 

2.30 12 11 7 3.7 1.7 0.817 

Table 6: Simulation results under 
1H  with 

,1pk pkC c , when ,0 1.33pkc   

and =0.2 ( 1.645w  ). 
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,1pkc  ;0.80LPn  ;0.80PCn  ˆ0; 0.80s
n    avgn  S.D.( )stopn  ˆ

s  

1.90 >200 >200 >200 >200 - - 

2.00 198 181 173 117.2 29.9 0.816 

2.10 125 115 106 71.6 18.3 0.812 

2.20 88 82 74 49.7 13.4 0.819 

2.30 67 62 53 35.6 9.8 0.804 

2.40 51 47 42 28.0 8.0 0.817 

2.50 42 39 33 22.0 6.6 0.808 

2.60 35 33 27 17.9 5.5 0.803 

Table 7: Simulation results under 
1H  with 

,1pk pkC c , when ,0 1.67pkc   

and =0.02 ( 2.576w  ). 

 

 

,1pkc  ;0.80LPn  ;0.80PCn  ˆ0; 0.80s
n    avgn  S.D.( )stopn  ˆ

s  

1.90 >200 >200 208 129.3 40.7 0.802 

2.00 123 109 106 65.2 21.4 0.809 

2.10 78 69 65 39.4 13.6 0.800 

2.20 53 48 45 27.0 10.0 0.813 

2.30 40 36 32 18.7 7.6 0.806 

2.40 32 29 25 14.4 6.1 0.807 

2.50 26 24 19 10.7 4.9 0.806 

2.60 22 20 16 8.8 4.1 0.812 

Table 8: Simulation results under 
1H  with 

,1pk pkC c , when ,0 1.67pkc   

and =0.1 ( 1.96w  ). 
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,1pkc  ;0.80LPn  ;0.80PCn  ˆ0; 0.80s
n    avgn  S.D.( )stopn  ˆ

s  

1.90 175 151 154 89.3 32.8 0.806 

2.00 91 79 79 44.5 17.6 0.812 

2.10 56 49 49 26.8 11.6 0.814 

2.20 39 35 32 16.8 8.2 0.811 

2.30 30 26 23 11.9 6.1 0.813 

2.40 24 21 17 8.6 4.6 0.812 

2.50 19 17 14 7.0 3.7 0.818 

2.60 16 15 11 5.5 2.9 0.817 

Table 9: Simulation results under 
1H  with 

,1pk pkC c , when ,0 1.67pkc   

and =0.2 ( 1.645w  ). 

 

To study the properties of the sequential procedure under 
0 ,0: pk pkH C c , for each combination of 

,0pkc  (1.00, 1.33, 1.67) and   (0.02, 0.1, 0.2), we generated 10
4
 replicates from a normally 

distributed process. The aim of these simulations was to determine the smallest maximal allowable 

sample size, ˆ0;1 1n     , which gives an empirical type I error probability ̂  smaller than the nominal 

  value: ̂   or equivalently ˆ1 1    .  

In order to obtain ˆ0;1 1n      we implemented an iterative search algorithm with initial value for 

ˆ0;1 1n      given by 75startn  . The algorithm works as follows: 

1. With fixed startn  as the maximal allowable sample size of the sequential test, the value of 

ˆ1   is estimated as the fraction of correctly accepted 0H  on 
410m   simulations. 

2. If  

   
 

ˆ1 1
0 0.025

1

 



  
 


 

then ˆ0;1 1n      is set equal to startn  and the search algorithm stops. Contextually the average stopping 

sample size under 0H , 
0 ,H avgn , is empirically assessed as the average of the final sample sizes stopn  

required by the sequential test to correctly accept 0H  when the maximal allowable sample size is 

equal to ˆ0;1 1n     . 
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3. Otherwise: if    ˆ1 1    , then 1start startn n  ; if    ˆ1 1    , then 

1start startn n   and the algorithm starts other m simulations. 

The simulation results are summarized in Tables 10-12, where for each combination of   and ,0pkc  

the following quantities are reported: ˆ0;1 1n      the smallest maximal allowable sample size for the 

sequential test for achieving an empirical type I error probability ̂  smaller than the nominal   

 ̂  ; 
0 ,H avgn  the average of the final sample sizes stopn  required for the sequential test with 

maximal sample size ˆ0;1 1n      for correctly concluding in favor of 
0H ; S.D.( )stopn  the standard 

deviation of the final sample sizes stopn ; ̂  the estimated type I error probability; ˆ1  . 

 

  ˆ0;1 1n      
0 ,H avgn  S.D.( )stopn  ̂  ˆ1   

0.02 127 100.9 21.9 0.0191 0.9809 

0.1 82 56.8 19.5 0.099 0.9010 

0.2 62 37.7 16.5 0.1949 0.8051 

Table 10: Simulation results under 
0 ,0: pk pkH C c  with ,0 1.00pkc  . 

 

  ˆ0;1 1n      
0 ,H avgn  S.D.( )stopn  ̂  ˆ1   

0.02 110 86.8 19.3 0.0195 0.9805 

0.1 67 44.6 16.6 0.0989 0.9011 

0.2 69 43.0 18.1 0.1958 0.8042 

Table 11: Simulation results under 
0 ,0: pk pkH C c  with ,0 1.33pkc  . 

 

  ˆ0;1 1n      
0 ,H avgn  S.D.( )stopn  ̂  ˆ1   

0.02 90 69.2 17.6 0.0198 0.9802 

0.1 61 41.2 14.6 0.0982 0.9018 

0.2 74 47.0 19.0 0.1978 0.8022 

Table 12: Simulation results under 
0 ,0: pk pkH C c  with ,0 1.67pkc  . 
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6. Discussion 

As far as the behavior of the test under 1H  is concerned, by examining the averages of the final 

sample sizes avgn  the results show that the sequential test, with the same power of the LP and PC-

tests, saves a lot of sample size. Furthermore, the maximum allowable sample size ˆ0; 0.80s
n    required 

to achieve the desired power is almost always smaller than ;0.80LPn  and ;0.80PCn . This indicates that 

even in the worst cases the sequential test needs a maximum allowable sample size not greater than 

the sample size of the non-sequential tests. 

As an example, under 1 ,1: pk pkH C c  with ,1 1.30pkc  , when ,0 1.00pkc   and =0.02, we have 

;0.80 107LPn  , ;0.80 94PCn   (Table 1 and Figure 1), while with a maximum allowable sample size 

equal to ˆ0; 0.80 88
s

n     the power of the sequential test is ˆ 0.80s   with an  59.4 60avgn  . 

 

 
Figure 1: Power functions of the LP and PC tests as a function of the 

sample size for the case ,0 1.00pkc  ,  0.02 0.01u    and ,1 1.30pkc   

 

In this case the sequential procedure saves, on average, 43.9% of the sample size as to the LP-test 

and 36.2% as to the PC-test.  
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Under 1 ,1: pk pkH C c  with ,1 1.60pkc  , when ,0 1.33pkc   and =0.1, we have ;0.80 124LPn   and 

;0.80 108PCn   (Figure 2 and Table 5) while with a maximum allowable sample size equal to 

ˆ0; 0.80 107
s

n     the power of the sequential test is ˆ 0.80s   with an  65.8 66avgn  . 

 

 
Figure 2: Power functions of the LP and PC tests as a function of the 

sample size for the case ,0 1.33pkc  ,  0.1 0.05u   and ,1 1.60pkc   

 

In this case the sequential procedure therefore saves, on average, 46.8% of the sample size as to the 

LP test and 38.9% as to the PC test.  

Finally, under 1 ,1: pk pkH C c  with ,1 1.90pkc  , when ,0 1.67pkc   and =0.2, we have ;0.80 175LPn   

and ;0.80 151PCn  , (Figure 3 and Table 9) while with a maximum allowable sample size equal to 

ˆ0; 0.80 154
s

n     the power of the sequential test is ˆ 0.80s   with an  89.3 90avgn  . 
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Figure 3: Power functions of the LP and PC tests as a function of the 

sample size for the case ,0 1.67pkc  ,  0.2 0.1u   and ,1 1.90pkc  . 

 

In this case the sequential procedure saves, on average, 48.6% of the sample size as to the LP-test 

and 40.4% as to the PC-test. 

Also under 
0H  the proposed sequential test displays features that are very interesting. For each 

value of   and ,0pkc  the smallest maximal allowable sample sizes ˆ0;1 1n     , required by the 

sequential test for ensuring an empirical type I error probability ̂  smaller than the nominal value 

  are always smaller than the values of ˆ0; 0.80s
n    corresponding to the worst scenario examined 

under 
1H : i.e. the value of ,1pkc  closer to ,0pkc . 

Let us consider the following cases: 

1. when 0 ,0: pk pkH C c  holds, with ,0 1.00pkc   and 0.02  , we have that ˆ0;1 1 127n       

(Table 10) while for ,1 1.20pkc   it results that ˆ0; 0.80 182
s

n     (Table 1). 

2. when 0 ,0: pk pkH C c  holds, with ,0 1.33pkc   and 0.2  , we have that ˆ0;1 1 69n       

(Table 11) while for ,1 1.60pkc   it results that ˆ0; 0.80 77
s

n     (Table 6) 

3. when 0 ,0: pk pkH C c  holds, with ,0 1.67pkc   and 0.1  , we have that ˆ0;1 1 61n       

(Table 12) while for ,1 1.90pkc   it results that ˆ0; 0.80 208
s

n     (Table 8). 
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These results ensure that for all the cases examined the empirical type I error probability does not 

exceed the nominal  -level of the test. 

Furthermore, by examining 
0 ,H avgn , the averages of the final sample sizes n required for the 

sequential test for correctly concluding in favor of 
0H , we can assert that the sequential procedure 

allow early stopping sample sizes also in those cases where the process is not capable. 

 

7. Conclusions 

In this article we proposed a sequential procedure for hypothesis testing on the pkC  index. We 

studied the statistical properties of the sequential test with an extensive simulation study with regard 

to the type I error, the average of the sample sizes for correctly deciding, for 0H  and 1H , the 

maximum allowable sample size required to achieve a pre-set power level and for ensuring that the 

empirical type I error probability does not exceed the nominal  -level of the test. We compared the 

performances of the sequential procedure with two non-sequential tests.  

The results showed that the sequential test allows on average smaller stopping sample sizes as 

compared with the fixed sample size tests while maintaining the desired  -level and power. 

Furthermore, the maximum allowable sample sizes required by the sequential test to achieve the 

desired power level are smaller than, or at most equal to, the sample sizes required by the non-

sequential tests: this means that even in the worst cases the sequential procedure uses a sample size 

that does not exceed the sample size of the non-sequential tests with the same power level (under 

1H ) or without exceeding the type I error probability (under 0H ). 

Summarizing, the proposed sequential procedure has several interesting features: it offers a 

substantial decrease in sample size compared with the non-sequential tests, while type I and II error 

probabilities are correctly maintained at their desired values.  

We consider these results as valuable, because in a highly competitive context where both cost and 

quality are relevant, the availability of statistical methods which make it possible to save sampling 

size can be directly translated into saved resources and reduced costs. 

Furthermore, process capability analysis is increasingly used in healthcare-related studies (Chen et 

al. 2014, Liu et al. 2010) where, in addition to the economic matter, important ethical issues must 

be taken into account. It is worth noting that within this particular framework, methods capable of 

shortening the time span or reducing the sample size required for testing process capability can be 

of great value. 
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Appendix A 

To explain how the scenarios for our study have been built let us consider, without loss of any 

generality, the case where ,0 1.33pkc  . 

We considered, under 0H , a process where: 25USL  , 15LSL  , 23   and 0.501253   in 

such a way that ,0 1.33pk pkC c  . 

Under 1H  we examined cases where 
,1pkc  ranged from 1.60 to 2.30 (see e.g. Table 4). Therefore the 

alternative hypothesis consists of scenarios where the capability was improving: these scenarios can 

be obtained by improving process centering or by reducing the process variability.  

As an example, the case 
,1 1.60pkc   can be obtained with a mean level closer to the center,

22.59398  , with fixed 0.501253   or by reducing the variability, 0.416667  , with fixed 

23  .  

For the sake of completeness in the simulations, we initially examined the scenarios for both the 

possible situations: an improvement in process centering and a reduction in process variability. 

However, the results are very similar therefore in the paper we reported only the results concerning 

the improvement in the process centering. As an example, in Table A1 for the case 
,0 1.33pkc   and 

0.02   (the same as Table 4), the following are reported: ˆ0; 0.80s
n    the smallest maximal allowable 

sample size for the sequential test for achieving an empirical power ˆ 0.80s  ; ;avgn   the average of 

the stopping sample sizes ;stopn   required for the sequential test with maximal allowable sample size 

ˆ0; 0.80s
n    for concluding in favor of 

1H  when process centering is improved; ;S.D.( )stopn   the 

standard deviation of the final sample sizes ;stopn  ; ;
ˆ

s   the estimated power of the sequential test 

when process centering is improved; ;avgn   the average of the stopping sample sizes ;stopn   required 

for the sequential test with maximal allowable sample size ˆ0; 0.80s
n    for concluding in favor of 

1H  

when the process variability is reduced; ;S.D.( )stopn   the standard deviation of the final sample sizes 

;stopn  ; ;
ˆ

s   the estimated power of the sequential test when the process variability is reduced ;
ˆ

s  . 
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,1pkc  ˆ0; 0.80s
n    ;avgn   ;S.D.( )stopn   ;

ˆ
s   ;avgn   ;S.D.( )stopn   ;

ˆ
s   

1.60 171 116.1 29.8 0.811 115.7 29.3 0.815 

1.70 96 64.7 17.2 0.815 64.8 16.9 0.816 

1.80 62 41.7 11.2 0.809 42.0 11.3 0.813 

1.90 44 29.4 8.4 0.820 29.6 8.4 0.818 

2.00 33 21.8 6.6 0.814 22.1 6.5 0.805 

2.10 26 17.1 5.5 0.815 17.2 5.5 0.807 

2.20 21 13.7 4.7 0.808 13.6 4.7 0.812 

2.30 17 11.0 3.9 0.807 10.9 3.9 0.802 

Table A1: Results of the simulations for the case ,0 1.33pkc  , =0.02 ( 2.576w  ) 

obtained by improving process centering and with a reduction in process variability 

 

It can be noted that the results of the two cases (improving the process centering vs reduction of the 

process variability) are very similar. For this reason in the paper we focused only on the scenarios 

concerning the improvement in process centering. 
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