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Abstract

We investigate the asymptotic and �nite sample properties of the most widely used

information criteria for co-integration rank determination in �partial�systems, i.e. in co-

integrated Vector Autoregressive (VAR) models where a sub-set of variables of interest

is modeled conditional on another sub-set of variables. The asymptotic properties of

the Akaike Information Criterion (AIC), the Bayesian Information Criterion (BIC) and

the Hannan-Quinn Information Criterion (HQC) are established, and consistency of BIC

and HQC is proved. Notably, consistency of BIC and HQC is robust to violations of

the hypothesis of weak exogeneity of the conditioning variables with respect to the co-

integration parameters. More precisely, BIC and HQC recover the true co-integration

rank from the partial system analysis also when the conditional model does not convey

all information about the co-integration parameters. This result opens up interesting

possibilities for practitioners who can now determine the co-integration rank in partial

systems without being concerned with the weak exogeneity of the conditioning variables.

A Monte Carlo experiment which considers large systems as data generating process shows

that BIC and HQC applied in partial systems perform reasonably well in small samples and

comparatively better than �traditional�methods for co-integration rank determination.

We further show the usefulness of our approach and the bene�ts of the conditional system

analysis to co-integration rank determination with two empirical illustrations, both based

on the estimation of VAR systems on U.S. quarterly data. Overall, our analysis clearly

shows that the gains of combining information criteria with partial systems analysis are

indisputable.
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1 Introduction

Co-integration rank determination in vector autoregressive (VAR) systems where some variables

of interest, Yt, are modeled conditional on some other variables, Zt, has been addressed in Harbo,

Johansen, Nielsen and Rahbek (1998) [HJNR hereafter], see also Johansen (1992a, 1992b, 1996).

The idea of the conditional analysis is that the dimensionality of the system is reduced, and,

when conditioning is valid, co-integration tests may have better power properties. The �partial

system�approach proves to be useful in situations where (i) the dimension of the whole VAR

system p := dim(Xt), X 0
t := (Y

0
t ; Z

0
t), is large relative to the sample size T ; (ii) the practitioner

is essentially interested in modeling Yt and it is known that Zt contributes to the long run

equilibrium of the system but either the theory is silent about the short run properties of Zt, or

the scope of the analysis does not require modeling Zt explicitly; (iii) the time series used for

Zt are considered poor proxies of the corresponding theoretical variables they should measure,

especially as concerns their transitory dynamics.

In general, the parameters of the (conditional) model for Yt given Zt and of the marginal

model for Zt are interrelated, which means that a full system analysis is needed to draw e¢ cient

inference about the parameters of the two models. The very special case where the partial

(conditional) model for Yt given Zt contains as much information about the co-integrating

relations and the adjustment coe¢ cients as the full system, i.e. where the analysis of the

partial model is e¢ cient, is when Zt is weakly exogenous for the co-integrating parameters.

Under this condition, HJNR derive the asymptotic distribution of the likelihood ratio test for

co-integrating rank in the partial model, and provide tables of critical values. When Zt is

not weakly exogenous for the co-integrating parameters, the conditional model for Yt given Zt
conveys only partial information about the long run structure of the system.

Actually, the requirement of weak exogeneity of Zt can nullify the bene�ts of the partial

system analysis as suggested in HJNR and limit its usefulness in applied work. On the one

hand, when weak exogeneity of Zt fails, the practitioner cannot apply the asymptotic critical

values tabulated in HJNR and must resort to the full system analysis. On the other hand, it

is di¢ cult to check the hypothesis of weak exogeneity of Zt e¢ ciently without a full system

analysis or disregarding the model for Zt. Urbain (1992) shows that �traditional�orthogonality

tests (Pesaran and Smith, 1990) are not su¢ cient to address the issue of weak exogeneity

in error-correction models, see also Boswijk and Urbain (1997). It is not surprising, therefore,

that despite conditional (structural) error-correction models have been widely applied in applied
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work, only seldom the partial system approach has been used for inference on the co-integration

rank, see Doornik et al. (1998) and Bruggeman et al. (2003), and Johansen (1992b) for an early

example. In all empirical studies where a (structural) conditional system for Yt given Zt is used,

the co-integration rank is either assumed to be known, or is assumed to be inferred from a full

system analysis in a previous stage, see e.g. Boswijk (1995) and Ericsson (1995).

Information-based methods are a well-established alternative to approaches based on (se-

quential) Neyman-Pearson type tests for co-integration rank determination. In particular,

Aznar and Salvador (2002) and Cavaliere, De Angelis, Rahbek, Taylor (2015) [CDRT hereafter],

among others, show that standard information such as the familiar Bayesian Information Cri-

terion (BIC) (Schwarz, 1978) and Hannan-Quinn Information Criterion (HQC) (Hannan and

Quinn, 1979) provide a powerful alternative to the traditional Johansen�s co-integration rank

tests, as they are weakly consistent estimators of the co-integration rank. Conversely, the

Akaike Information Criterion (AIC) (Akaike, 1974) does not deliver a consistent estimate of

the co-integration rank as its penalty does not satisfy the required rate condition (formally

de�ned in Section 3 below). Therefore, it is an asymptotically upward biased estimator of the

co-integration rank.

In this paper, we put forth an information criteria-based approach for co-integration rank

determination in the partial (conditional) model for Yt given Zt, which does not require the

hypothesis of weak exogeneity of Zt with respect to the co-integration parameters. Our main

result is that the use of either BIC or HQC in partial systems yields weakly consistent estim-

ates of the true co-integration rank (the same result does not apply to the AIC). Compared to

HJNR, the suggested approach does not require the use of tables of critical values: the selec-

ted co-integration rank is the one which minimizes BIC or HQC across rank r = 0; 1; :::; pY ,

where pY :=dim(Yt): Notably, we prove that consistency of BIC and HQC is valid irrespective

of whether Zt is weakly exogeneous or not. The main implication of this result is that the prac-

titioner can in fact disregard the marginal model for Zt without pre-testing or being concerned

with the weak exogeneity of Zt. BIC and HQC select asymptotically the �true�co-integration

rank from the conditional model of Yt given Zt, and perform reasonably well in �nite samples.

Thus, our approach to co-integration rank determination fully restores the main bene�ts of the

partial system analysis.

We document the advantages of our approach in �nite samples by a set of Monte Carlo

experiments. We investigate co-integration rank determination by information criteria in the

partial system approach and compare results with those obtained with the full system approach.

We consider two scenarios: one where the conditioning variables Zt are weakly exogenous with

respect to the co-integration parameters, and the other where the weak exogeneity constraint

does not hold, as is typical in applied work. We show that, under weak exogeneity, BIC tends
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to outperform �traditional�co-integration rank tests in both full and conditional systems. The

selection frequency of the null hypothesis of co-integration rank equal to the true co-integration

rank delivered by HJRN�s sequential test is remarkably inferior than the corresponding selection

frequencies provided by BIC when Zt is weakly exogenous for the co-integration parameters.

Conversely, when the hypothesis of weak exogeneity is not valid, BIC tends to underestimate the

true co-integration rank in small sample sizes. Instead, HQC in partial systems outperforms its

analogue in full systems, irrespective of Zt being weakly exogenous or not. That is, its selection

frequencies are roughly the same in the two cases, and has a better performance than Johansen�s

(1996) sequential procedure in the full (unconditional) VAR system. Quite surprisingly, the

results from the Monte Carlo experiments also show that the violation of the hypothesis of weak

exogeneity has only a limited impact on the �nite sample performance of HJNR�s sequential

test, although the associated critical values are tabulated under the maintained hypothesis of

exogeneity. In particular, when the conditioning variables are not weakly exogenous for the

co-integration parameters, HQC and HJNR�s sequential procedure perform in partial systems

and in samples of lengths typically available to practitioners no worse than how their analogues

perform in full systems. Thus, despite ignoring the marginal model for Zt may imply a loss

of information on the adjustment mechanisms at work in the whole system, the bene�ts of

reduced dimensionality tends to compensate possible power losses when HQC is used.

We also provide two empirical illustrations. In the �rst example, we emphasize the bene�ts of

combining information criteria and the partial system approach by focusing on a relatively large

system including seven (p = 7) U.S. macroeconomic variables observed at quarterly frequency

on the period 1984-2008. We show that co-integration rank determination from the conditional

model for Yt given Zt delivers, for suitable choices of Zt, reliable results relative to the full system

analysis. In the second example, we consider the co-integration/common-trend implications of

a version of the small-scale dynamic stochastic general equilibrium (DSGE) monetary model

of Benati and Surico (2009). We show that in this case, even if the dimension of Xt is not

large relative to the sample size, it may be convenient to marginalize Zt out of the analysis.

Our empirical results con�rm that co-integration rank determination by information criteria,

especially by the HQC, delivers reasonable and reliable results.

The paper is organized as follows. Section 2 describes the co-integrated VAR model. In

Section 3, we outline the information criteria for co-integration rank determination in par-

tial systems and we establish their asymptotic properties. The results from our Monte Carlo

simulations are reported in Section 4, while Section 5 shows the usefulness of the suggested ap-

proach for the two empirical illustrations mentioned above. Section 6 contains some concluding

remarks. The proof of our main result, Theorem 1, is given in Appendix A.
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2 A conditional co-integrated VAR model

Consider the p-dimensional process fXtg (the full system) which satis�es the k-th order reduced
rank VAR model:

�Xt = ��0Xt�1 +
k�1X
i=1

�i�Xt�i + ��0Dt + �dt + "t; t = 1; :::; T (2.1)

where Xt := (X1t; :::; Xpt)
0 and the initial values, X1�k; :::; X0, are �xed in the statistical

analysis. In the context of (2.1), we assume that the standard �I(1; r0) conditions�, where

r0 2 f0; :::; pg denotes the co-integration rank of the system, de�ned in Cavaliere, Rahbek and
Taylor (2012) hold; that is, the characteristic polynomial associated with (2.1) has p� r0 roots
equal to 1 with all other roots lying outside the unit circle, and where � and � have full column

rank r0. The innovation process "t := ("1t; :::; "pt)0 is assumed independent and distributed as

Np(0;�), where � is a (p� p) positive de�nite and symmetric matrix. Conditional heterosked-
aticity can be allowed as in Cavaliere, Rahbek and Taylor (2010). The deterministic variables

in (2.1) are taken to satisfy one of the following cases (see, e.g., Johansen, 1996): (i) Dt = 0,

dt = 0 (no deterministic components); (ii) Dt = 1, dt = 0 (restricted constant); or (iii) Dt = t,

dt = 1 (restricted linear trend).

We decomposed Xt as X 0
t = (Y

0
t ; Z

0
t) where Yt is of dimension pY and Zt is of dimension

pZ , with pY + pZ = p. Therefore, "0t = ("
Y 0
t ; "

Z0
t ) in (2.1) are i.i.d. Gaussian with mean zero and

covariance matrix

� :=

 
�Y Y �Y Z

�ZY �ZZ

!
:

All other matrices of parameters in system (2.1) are partitioned conformably. As in HJNR, we

de�ne the partial and marginal models assuming, for simplicity and without loss of generality,

that k = 2 (extension to the case k > 2 is straightforward).

The conditional (or partial) model is

�Yt = !�Zt + �c�
0Xt�1 + �c�Xt�1 + �0cDt + �cdt + "ct (2.2)

where ! := �Y Z��1ZZ , �c := �Y �!�Z , �c := �Y 1�!�Z1, �0c := �Y �
0
Y �!�Z�0Z , �c := �Y �!�Z

and "ct := "Yt �!"Zt , with covariance matrix �c = �Y Y:Z := �Y Y ��Y Z��1ZZ�ZY .1 The marginal
model is

�Zt = �Z�
0Xt�1 + �Z1�Xt�1 + �Z�

0
ZDt + �Zdt + "Zt : (2.3)

1We implicitly assume that �Y 6= !�Z , which implies �c 6= 0. As stated in HJNR, the special case �c = 0 is
problematic as conducting inference on � from the conditional model (2.2) alone would be not only ine¢ cient

due to the violation of the hypothesis of weak exogeneity, but also inconsistent.
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In general, both the conditional model in (2.2) and the marginal model in (2.3) incorporate

information about the co-integration relations. Only when �Z = 0, the conditional model (2.2)

solely incorporates information about the co-integration relations.

The statistical analysis of the likelihood function of the partial model in (2.2) can be per-

formed by reduced rank regression of the process �Yt on Xt, corrected for lagged di¤erences

and the conditioning (stationary) variable �Zt (see Chapter 8 in Johansen, 1996, and HJNR).2

By concentrating the likelihood function of the partial model in (2.2) with respect to the para-

meters !, �Y , �, �c and �c, the residuals R0t, R1t, and R"t corresponding to �Yt, Xt�1, and

"ct, respectively, are obtained, as well as the corresponding residual product moments

Sij := T�1
TX
t=1

RitR
0
jt; i; j = 0; 1; ":

Up to a constant term which does not depend on r, the maximized pseudo log-likelihood

function associated to (2.1) is given by `T (r) = �T
2
log j�̂rj, where �̂r is the residual covariance

matrix estimated from the conventional reduced rank regression based on (2.2) under rank r

(see Johansen, 1996). Moreover, j�̂rj := jS00j
Qr
i=1(1 � �̂i), and hence `T (r) = �T

2
log jS00j �

T
2

Pr
i=1 log(1� �̂i), where �̂1 > ::: > �̂pY are the pY largest solutions of the eigenvalue problem���S11 � S10S

�1
00 S01

�� = 0: (2.4)

Note that since S11 is p� p and S00 is pY � pY , the rank of S10S�100 S01 is at most pY . Therefore,
the eigenvalue problem in (2.4) has pZ = p � pY zero solutions, thus reducing the possible

choice of the (maximum) number of co-integration relations from p to pY . Henceforth we call

the sequential testing procedure based on the conditional model (2.2) and the implied eigenvalue

problem in (2.4) �HJNR�s testing procedure�.

Johansen (1992a) shows that when r = r0 � pY , if Zt is weakly exogenous for �, the

conditional model in (2.2) conveys full information on the co-integration relations and the

maximum likelihood estimator for (�; �) in the partial (conditional) model (2.2) has the same

asymptotic e¢ ciency of the full system (unconditional) maximum likelihood estimator. In this

case, the asymptotic distribution of HJNR�s testing procedure for co-integration rank is free

of nuisance parameters. Asymptotic critical values have been tabulated under such condition.

This is no longer the case if the assumption of weak exogeneity, �Z = 0, does not hold. More

precisely, when �Z 6= 0, the conditional model does not convey all the information on the co-
integration relations and maximum likelihood inference on � based on system (2.2) is neither

fully e¢ cient nor of standard type. However, we will show below that when 0 � r0 � pY , it is

possible to consistently recover the co-integration rank also with �Z 6= 0 by using information
criteria.

2For simplicity, here we consider the case of no deterministic components, i.e., case (i) in (2.1).
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Next we discuss an information criteria-based approach to consistent co-integration rank

determination which does not require the investigator to take any stand on the weak exogeneity

condition of Zt with respect to �.

3 Information criteria for co-integration rank determin-

ation in partial systems

We now focus on the conditional partial model (2.2) and the implied eigenvalue problem dis-

cussed in the previous section. Let IC(r) := �2`T (r) + pT denote an information criterion,

where pT = cT�(r) is a penalty function which depends on the number of parameters �(r) and

on a term cT , to be speci�ed below. We have that

IC(r) = T log j�̂rj+ cT�(r) = T log jS00j+ T
rX
i=1

log(1� �̂i) + cT�(r) (3.1)

where the eigenvalues �̂i, i = 1; :::; r are determined from (2.4) and �(r) = r(pY + p� r) when

no deterministic components are involved, �(r) = r(pY + p� r + 1) in the case of a restricted

constant and �(r) = r(pY + p � r + 1) + pY in the restricted trend case. Di¤erent values of

the coe¢ cient cT yield di¤erent information criteria through the resulting penalty function, pT .

In particular, as is well-known, cT = 2, log T , and 2 log log T yields the AIC, BIC, and HQC,

respectively.

The co-integration rank estimator is then given, in generic form, by

r̂ := arg min
r=0;1;:::;pY

IC(r): (3.2)

Importantly, the determination of the co-integration rank based on the estimator in (3.2) ex-

empts practitioners from the use of tables of asymptotic critical values which are instead re-

quired when sequential testing procedures as in HJNR are applied.

In the following theorem, we state our main result about the consistency of the information

criteria. The key requirement is that the penalty term cT diverges at rate lower than T , as

T !1.

Theorem 1: Let fXtg be generated as in (2.1) with the true parameters satisfying the I(1,
r0) conditions. For 0 � r0 � pY , it holds that, as T !1:

(i) for r0 < r � pY , P(IC(r) > IC(r0))! 1, provided cT!+1;

(ii) for 0 � r < r0, P(IC(r) > IC(r0))! 1, provided cT=T!0.
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Remark 1: When pY < r0, i.e. the dimension of the conditional system is lower than the true

number of co-integration relations in the full system (2.1), only certain linear combinations of

the co-integrating vectors can be estimated on the basis of the partial model in (2.2). In such

cases, the co-integration rank estimator in (3.2) will tend to select the maximum possible rank,

r̂ = pY . Therefore, the results in Theorem 1 imply that, in large samples, r̂ = min(r0; pY ),

where r̂ = pY whenever r0 � pY .

Remark 2: The results in Theorem 1 imply that either BIC or HQC penalties in the partial

system (2.2) will yield a weakly consistent estimate of r0. The AIC will not deliver a consistent

estimate of the co-integration rank as its penalty does not satisfy condition (i) in Theorem 1.

Therefore, this criterion will not be considered further.

Remark 3: Importantly, in Theorem 1 the determination of the co-integration rank based

on the estimator in (3.2) does not require �Z to be zero in (2.3). That is, our approach can

be also applied when the variables in �Zt adjust to �
0Xt�1, which is a concrete possibility in

applied work. The practitioner can determine the co-integration rank without being concerned

about the possible adjustment of �Zt to �
0Xt�1. The robustness of BIC and HQC to possible

violations of weak exogeneity of the conditioning variables allows one to fully bene�t from

reductions of the dimensionality of the system. Finally, since we do not have any particular

restriction on the conditioning variables, Zt could also contain co-integrated variables.

Remark 4: Theorem 1 assumes that the system lag length k in (2.1) is known. This as-

sumption, which is often unreasonable in practice, can be relaxed and information criteria can

be used to determine both the autoregressive lag length and the co-integration rank following

either a jointly or a sequential procedure; see Cavaliere, De Angelis, Rahbek and Taylor (2016).

Moreover, Aznar and Salvador (2002) provide an approach based on information criteria to

also determine the form of the deterministic component. While we do not consider the determ-

ination of the system lag order and the choice of the form of the deterministic component in

this paper, the strategies outlined by Cavaliere et al. (2016) and Aznar and Salvador (2002),

respectively, can also be extended to the present framework.

Remark 5: Given the correct choice of the co-integration rank, the maximum likelihood

estimator of � in the conditional model (2.2) is still super-consistent (albeit ine¢ cient), but

the asymptotic distribution theory becomes very di¢ cult, not to say impossible, without the

assumption of weak exogeneity, see Johansen (1992a), Boswijk (1995), Phillips (1991, 1994)

and Phillips and Hansen (1990).This complicates the problem of testing hypotheses concerning

� from the conditional model (2.2). Johansen (1992a, point (iii), Sect. 4) suggests simulating

the distribution involved in the asymptotic tests of hypotheses concerning � in these cases.
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4 Simulation results

In this section, we investigate the �nite sample performance of the BIC and the HQC in partial

systems through a Monte Carlo experiment which uses large scale systems of p = dim(Xt) = 7

variables as data generating processes.3 In particular, we consider a DGP where the seven-

dimensional process fXtg satis�es the following VAR(2) model with �true�co-integration rank
r0 = 1:

�Xt = ��0Xt�1 + �1�Xt�1 + ��0 + "t; "t � iidN(0;�); t = 1; :::; T (4.1)

where �0 := (a; 0; 0; 0; c; c=2; c=3), �0 := (1; 0; 0; 0; 0; 0; 0) and �1 := I7.4 In order to fully exploit

the potential of the conditional analysis we specify a �full�(and rather arbitrary) structure for

the covariance matrix � such that the matrix ! in (2.2) is non-zero in all DGPs we consider.5

The initial conditions X�1 and X0 are �xed to zero. In the Monte Carlo experiment, we set

a = �0:4 and  = 0:5, while the settings for the parameter c are discussed below. Samples of
length T = 100, 200 and 1000 are generated M = 5; 000 times from VARs of the form (4.1)

with k = 2 lags.6

On each generated sample, the partial (conditional) system (2.2) is estimated and the pro-

cedure for co-integration rank determination discussed in Section 3 is then applied. In particu-

lar, to evaluate the impact of the dimension of the conditioning variable vector Zt on the ability

of the information criteria to determine the true co-integration rank, we consider the partition

X 0
t = (Y

0
t ; Z

0
t), where the dimension of Yt ranges from two to four, i.e. pY = 2, 3 and 4, which

implies a dimension for Zt of pZ = 5, 4 and 3, respectively.

We consider two scenarios. In the �rst scenario, �A�in the following, the parameter c is set

to zero. This implies that the matrix of adjustment coe¢ cients, �, incorporates the hypothesis

of weak exogeneity of Zt with respect to �, hence the last rows of � are zero in the data

generating process (4.1). In the second scenario, �B�in the following, the parameter c is �xed

to 3
4
. This implies a structure for the matrix � in which the last rows are not zero; therefore,

3All calculations in this and in the next section have been performed in OxMetrics and MATLAB. Codes

are available from the authors upon request.
4Note that the assumption � := (1; 0; :::; 0)0 is without loss of generality as any process Xt satisfying (2.1)

under the I(1, r0) conditions with r0 = 1 can be transformed by a linear transformation into a new process X�
t

such that �0X�
t � I(0) with � := (1; 0; :::; 0)0. The likelihood ratio test is invariant to such rotation.

5The matrix � has been obtained using the following spectral decomposition: � = GDG0, where the diagonal

elements of D are generated randomly from a truncated standard normal and the elements of G are generated

randomly using the standard normal distribution and such that GG0 = Ip. The speci�c matrix � used in our

simulations is available upon request to the authors. We also considered Monte Carlo experiments based on a

speci�cation of � implying ! = 0 in (2.2). Also in this case results are available upon request to the authors.
6For each replication, a sample of T + 200 observations is generated and the �rst 200 observations are then

discarded.
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the hypothesis of weak exogeneity does not hold. Consequently, the asymptotic distribution of

HJNR�s test statistic will depend on nuisance parameters and therefore the tabulated critical

values are no longer valid. Within Scenario B, we also consider a case where, in addition to the

violation of the assumption of weak exogeneity, the conditioning set Zt contains co-integrated

variables.

Scenario A: weak exogeneity

The results for the case of weak exogeneity (c = 0 in � of (4.1)) are reported in Table

1, which summarizes the selection frequencies, i.e. the percentage of times BIC and HQC

select co-integration rank r = 0; :::; pY in the partial systems out of the M = 5; 000 Monte

Carlo replications. The �nite sample performance of these information criteria are compared

with that of HJNR�s sequential test at the 5% nominal signi�cance level. The asymptotic

critical values for this test are taken from Table 3 of HJNR. Results are also compared with

those obtained from the (unconditional) full VAR analysis. Speci�cally, for the full system we

consider the BIC and HQC as outlined in CDRT and Johansen�s (1996) sequential trace test

for co-integration rank, again at the 5% nominal signi�cance level.

TABLE 1 ABOUT HERE

Results in Table 1 show that, as expected, both information criteria and the HJNR tests

applied to the partial system overall outperform their �standard�counterparts from the (un-

conditional) full system when the hypothesis of weak exogeneity is valid. Indeed, comparing

the results in the three left-panels of Table 1 (partial systems, pY = 2, 3 and 4) with the

results in the right-panel of Table 1 (full system, pY = p = 7 and pZ = 0) we observe that the

three methods perform better in partial models compared to the (unconditional) full system,

especially so for HQC and HJNR�s sequential test. In particular, in the full system, HQC

and Johansen�s sequential test respectively select the �true�co-integration rank, r = r0 = 1,

only 48.8% and 44.4% (83.5% and 75.3%) of the time when T = 100 (T = 200), while these

percentages increase to 71.9% and 79.1% (89.7% and 88.9%) for HQC and HJNR�s sequential

test, respectively, in the case of a partial system with pY = 2 and pZ = 5 (left-panel of Table

1). These results highlight the huge bene�ts from analyzing the partial system in place of the

(unconditional) full VAR system in small samples under weak exogeneity.

In line with the results in CDRT, the BIC delivers the best overall performance and correctly

estimates the �true�co-integration rank more than 86% of the time in both partial and full

systems, even when the sample size is relatively small (T = 100) and irrespectively of the

dimension of the set of conditioning variables Zt. Speci�cally, when T = 100, BIC correctly

estimates r = r0 = 1 96.8%, 95.6% and 94.8% of the time for pY = 2, 3 and 4 (pZ = 5, 4 and 3),
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respectively, while the percentages for T = 200 and T = 1000 are substantially constant over

the di¤erent dimensions of the conditioning set. Conversely, HQC appears to be more a¤ected

than BIC by the dimension of the conditioning set when the sample size is relatively small,

namely when T = 100 and T = 200: the larger the dimension of Zt, pZ , the better its �nite

sample performance. HJNR�s sequential test performs similarly to HQC in partial systems. For

instance, when T = 200, HJNR�s sequential test correctly estimates the �true�co-integration

rank 88.9%, 84.2% and 82.4% of the time, against 89.7%, 82.7% and 81% of the time for HQC,

when pY = 2, 3 and 4, respectively.

Scenario B: no weak exogeneity

Table 2 reports, for the case of no weak exogeneity (c = 3
4
in � of (4.1)), the estimated se-

lection probabilities, i.e. the percentage of times BIC and HQC select r = 0; ::; pY , respectively,

for pY = 2, 3 and 4. Also in this case we sketch the estimated selection probabilities associated

with HJNR�s sequential test and, as in the previous scenario, we also consider co-integration

rank determination using the (unconditional) full system (right-panel of Table 2). Using this

scenario, we aim at evaluating the impact of the violation of the hypothesis of weak exogen-

eity of the conditioning variables on the performance of the methods for co-integration rank

determination in partial systems. Since such an hypothesis is di¢ cult to test in practice, it is

interesting to quantify possible drawbacks associated with a partial system analysis, when the

conditioning variables Zt are not weak exogenous.

TABLE 2 ABOUT HERE

The results in the left-panels of Table 2 show that, when weak exogeneity does not hold,

the performance of BIC deteriorates considerably when the sample size is relatively small, as

it tends to underestimate the true co-integration rank. In particular, when T = 100 (T = 200)

the selection frequency of the �true�rank for BIC drops to 41.4%, 33.4% and 27.7% (80.1%,

71.1% and 63.2%) for pY = 2, 3 and 4, respectively. As predicted by the results in Theorem

1, this e¤ect tends to disappear as T increases: similarly to the case of weak exogeneity in

Table 1, when T = 1000 BIC always selects r = r0 = 1, even when the weak exogeneity

hypothesis is not valid. Conversely, the HQC performs similarly to the case of weak exogeneity

and still outperforms its counterpart in the (unconditional) full system (right-panel of Table

2). In particular, HQC selects r = r0 = 1 only 49.7% (82.8%) of the time in the full system

when T = 100 (T = 200), while these frequencies are 69.5%, 57.2% and 52.5% (89.6%, 84%

and 83%) in partial systems for pY = 2, 3 and 4, respectively. Moreover, these results are

very close to (and, in same cases, even outperform) the corresponding results under weak

exogeneity (cf. Table 1). These results highlight that the HQC is not severely a¤ected by the
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violation of the weak exogeneity hypothesis of the conditioning set. Quite surprisingly, also

the performance of the HJNR�s sequential test does not appear to be strongly a¤ected by the

lack of weak exogeneity of Zt as we would expect, given that the critical values reported in

Table 4 of HJNR are tabulated under the weak exogeneity assumption. Moreover, HJNR�s

sequential test displays a less marked tendency to overestimate the �true�co-integration rank

than Johansen�s sequential procedure in the (unconditional) full system, thus leading to a better

overall performance also in the case of no weak exogeneity. In particular, Johansen�s sequential

test selects r = r0 = 1 only 45.5% (74%) of the time when T = 100 (T = 200), while the

corresponding selection frequencies in partial systems for HJNR�s sequential test are 69.3%,

62.1% and 57.9% (88.4%, 85.4% and 81.8%) in the case for pY = 2, 3 and 4, respectively.

Furthermore, as in the case of weak exogeneity (Table 1), the empirical performance of HJNR�s

sequential test and HQC in partial systems are similar. As such, these two methods usefully

complement each other in practice and are rather robust to violations of the hypothesis of weak

exogeneity.

TABLE 3 ABOUT HERE

We �nally consider a further case which, in addition to the violation of the weak exogeneity

hypothesis, allows Zt to contain co-integrated variables. In particular, we add a further co-

integration relation in model (4.1), ceteris paribus, by specifying

�0 :=

 
a 0 0 0 c c=2 c=3

�a=2 0 0 0 �0:5 �0:3 0:25

!
and �0 :=

 
1 0 0 0 0 0 0

0 0 0 0 0 1 �1

!
;

where, as in the previous case of Scenario B, we set a = �0:4 and c = 0:75. In this case, we
have that the last two variables in Xt (and in Zt) co-integrate among themselves, so that the

true co-integration rank is r0 = 2. The selection frequencies of r = 0; :::; pY for BIC, HQC and

HJNR�s sequential procedure in partial systems of dimension pY = 2, 3 and 4 are reported in the

left-panels of Table 3, whereas the results obtained from the (unconditional) full VAR analysis

are reported in the right-panel of Table 3. Results in Table 3 show that, also in the case when Zt
contains co-integrated variables, HQC and HJNR�s sequential procedure provide satisfactory

results in partial systems, especially when pZ is large, outperforming their analogues in the

(unconditional) full system, even when the sample size is small. Conversely, when T = 100 and

200, BIC tends to underestimate the true co-integration rank and its performance in partial

systems is worse than that obtained from the full system analysis.

Therefore, the story we learn from Table 2 and Table 3 is that when the conditioning vari-

ables are not weakly exogenous for the co-integration parameters and in samples of lengths

typically available to practitioners, HQC and HJNR�s sequential procedures (but not BIC) per-

form in partial systems no worse than their analogues perform in full systems. Thus, despite
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ignoring the marginal model for Zt may imply a loss of information on the adjustment mech-

anisms at work in the whole system, with HQC the reduction of dimensionality tends to fully

compensate the possible loss of power in co-integration rank determination from the conditional

system.

In summary, the results of our Monte Carlo simulations in scenarios A and B show that

the bene�ts of combining information criteria with partial system analyses are indisputable

and usefully complement HJNR�s sequential test approach in practice. Moreover, the results

in scenarios A and B also show that the HJNR�s sequential test does not appear to be severely

a¤ected by violations of the weak exogeneity hypothesis, even though the asymptotic distribu-

tion of the involved test statistics depends on nuisance parameters and tabulated critical values

are no longer valid.

5 Empirical illustrations

Despite conditional (possibly uni-equational) error-correction models have been used extens-

ively in the literature (e.g. Urbain, 1992), only seldom the partial system approach to co-

integration rank determination has been applied in empirical works. Doornik et al. (1998)

and Bruggeman et al. (2003) are some of the few examples where HJNR�s testing procedure

is implemented. As already observed, two main di¢ culties characterize the use of HJNR�s

sequential test in applied work. First, it is generally di¢ cult to select a priori the vector Zt
of weakly exogenous conditioning variables. Second, testing weak exogeneity of Zt e¢ ciently

either requires a full-system approach or the analysis of the marginal model for Zt, see e.g.

Urbain (1992), Boswjik (1995), Ericsson (1995) and Boswjik and Urbain (1997). In both cases

the bene�ts of the partial system analysis are nulli�ed.

In the previous sections we have shown that we can use BIC and/or HQC to determine

co-integration rank in the conditional model Yt j Zt in (2.2), without being concerned about
the weak exogeneity of Zt. Moreover, the Monte Carlo results show that the �nite sample

performance of BIC and HQC in the conditional model Yt j Zt is generally not worse than
the empirical performance of the BIC and HQC in the full system for X 0

t := (Y
0
t ; Z

0
t). In this

section, we illustrate the advantages of our approach by two empirical examples, both based

on the estimation of VAR models on U.S. quarterly data.

In the �rst empirical example (Section 5.1), we consider a relatively large-scale VAR system

estimated on quarterly data relative to the �Great Moderation�period, 1984Q1-2008Q2. The

idea in this case is to show that, other than reducing the dimensionality of the system, the partial

system approach combined with the use of information criteria can be useful for co-integration

rank determination. In particular, it is argued that in the absence of clear theoretical guidances
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about the number of stochastic trends in X 0
t := (Y 0

t ; Z
0
t), the typical situation researchers

face when dealing with large systems, one useful empirical speci�cation strategy is to start

the analysis by including in Zt time series that are not supposed to co-integrate. Indeed,

althought Zt can be co-integrated in our approach (see the Remark 3 and the Monte Carlo

results in Table 3), in large systems it can be relatively easier to make conjectures on which time

series should not co-integrate rather than on the variables which should be weakly exogenous.

Given di¤erent choices of the candidate Zt vector, the empirical illustration shows that our

empirical speci�cation strategy, combined with BIC and HQC, simpli�es co-integration rank

determination.

In the second empirical example (Section 5.2), we investigate the co-integration/common-

trend implications of a small-scale DSGE model for the U.S. business cycle. We show that our

approach can be advantageous compared to the full-system analysis when the researcher does

not want to take any explicit modeling stand on one of the time series that contributes to the

system�s long run equilibrium. More speci�cally, the DSGE model we consider features the

natural rate of output, which is a variable that captures a highly theoretic concept, di¢ cult to

characterize in applied work. We show that it is convenient to treat (proxy of the) natural rate

of output as a conditioning variable, disregarding whether it is weakly exogeneous or not.

5.1 Large-dimensional VAR

We consider a vector Xt containing seven U.S. quarterly macroeconomic variables, which in-

cludes (the log of) non-durable personal real consumption, denoted cndt, (the log of) durable

personal real consumption, denoted cdt, (the log of) �xed-private real investments, denoted

it, (the log of) the real gross domestic product (GDP), denoted yt, the in�ation rate, denoted

inft, the federal funds rate, denoted ft, and the 10 year-Treasury Bill rate, denoted Rt. The

macroeconomic literature has recently documented a dramatic fall in the variances of the main

macroeconomic time series, which has been termed �Great Moderation�. Kim and Nelson (1999)

and Stock and Watson (2002) o¤er support for a break in the macroeconomic volatilities around

1984. McConnell and Perez-Quiros (2000) identify 1984Q1 as the breakdate of the variance

of the U.S. real GDP. Boivin and Giannoni (2006) also detect a break in the coe¢ cients of a

reduced-form VAR for the U.S. economy in the early 1980s. In line with this literature, we

identify the beginning and the end of the �Great Moderation�sample with the dates 1984Q1

and 2008Q2, respectively, for a total of T + k = 98 quarterly observations, where k is the VAR

lag order for Xt := (cndt; cdt; it; yt; inft; ft; Rt)
0. The end of the sample, 2008Q2, is justi�ed by

our decision to avoid dealing with the acceleration of the �nancial crisis and, above all, with

the binding zero-lower bound (ZLB) that has kicked in since the end of 2008.
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FIGURE 1 ABOUT HERE

Figure 1 plots the �great ratios�cndt � yt, cdt � yt and it � yt, the (ex-post) real interest

rate, Rt� inft, the interest rate di¤erential Rt� ft and the (ex-post) real version of the policy
rate, ft� inft, on the period 1984Q1-2008Q2. According to neoclassical theory, under balanced
growth there should be a common stochastic trend driving cndt, cdt, it and yt, and the �great

ratios�cndt � yt, cdt � yt and it � yt should be stationary (King et al., 1991). Also the interest
rates Rt; ft and the in�ation rate inft should be driven by a single (common) stochastic trend

and the (ex-post) real interest rates and the interest rate di¤erential should be stationary. The

simple graphical inspection of Figure 1 suggests, however, that aside perhaps from cdt� yt; the
�great ratios�do not seem fully consistent with stationary (or trend-stationary) patterns on the

period 1984Q1-2008Q2. In particular, the �uctuations of cndt�yt around a possible linear trend
and of it � yt around a constant level do not line up with the typical persistence of stationary,

mean-reverting processes. Moreover, only the interest rate di¤erential Rt � ft appears to be

stationary (although highly persistent) around a constant level, while the (ex-post) real interest

rates Rt� inft and ft� inft display some trending behavior (which can partially be explained
in terms of the �aggressive�monetary policy undertaken by the Fed to �ght in�ation since the

end of the seventies). All this evidence is consistent with the view that it was the change in

conducting monetary policy undertaken by the Fed at the end of the seventies/beginning of the

eighties that �stabilized�the U.S. economy through an aggressive behaviour against in�ation. In

line with the �Great Moderation�explanation of the U.S. business cycle (Clarida et al., 2000),

one can hardly claim that there are only two common stochastic trends (i.e. �ve co-integrating

relations) driving the variables in Xt. Rather, it would seem reasonable to expect the presence

of at most three co-integrating relationships in the 1984Q1-2008Q2 period, corresponding to

the existence of at least four common stochastic trends driving the variables in Xt.

We start our empirical analysis by estimating a VAR for Xt := (cndt; cdt; it; yt; inft; ft; Rt)
0

(p = 7) with four lags (k = 4) and a restricted linear trend, which corresponds to the case

(iii) Dt = t, dt = 1 in system (2.1). The model with restricted linear trend allows for trend-

stationary co-integration relationships, which can be an interesting case given the time series

patterns observed in Figure 1. Notice that the full system analysis is carried out for comparative

purposes only, namely to check whether we obtain signi�cant di¤erences in the co-integration

rank determination with respect to the partial system approach. The right-panel of Table 4

reports results from Johansen�s (1996) sequential co-integration rank procedure at the 5% nom-

inal (asymptotic) level and using BIC and HQC. We select co-integration ranks of 4 (Johansen�s

test), 2 (BIC) and 4 (HQC), respectively.

TABLE 4 ABOUT HERE
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Given the relatively large dimension of Xt and the relatively small number of observations,

we investigate whether a partial system analysis delivers a di¤erent co-integration rank. Con-

sider, for instance, the following partition of Xt: X 0
t = (Y

0
t ; Z

0
t)
0, with Yt := (cndt; cdt; Rt; yt; ft)

(pY = 5) and Zt := (it; inft)
0 (pZ = 2). In this case, we have included in Zt as initial step

of the analysis a set of conditioning variables (the �xed-private investments and the in�ation

rate) which are expected to be I(1) but not co-integrated. Albeit Zt can potentially be co-

integrated in our setup (see Remark 3 and Table 3), our suggestion is that it may be convenient

to start the analysis with this choice because it is often easier to make conjectures on which

variables are likely to be no co-integrated, rather than on which variables should not adjust to

the long run equilibria. Modeling Yt conditional on Zt requires considering a �ve-dimensional

system as in (2.2) and, notably, we can apply BIC and HQC ignoring the weak exogeneity

condition of Zt. Results are reported in the middle panel of Table 4, which also reports, for

completeness, the outcome of HJNR�s sequential procedure. Although the asymptotic critical

values associated with HJNR�s test are computed under the assumption of weak exogeneity of

Zt, the Monte Carlo evidence summarized in Tables 1-3 has shown that HJNR�s test performs

reasonably well in samples of length T = 100 irrespective of whether Zt is weakly exogenous or

not (or co-integrated or not). The results in the middle panel of Table 4 show that we select

co-integration ranks of 3 (HJNR), 1 (BIC) and 3 (HQC), respectively. Therefore, we observe

a systematic reduction of the co-integration rank compared to the (unconditional) full system

analysis.

We repeat the co-integration rank determination analysis by changing the choice of Yt and

Zt, in particular using Yt := (cdt; Rt; yt; ft)
0 (pY = 4) and Zt := (cndt; it; inft)

0 (pZ = 3). In

this case, the partial system for Yt j Zt in (2.2) is four-dimensional. Results are summarized in
the left-panel of Table 4. We still select co-integration rank 2 (HJNR), 1 (BIC) and 3 (HQC),

respectively.

Overall, the partial system approach combined with the use of BIC and HQC suggests that

the selected co-integration rank does not exceed the rank a practitioner would select by using

the full system. The inference we have obtained with the conditional model seems in line with

the idea that there should be no more than three co-integration relationships in Xt over the

period 1984Q1-2008Q2. More precisely, the application of the HQC on the conditional models

Yt j Zt provides clear and robust indications that, as expected, Xt is driven by at least four

common stochastic trends. It is worth stressing that this conclusion is obtained without any

assumption about the weak exogeneity of the conditioning variables included in Zt.

To complete our analysis, we test whether the hypothesis of weak exogeneity of Zt :=

(it; inft)
0 (pZ = 2) and then of Zt := (cndt; it; inft)0 (pZ = 3) is supported by the data when

the co-integration rank is �xed at r = 3 as suggested by our partial system approach. To
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do so, we estimate the full VAR for Xt := (cndt; cdt; it; yt; inft; ft; Rt)
0, �x the co-integration

rank to r = 3 and then test the corresponding zero restrictions on the � matrix, given �. The

likelihood-ratio test for the null hypothesis of weak exogeneity of Zt := (it; inft)
0 is 37.4 and

implies the rejection of the null at the 5% nominal level. Likewise, the likelihood-ratio test for

the null hypothesis of weak exogeneity of Zt := (cndt; it; inft)
0 equals 55.9 and also leads to

reject the null considering the 5% nominal level.

Finally, we observe that the empirical evidence summarized in Table 4 is consistent with

the Monte Carlo evidence discussed in Section 4. For instance, the results for the full system

analysis reported in Table 2 (Scenario B) suggest that for small values of r0 relative to p and in

samples of length T = 100, HQC and Johansen�s test tend to select co-integration rank larger

than the true one, while BIC tends to select the true co-integration rank more accurately. On

the other hand, HQC and HJNR�s procedure improve considerably their selection performance

in the partial system approach and become more powerful than BIC, which in turn tends to

underestimate the true co-integration rank. Based on these considerations, the conclusion from

the partial system approach that the co-integration rank is 3 appears a sensible one.

5.2 Small-scale DSGE model

We consider the small-scale DSGE monetary model of Benati and Surico (2009), also estimated

in Bårdsen and Fanelli (2015). The structural model features the following equations:

~xt = Et~xt+1 + (1� )~xt�1 � �(it � Et�t+1) + !~x;t (5.1)

�t =
%

1 + %�
Et�t+1 +

�

1 + %�
�t�1 + �~xt + !�;t (5.2)

it = �it�1 + (1� �)('��t + '~x~xt) + !i;t (5.3)

!a;t = �a!a;t�1 + ua;t; �1 < �a < 1; ua;t �WN(0; �2a); a = ~x; �; i (5.4)

and expectations are conditional on the agents�information set Ft, i.e. Et�:=E(� j Ft). The
�rst equation is a forward-looking IS curve, the second is the New Keynesian Phillips curve

and the third is the policy rule through which the Central Bank �xes the short term interest

rate. ~xt = (xt � xnt ) is the output gap, where xt is the log of output and x
n
t the natural rate

of output; �t is the in�ation rate and it is the nominal policy interest rate; !a;t, a = ~x; �; i are

stochastic disturbances autocorrelated of order one, while ua;t, a = ~x; �; i, can be interpreted as

demand, supply and monetary shocks, respectively. The structural parameters are collected in

the vector � = (, �, %, {, �; �, '�, '~x, �~x, ��, �i, �2~x ; �
2
�; �

2
i )
0 and their economic interpretation

may be found in Benati and Surico (2009). Notice that system (5.1)-(5.4) does not specify how

the natural rate of output is generated. To complete the model, we assume that xnt obeys the
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equation

�xnt =  (it�1 � �t�1) + !xn;t , !xn;t �WN(0; �2xn) (5.5)

where  � 0 is an additional auxiliary parameter. When  = 0, xnt in (5.5) follows a driftless
random walk which captures the e¤ects of technology shocks and represents the I(1) stochastic

trend driving system. With  < 0, instead, xnt is still I(1) but the natural growth rate of output

is negatively tied to the level of the (ex-post) real interest rate.

System (5.1)-(5.5) with  = 0 is analyzed in Bårdsen and Fanelli (2015) to investigate

the testable implications of small DSGE models, including their common trend/co-integration

properties. The appealing feature of system (5.1)-(5.5) is that, under particular conditions, the

rational expectations solution of the DSGE model can be approximated by a four-dimensional

(p = 4) co-integrated VAR system for Xt := (xt; �t; it; x
n
t )
0. More speci�cally, the testable

co-integration implications of this DSGE model are captured by the term

~�
0
Xt�1 :=

0BB@
1 0 0 �1
0 1 0 0

0 0 1 0

1CCA
0BBBB@

xt�1

�t�1

it�1

xnt�1

1CCCCA (5.6)

which implies (true) co-integration rank r0 = 3, and requires the �output gap�xt � xnt , the

in�ation rate �t and the policy rate it to be jointly stationary. Moreover, it can be shown that

when  = 0 in (5.5), the variable xnt does not adjust to the three co-integrating relations, i.e.

it is weakly exogenous with respect to � = ~� in (5.6). In contrast, when  < 0, xnt adjusts to

the in�ation rate and the policy rate. Equation (5.6) suggests that if the solution of the DSGE

model (5.1)-(5.5) is captured by a VAR model for Xt = (xt; �t; it; x
n
t )
0, the system should be

driven by a single stochastic trend representing the cumulated e¤ects of technology shocks.

In this model, the natural rate of output xnt enters the co-integration relations in (5.6).

However, a practitioner might not be interested in modeling xnt directly within the VAR frame-

work. Indeed (see also the previous example), the natural rate of output is a variable which

captures a highly theoretic concept: it refers to the highest level of real output that can be

sustained over the long term, and there is some disagreement among economists about how

to characterize such a concept in applied work. In many empirical business cycle models xnt
is treated as an unobserved (latent) state variable, while in empirical applications xnt is often

proxied with measures of economic activity provided by o¢ cial institutions or national statist-

ical institutes. Thus, albeit in this example the dimension of Xt is not particularly large, xnt
represents a �natural�conditioning variable for the purpose of testing the co-integration implic-

ations of the DSGE model. In addition, the practitioner might not be interested in modelling

xnt directly within the VAR framework due to poor con�dence on the short run properties of
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the time series used to proxy xnt . Hence, it seems reasonable to investigate whether the data

support the co-integration/common trend implications predicted by the DSGE model by con-

sidering the partition X 0
t = (Y

0
t ; Z

0
t), with Yt = (xt; �t; it)

0 (pY = 3) and Zt = xnt (pZ = 1), and

then apply the BIC and HQC information criteria on the conditional model for Yt j Zt. For
comparative purposes, we also compute the sequential co-integration rank testing procedure

of HJNR which requires Zt to be weakly exogenous with respect to ~� matrix in (5.6), namely

that  = 0 in (5.5). As in the previous example, in order to show the usefulness of the partial

system approach relative to the (unconditional) full system analysis, we also determine the

co-integration rank of Xt through the full VAR system approach.

The variables in Xt = (xt, �t, it, xnt )
0 are chosen as follows: xt is the (logged) real GDP; �t

is measured by the quarterly growth rate of the GDP de�ator; it is measured by the e¤ective

federal funds rate expressed in quarterly terms (averages of monthly values); xnt is approximated

with the o¢ cial measure provided by the Congressional Budget O¢ ce (CBO). The data source

is the web site of the Federal Reserve Bank of St. Louis. Also in this case the data cover

the �Great Moderation�period. To compare results with Bårdsen and Fanelli (2015), we focus

on the sample 1985Q1-2008Q3 which comprises T = 95 quarterly observations. The partial

(conditional) system (2.2) is estimated with k = 2 lags and a restricted constant (corresponding

to case (ii) Dt = 1 and dt = 0 in the in the full system (2.1)). Results are reported in the

left-panel of Table 5, which summarizes the co-integration rank selected by the BIC and HQC,

as well as HJNR�s sequential procedure. While BIC selects co-integration rank r = 1, HQC

selects co-integration rank r = 3 as predicted by the DSGE model. Instead, HJNR�s sequential

procedure selects rank r = 2 at the 5% nominal signi�cance level. Recall, however, that

the asymptotic critical values reported in Table 5 have been tabulated under the maintained

hypothesis of weak exogeneity of Zt = (xnt ) which might not hold (see below). The right panel

of Table 5 summarizes the results obtained with the full VAR system analysis and reports the

co-integration rank selected by BIC and HQC and Johansen�s sequential procedure. We notice

that in this case BIC selects r = 1, HQC selects r = 2 and Johansen�s sequential procedure

select rank r = 1 at the 5% nominal signi�cance level. Aside from BIC and compared to the full

system analysis, the co-integration ranks selected by HQC and HJNR�s sequential procedure

in the conditional model are in line with the prediction of the DSGE model.

TABLE 5 ABOUT HERE

It is interesting in this case to test whether for �xed co-integration rank r = 3, which is

the value selected by the HQC in the partial system analysis, the variable Zt = (xnt ) is weakly

exogenous with respect to � in (2.1). This amounts to testing whether the last row of the p� 3
matrix � is zero in system (2.1) for a given (exactly) identi�ed speci�cation of the p� 3 matrix
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�. The likelihood-ratio test for the three zero restrictions in the � matrix is equal to 35.2 and

when compared with asymptotic critical values taken from its null �2-distribution with 3 degree

of freedom leads to a �rm rejection of the null hypothesis of weak exogeneity. This evidence

suggests that, although our Monte Carlo results show that HJNR�s sequential procedure tends

to perform reasonably well in small samples also when Zt is not weakly exogenous, it must

be interpreted with caution in applied work. Conversely, our approach based on information

criteria, allows us to disregard any consideration about the weak exogeneity of Zt and therefore

is robust to whether the parameter  is  = 0 or  < 0 in the structural equations of our

DSGE model.

We complete our investigation of the small scale DSGE model by comparing results with

Bårdsen and Fanelli (2015). The analysis in Bårdsen and Fanelli (2015), based on a full system

approach, suggests that if the co-integration rank is �xed at r = 3, a likelihood-ratio test for

the restrictions that � = ~� as in (5.6) leads to a p-value of 0.009 when asymptotic critical values

are used, and to a p-value of 0.04 when a non-parametric bootstrap version of the likelihood-

ratio test is computed along the lines of Boswijk et al. (2016). Overall, we can interpret these

evidences as supportive of the small-DSGE model (5.1)-(5.5) on the period 1985Q1-2008Q3.

6 Concluding remarks

Information criteria have been recently used as valid alternative to co-integration rank tests

in co-integrated VAR systems. There are cases where it is convenient to devote attention to

the model that characterizes the dynamics of the variables of interest, conditional on some

other variables whose dynamic characterization is not of primary interest. This approach is

useful either in large systems or when the practitioner bene�ts from marginalizing out variables

which contribute to the long run equilibrium but do not play a key role in the rest of the

analysis. In this paper we have extended the use of information criteria for co-integration rank

determination to the case of partial systems. We have proved consistency of BIC and HQC in

partial systems and shown the robustness of these criteria to violations of the weak exogeneity of

the conditioning variables for the co-integration parameters. A set of Monte Carlo experiments

and two empirical illustrations have shown that these criteria represent valid alternatives to

the �traditional�approaches to co-integration rank determination.

Since the focus of the paper is on co-integration rank determination in partial (conditional)

systems, it can be correctly argued that, once the co-integration rank has been determined from

the conditional model by information criteria, the inference on the co-integration parameters

(e.g. testing hypotheses on the co-integration parameters) can be more involved relative to the

full system analysis if Zt is not weakly exogenous; see Johansen (1992a) and Boswijk (1995). In
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particular, if the conditioning variables are not weakly exogenous for the long run parameters,

the maximum likelihood estimator of the co-integration parameters is still super-consistent

(albeit not fully e¢ cient) but its asymptotic distribution is not mixed-Gaussian, making the

construction of tests cumbersome; see also Phillips (1991, 1994). In this paper we have shown

that the bene�ts of marginalizing Zt out may compensate, in some speci�c problems and cases

of interest, possible losses of e¢ ciency of estimates and the problem of dealing with non-

standard inference. As the examples in the empirical section of this paper show, our approach

is particularly convenient when the primary concern of the investigator is co-integration rank

determination. Obviously, the decision of whether it is preferable to rely on a full or partial

system approach for the problem under investigation depends on the speci�c purposes of the

analysis.
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A Appendix

Without loss of generality, in what follows we assume that there are no deterministic components

in the model and in estimation (case (i) in (2.1)), i.e. Dt = 0 and dt = 0.

As in HJNR, de�ne the conditional variance

Var

0BB@
�0Xt�1

�Yt

�Zt

j�Xt�1; :::;�Xt�k+1

1CCA =

0BB@
��� ��Y ��Z

�Y � �Y Y �Y Z

�Z� �ZY �ZZ

1CCA
from which we obtain the variance of �Xt�1 and �Yt, conditional on the past and �Zt,

Var

 
�0Xt�1

�Yt
j�Zt;�Xt�1; :::;�Xt�k+1

!
=

 
���:Z ��Y:Z

�Y �:Z �Y Y:Z

!

=

 
��� ��Y

�Y � �Y Y

!
�
 
��Z

�Y Z

!
��1ZZ

 
�Z�

�ZY

!0
:
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The following results are similar to those given by Johansen (1996, Ch. 10 and 11) and

HJNR. The results do not assume weak exogeneity, i.e. �Z = 0 in (2.2) and (2.3), as this

assumption is not required for the consistency of information criteria in partial systems. As in

Section 3, we denote by �̂i, i = 1; :::; p, the (ordered) solutions to the eigenvalue problem in

(2.4).

Lemma A.1 Let fXtg be generated as in (2.1) with the parameters satisfying the I(1, r0)
conditions. Then, as T !1, �̂i, for i = 1; :::; r0, converge to the nonzero roots of������:Z � ��Y:Z��1Y Y:Z�Y �:Z�� = 0;
with ���:Z > 0. Moreover, the remaining p�r0 roots, �̂i, i = r0+1; :::; p, are of order Op(T�1).

Proof of Lemma A.1:

Let B0
T := �0?�, where � := Ip �

Pk�1
i=1 �i. By Granger representation theorem, we have that

1p
T
B0
TXbT �c

w! �0?W (�) =: H(�);

where
1p
T

bT �cX
i=1

"i
w! W (�)

and W (�) is the p-dimensional Brownian motion with variance matrix �. We also de�ne W =

(W 0
Y ;W

0
Z)
0, where WY is pY -dimensional and WZ is pZ-dimensional, and Wc := WY � !WZ .

Similar to the results of Lemma 10.3 in Johansen (1996) and Lemma 6 in HJNR, we have

that

T�1B0
TS11BT

w!
Z 1

0

HH 0du (A.1)

B0
TS1"c

w!
Z 1

0

H(dWc)
0 (A.2)

B0
TS11� = Op(1) (A.3)

�0S11�
p! ���:Z (A.4)

�0S10
p! ��Y:Z (A.5)

S00
p! �Y Y:Z (A.6)

By the continuous mapping theorem, (??) and (A.1) implies that

�0S10S
�1
00 S01� = ��Y:Z�

�1
Y Y:Z�Y �:Z : (A.7)
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Also, from the conditional model (2.2) we have R0t = �c�
0R1t + R"t, which shows that S01 =

�c�
0S11 + S"1 and S01BT = �c�

0S11BT + S"1BT . Therefore, the limiting distribution of S01BT
involves a combination of two stochastic integrals, one given in (??) and the other being the

limit of �0S11BT .

Let S(�) := �S11� S10S�100 S01 so that the determinantal problem in (2.4) is jS(�)j = 0. We
�rst show that the r0 largest solution to jS(�)j = 0 converge to the roots of

������:Z � ��Y:Z��1Y Y:Z�Y �:Z�� =
0. Let AT := (�; T�1=2BT ) so that, by (??), (??), (??), (??) and (A.7), we have

jA0TS(�)AT j =
������:Z � ��Y:Z��1Y Y:Z�Y �:Z�� ����� Z 1

0

HH 0du

���� = 0 (A.8)

which has (p � r0) roots equals to zero and r0 positive roots. Remind that there are pZ zero

roots in (2.4) and that the (pY � r0) smallest positive eigenvalues from (2.4) are of order T�1.

We now show that the remaining p � r0 roots are of order Op(T�1). Similarly to Johansen

(1996, p. 159) and Equation (A.7) in HJNR, we have

jA0TS(�)AT j = j�0S(�)�j
���T�1B0

T

n
S(�)� S(�)� [�0S(�)�]

�1
�0S(�)

o
BT

��� : (A.9)

Let T !1 with � := T� �xed. The �rst term in (A.9) is

�0S(�)� =
�

T
�0S11� � �0S10S

�1
00 S01� = ���Y:Z��1Y Y:Z�Y �:Z + op(1)

by (A.7) and since T�1�0S11�
p! 0 by (??). Moreover, since T�1B0

TS11�
p! 0 by (??), the

second term in (A.9) is

T�1B0
T

n
S(�)� S(�)� [�0S(�)�]

�1
�0S(�)

o
BT = T�1�B0

TS11BT�T�1=2B0
TS10NTS01BTT

�1=2+op(1)

where NT := S�100 � S�100 S01�(�0S10S�100 S01�)�1�0S10S�100 . The distribution of the p� r0 smallest
solutions of (2.4) can be derived using the result in (??) and noting that, using (??)-(A.7),

NT = N + op (1), where

N := ��1Y Y:Z � ��1Y Y:Z�Y �:Z(��Y:Z��1Y Y:Z�Y �:Z)�1��Y:Z��1Y Y:Z : (A.10)

In the special case where the hypothesis of weak exogeneity is valid, i.e. �Z = 0 and �c = �Y , we

have �? =

 
�Y? 0

0 IpZ

!
, which implies that (A.10) reduces to N = �Y?(�

0
Y?�c�Y?)

�1�0Y?

(see Lemma 4 in HJNR) and �0Y?S01BT = �0Y?S"1BT
w! �0Y?

R 1
0
(dWc)H

0 (see HJNR, p. 398).

Hence, under the assumption of weak exogeneity, the p � r0 smallest solutions of (2.4), nor-

malized by T , converge to those of the equation (A.8) in HJNR. In the general case of no

weak exogeneity, the p� r0 smallest eigenvalues (normalized by T ) converge to those of a more
complicated equation which involves the combination of stochastic integrals that de�nes the
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limiting distribution of S01BT (see discussion above) and (A.10). Nevertheless, we have that

�̂i, i = r0 + 1; :::; p, are all of order Op (T�1). �

Proof of Theorem 1

By (3.1), we have that for any r 2 fr0 + 1; :::; pY g,

IC(r)� IC(r0) = T
rX

i=r0+1

log(1� �̂i) + cT (pY + p� r � r0)(r � r0): (A.11)

As in Johansen (1996, p. 160), see also proof of Theorem 1 in HJNR, by Lemma A.1 the �rst

term on the right hand side of (A.11) satis�es T
Pr

i=r0+1
log(1� �̂i) = Op(1). As (pY + p� r�

r0)(r � r0) > 0 and cT ! 1, we have that, P(IC(r) > IC(r0)) ! 1, as T ! 1, which proves
part (i).

For any r 2 f0; :::; r0 � 1g, (3.1) implies that

IC(r)� IC(r0) = �T
r0X

i=r+1

log(1� �̂i) + cT (pY + p� r � r0)(r � r0): (A.12)

As in Lemma 12.1 in Johansen (1996) and in the proof of Theorem 1 in HJNR, by Lemma A.1

we have that the r0 largest sample eigenvalues �̂i, i = 1; :::; r0, converge to the roots �i of the

equation

j����:Z � ��Y:Z��1Y Y:Z�Y �:Z j = 0:

As ���:Z , �Y Y:Z > 0, all the �i are positive and, by de�nition, smaller than one, we have that

�T
Pr0

i=r+1 log(1��̂i) is of order Op(T ), where the rate is sharp. As by assumption cT=T ! 0 as

T !1, the �rst term on the right side of (A.12) dominates and, hence, P(IC(r) > IC(r0))! 1.

This completes the proof of Theorem 1. �
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Figure 1. The �great ratios�(cndt � yt); (cdt � yt) and (it � yt), the (ex-post) real interest rates

(Rt�inft), (fft�inft) and the interest rate spread (Rt�fft), U.S. economy, period 1984Q1-2008Q2.
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