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Abstract

Forecasting-volatility models typically rely on either daily or high frequency (HF) data
and the choice between these two categories is not obvious. In particular, the latter al-
lows to treat volatility as observable but they suffer of many limitations. HF data fea-
ture microstructure problem, such as the discreteness of the data, the properties of the
trading mechanism and the existence of bid-ask spread. Moreover, these data are not
always available and, even if they are, the asset’s liquidity may be not sufficient to al-
low for frequent transactions. This paper considers different variants of these two family
forecasting-volatility models, comparing their performance (in terms of Value at Risk,
VaR) under the assumptions of jumping prices and leverage effects for volatility. Find-
ings suggest that GARJI model provides more accurate VaR measures for the S&P 500
index than RV models. Furthermore, the assumption of conditional normality is shown
to be not sufficient to obtain accurate risk measures even if jump contribution is pro-
vided. More sophisticated models might address this issue, improving VaR results.
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1 Introduction

Modelling and forecasting volatility of asset returns are crucial for many applications,
such as asset pricing model, risk management theory and portfolio allocation decisions.
An earlier literature, including Engle (1982) and Bollerslev (1986) among others, has devel-
oped models of asset-volatility dynamics in discrete time, known as heteroscedastic volatility
models, i.e. ARCH-GARCH. Thanks to the availability of high frequency (HF) data, a new
strand of literature has originated a new class of models based on the Realized Volatility
(RV) estimator, therefore introducing a non-parametric measure of return volatility (see An-
dersen et al., 001a, Barndorff-Nielsen, 2002 and Andersen et al., 2012). As a main innovation,
RV models provides an ex-post observation of volatility, at odds with the standard ARCH-
GARCH approach, that treats volatility as a latent variable. Although forecasting-volatility
models based on HF data are getting more and more popular in the literature, the choice
between HF-data and daily-data models is yet not obvious, in particular from an empirical
standpoint. In particular, the former still suffer of various limitations, that can be addressed
only at the cost of an heavy manipulation of the original data. One of the main issue is the
presence of the market microstructure noise, which prevents from getting a perfect estimate
(at the limit) of the returns’ variance (see Hansen and Lunde, 2006 and Aı̈t-Sahalia et al.,
2005, 2011). The market microstructure noise may originate from different sources, includ-
ing the discreteness of the data, the properties of the trading mechanisms and the existence
of a bid-ask spread. Regardless of the source, when return from assets are measured based
on their transaction prices over very tiny time-intervals, these measures are likely to be heav-
ily affected by the noise and therefore brings little information on the volatility of the price
process. Since the level of volatility is proportional to the time interval between two succes-
sive observations, as the time interval increases, the incidence of the noise remains constant,
whereas the information about the ”true” value of the volatility increases. Therefore, there
is a trade-off between high frequency and accuracy, which has led authors to identify an op-
timal sampling frequency of 5 minutes1. HF data also features another inconvenient: they
are not always available and, even if they are, the asset may be not liquid enough to be fre-
quently traded. On the contrary, daily data are relatively simple to record and collect, and are
commonly easy-to-get. This paper shed light on the choice between HF-data and daily-data
models, by assessing the economic value of the two family models, based on a comparison of

1Since the best remedy for market microstructure noise depends on the properties of the noise, if data sampled
at higher frequency, e.g. tick-by-tick, are used the noise term needs to be modeled and, as far as I know, there
is no unified framework about how to deal with it. Aı̈t-Sahalia et al. (2005) define a new estimator, Two Scales
Realized Volatility (TSRV) , which takes advantages of the rich informations of tick-by-tick data and corrects
the effects of microstructure noise on volatility estimation. The authors, instead of sampling over longer time
horizon and discarding observations, make use of all data and model the noise as an ”observation error”. But
the microstructure noise modeling goes beyond the scope of this work.
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their performance in forecasting asset volatility. Following the risk management perspective,
I use value at risk (VaR) as the econometric metric of volatility forecastability, as suggested
by Christoffersen and Diebold (2000). VaR is defined as the quantile of the conditional port-
folio distribution, and is therefore quite intuitive as a measure: indeed, it is the most popular
quantitative measure of the market risk associated to a portfolio of assets, and is generally
adopted by banks and required by regulators all over the world2. In running the compar-
ison between HF-data and daily-data models, this paper introduces two key assumptions.
Firstly, the data generating process for asset prices features discontinuities in its trajectories,
jumps3. Secondly, volatility (i.e. the conditional variance of asset returns) reacts differently
to changes in asset return which have the same magnitude, but different sign, leverage effect.
These two assumptions represent the main novelty of this paper, since none of the previous
studies on the economic value of different forecasting-volatility models has investigated the
matter under both jumping prices and leverage effect combined together. In the choice of
the model to use for the comparison, I consider the GARJI model of Maheu and McCurdy
(2004), as the baseline for the daily-data models. The latter is a mixed-GARCH jump model
which allows for asymmetric responses to past innovations in asset returns: the news impact
(resulting in jump innovations) may have a feedback effect on the expected volatility, in ad-
dition to the feedback effect associated with the normal error term. For the case of HF data,
I consider models in which Realized Volatility (RV) is decomposed into continuous and dis-
continuous volatility components. The continuous component is captured by means of the
bi-power variation (BV), introduced by Barndorff-Nielsen and Shephard (2004), whereas the
discontinuous component (JV) is obtained as the difference between RV and BV at given
point in time4. In Andersen et al. (2007), JV is obtained considering only jumps that are

2Banks often construct VaR from historical simulation (HS-VaR): VaR is the percentile of the portfolio distribu-
tion obtained using historical asset prices and today weigths. This procedure is characterized by a slow reaction
to market conditions and for the inability to derive the term structure of VaR. The VaR term structure explains
how risk measures vary across different investment horizons. In HS-VaR, for example, if T-day 1% VaR is calcu-
lated, the 1-day 1% VaR is simply scaled by

√
T. This relation is valid only if daily return are i.i.d. realizations

of a Normal distribution. We know that is not the case since returns presents leptokurtosis and asymmetry. The
main limit of HS-VaR is the substitution of the conditional return distribution with the unconditional counter-
part. Risk Metrics and GARCH models represent improvements over HS-VaR measure. Both of them provide
an explicit assumption about the DGP and the conditional variance but they have also important differences. In
addition to the estimation method: GARCH conditional volatility is estimated by maximizing the log-likelihood
function while the parameters used in Risk Metrics are chosen in an ad hoc fashion, they differ for the possibility
to account for the term structure of VaR. This is because GARCH process allows for mean reversion in volatility
while Risk Metrics does not, reproducing a flat term structure for VaR.

3A continuos price process is a restrictive assumption since it is not possible to distinguish between the dy-
namic originated from the the two sources of variability, i.e. continuos and discontinuous movements with
consequences on the return generating process

4As shown in Andersen et al. (2002), Andersen et al. (2007), RV is a consistent estimator for the quadratic
variation, whereas BV represents a consistent estimator of the continuous volatility component, i.e. the so-called
integrated volatility, in the presence of jumping prices.
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found to be significative, and neglecting the others5. Corsi et al. (2010) consider instead all
jumps, stressing the importance to correct the positive bias in BV due to jumps classified as
consecutive. In this paper, I consider both these approaches and make a comparison among
them, finding non conclusive evidence of better performance of one over the other. To ac-
count for the leverage effect, I introduce in this class of models the heterogeneous structure
proposed by Corsi and Renó (2009).

Throughout this paper, the GARJI-VaR measures are obtained by following Chiu et al.
(2005), that is, by adjusting for skewness and fat tails in the specification of the conditional
distribution of returns6. The HF-VaR measures, instead, are computed by assuming a con-
ditional Gaussian distribution for asset returns: as shown in Andersen et al. (2010), returns
standardized for the square root of RV are indeed approximatively Normal7. In order to
assess the models capability to forecast future volatility, I implement a back-testing proce-
dure based on both the Christoffersen (1998) test and the Kupiec (1995) test. In addition to
comparing the economic value of daily-data and HF-data models, the analysis performed in
this paper sheds light on two other issues. The first is represented by the economic value
per se, i.e. out of the comparison, of the class of forecasting volatility models adopting HF-
data. This is done by considering different specifications of this family models. I first run a
comparison among them (based on their forecasting performances); then, I compare some of
them with their variant, obtained by using the Range estimator (RA) of Parkinson (1980). The
choice of this particular benchmark is motivated by the fact that the RA estimator is likely to
deliver a measure of volatility which lies in the middle between the measure obtained from
HF estimators and that obtained from daily-data models8. My findings suggest that none
of the HF-data models reviewed in this paper stands out from the others in term of fore-
casting capability. The second by-product of my analysis is a quantitative assessment of the
importance of the explicit jump component in the conditional distribution of asset returns 9.

5The authors with significant jumps refer to large value of RVt − BVt while small positive values are treated
both as part of continuous sample path variation or as measurement errors.

6The computation of VaR measure requires, in addition to the conditional volatility dynamics, the specifica-
tion of the conditional distribution of returns.VaR is a conditional risk measure so an assumption on the condi-
tional distribution of returns is needed. Conditional normality is an acceptable assumption (returns standardized
by their conditional volatility could be approximately Gaussian even if the unconditional returns are not Gaus-
sian) only if the volatility model is able to fatten conditionally Gaussian tails enough to match the unconditional
distribution. If this is not the case another conditional distributional assumption is necessary.

7This result is confirmed by the standardized returns of the sample used in this paper. See Section 3.
8The RA estimator exploits information on the highest and the lowest price recorded in a given day for a

particular asset. In this respect, it requires information on the intra-day activity (going beyond the simple closing
price of the asset), but without relying on further information, that might be not ready available).

9The presence of a jump component is justified both at theoretical and empirical level. From a theoretical
perspective, an explicit discontinuous volatility-component allows to have information on the market response
to outside news, which is key for many applications. From an empirical standpoint, instead, it is very dif?cult
to distinguish power-type tails from exponential-type tails, given that is not clear to what extent the return
distribution is heavily tailed. In this regard, the jump component of a jump-diffusion model may be interpreted
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This point is addressed for both the family models considered in this paper. Hence, I first
compare the forecasting volatility performances of each HF-data model with and without a
decomposition of the RV into the continuous and the discontinuous component. Then, I run
a similar analysis for the case of the daily-data models, considering the GARCH-t model as
well as the Beta-t model10 proposed by Harvey and Luati (2014). According to my analy-
sis, introducing an explicit, persistent jump component in the conditional return dynamics
(together with an asymmetric response to bad and good news into conditional volatility dy-
namics) may help to forecast the ex-post volatility dynamics and obtain more accurate VaR
measures, but only for the case of daily-data models. For HF-data models, accounting for
jumping prices does not seem to improve significantly the accuracy of the estimates. The
rest of the paper is organized as follows. Section 2 describes the most related literature and
the main contributions of this paper. Section 3 summarizes the volatility measures and the
forecasting models based on both HF and daily data. In this Section are also presented the
estimated parameters based on the entire sample. Section 4 and Section 5 show, respectively,
the backtesting methods used to evaluate forecasting models accurancy and the emprirical
results. Section 6 concludes.

2 Literature

In this Section, I will briefly present the most related papers to mine. As far as I know, the
closest papers to this work are Giot and Laurent (2004), Clements et al. (2008) and Brownlees
and Gallo (2010). All of these works investigate high frequency measures in a VaR frame-
work but the scope is different from what I want to asses in the present paper. Precisily I want
to understand, from an economic point of view, if forecasting volatility with models based on
high frequency data or with models based on daily data deals with the same VaR accurancy.
Moreover I focus on the role of jump component in both types of models and I am able to
compare VaR accuracy in each subgroup of data specification. I try to asses this point com-
paring forecasting models based on RV measures, its decomposition in BV e JV and a cascade
dynamics for leverage effect with daily based models assuming an explicit jump component
or fat tails in the conditional returns dynamics. In particular, Giot and Laurent (2004) com-
pare the performance of a daily ARCH-type model with the performance of a model based
on the daily RV in a VaR framework. Even if the scope of this paper is strictly related to the
goal of the present work, the models chosen are not the same. The present paper tries to

as the market response to outside news: when good or bad news arrive at a given point in time, the asset price
changes according to the jump size (and the jump sign) and an extreme sources of variation is added to the
idyosincratic component.

10Beta-t model belongs to the genral class of Dynamic Conditional Score (DCS) model. They are also known
as Generalized Autoregressive Score (GAS) model proposed by Creal et al. (2013).
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consider all the most recent research about volatility forecasting, belonging to two groups of
sampling data, assuming two fundamental stylized facts about returns: jumps and leverage
effect. Giot and Laurent (2004) find that VaR specification based on RV does not really im-
prove on the performance of a VaR model estimated using daily returns. The key issue is to
use a model that clearly recognizes and takes into account the key features of the empirical
data. Clements et al. (2008) evaluate quantile forecasts focusing exclusively on models based
on RV and they try to explain factors that appear to give good HF quantile forecast of ex-
change rates11. The authors do not provide leverage effect in volatility dynamics. Even if the
scope is different and the specifications are not the same, Clements et al. (2008) underline an
important result: the hypothesis on expected future returns. The distributional assumption
for expected future returns is needed for computing quantile irrespective of the frequency
of data used. Brownlees and Gallo (2010) forecast VaR using different volatility measures
based on ultra-high-frequency data using a two-step VaR prediction procedure. This paper
differs from mine in terms of volatility dynamics specifications, VaR forecasting procedure
and accuracy. Moreover, the authors model close-to-close returns with a Student’s t distri-
bution and estimate some alternative models based on daily returns only for completeness.
In light of this literature, this paper comes from the observation that great deal of the work
has exploited only specific volatility model without allowing for a complete comparison be-
tween daily and HF based models. Therefore, the analysis conducted in this work aims to
contribute to this literature filling this gap. In sum, this paper contributes to the existing
literature assessing the economic usefulness of HF and daily data and trying to understand
the importance of the distributional assumption for expected future returns in terms of VaR
accurancy. This paper would be a point of debate and a possible link between findings by
academic and economic requirements of practitioner communities.

3 Volatility Measures and Forecasts

3.1 Estimates of volatility with High Frequency Data

The RV measure is an estimator for the total quadratic variation, namely it converges
in probability, as the sampling frequency increases, to the continuos volatility component if
there are no jumps while it converges to the sum of continuos and discontinuous volatility
components if at least one jump occurs. As explained in Andersen et al. (2012), it is possi-
ble to use the daily RV measures, the ex-post volatility observations, to construct the ex-ante
volatility forecasts. This is possible simply by using standard ARMA time series tools but
it is important to take into account the difference with GARCH-type forecasting. The fun-

11Clements et al. (2008) wants also to understand if the results presented for stock returns can be carried over
exchange rates.
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damental difference is that in the former case the risk manager treats volatility as observed
while in the latter framework volatility is inferred from past returns conditional on a specific
model. The idea behind the RV is the following: as we know prices are not available on con-
tinuous basis but with prices recorded at higher frequency than daily, say, every minute, a
daily RV could easily be computed from one-minute squared returns. In this way the ”true”
ex-post volatility for the day t can be considered as observable.
More precisely, the RV on day t based on returns at the ∆ intraday frequency is

RVt(∆) ≡
N(∆)

∑
j=1

r2
t,j

where rt,j = pt−1+j∆− pt−1+(j−1)∆ and pt−1+j∆ is the log-price at the end of the jth interval on
day t and N(∆) is the number of the observations available at day t recorded at ∆ frequency.
In the absence of microstructure noise, as ∆→ 0 the RV estimator approaches the integrated
variance of the underlying continuous-time stochastic volatility process on day t:

RVt −→p IVt where IVt =
∫ t

t−1
σ2(τ) dτ

Furthermore since in this paper I consider that the the underlying price process is charac-
terized by discontinuities, the previous convergence is not valid but the RV estimators ap-
proaches in probability to the sum of the integrated volatility and the variation due to jumps
that occurred on day t. It is equal to:

RVt −→p

∫ t

t−1
σ2(τ) dτ +

ζt

∑
j=1

J2
t,j

If jumps (Jt,j) are absent, the second term vanishes and the realized volatility consistently
estimates the integrated volatility. A nonparametric estimate of the continuous volatility
component in the case of discontinuities in the price process is obtained by using the bipower
variation (BV) measures:

BVt ≡
π

2
N(∆)

N(∆)− 1

N(∆)−1

∑
j=1

|rt,j||rt,j+1| (1)

The idea behind this estimator is that when the ∆ goes to zero the probability of jumps
arriving both in time interval j∆ and (j + 1)∆ goes to zero as |rt,j| so the product vanishes
asymptotically. The notion of BV measures the behavior of adjacent returns. If returns are
driven by some continuous martingale component, given that this component will appear
in both increments, the product in BV will capture it. If there is an occasional jump the

7



product will vanish, BV will not capture jump effect, since the probability to have jumps in
two adjacent returns tends to zero. Hence, combining these results, the contribution to the
total return variation stemming from the jump component (JVt) is consistently estimated by

RVt − BVt −→p

ζt

∑
j=1

J2
t,j

This intraday variation measure is used to separate the continuous and the jump component;
the latter can be consistently estimated by the difference between RV and BV. Considering
the suggestion of Barndorff-Nielsen and Shephard (2004) the empirical measurements are
truncated at zero in order to ensure that all of the daily estimates are nonnegative:

JVt = max{RVt − BVt, 0} (2)

According to Andersen et al. (2007), this truncation reduces the problem of measurement
error with fixed sampling frequency but it captures a large number of nonzero small positive
values in the jump component series. These small positive values can be treated both as part
of the continuous sample path variation process or as measurement errors and, according
to the authors, only large values of RVt − BVt are associated with the jump component, i.e.
“significant jumps”.
In order to identify statistically significant jumps the authors suggest the use of the following
statistic:

Zt =
log(RVt)− log(BVt)√

N(∆)−1(µ−4
1 + 2µ−2

1 − 5)TQtBV−2
t

−→d N(0, 1) (3)

where µ1 =
√

2/π. In the denominator appears the realized tripower variation (TQ) that is
the estimator of the integrated quarticity as required for a standard deviation notion of scale:

TQt = N(∆)µ−3
4/3

N(∆)

∑
j=3
|rt,j|4/3|rt,j+1|4/3|rt,j+2|4/3

where µ4/3 = 22/3Γ(7/6)Γ(1/2). The significant jumps and the continuos component are
identified and estimated respectively as:

JVt = 1{Zt>Φα}(RVt − BVt)

CVt = RVt − JVt = 1{Zt≤Φα}RVt − 1{Zt>Φα}BVt
(4)

where 1 is the indicator function and Φα is the α quantile of a Standard Normal cdf. Corsi
et al. (2010) show that the nonparametric estimator BV can be strongly biased in finite sample
because of the presence of consecutive jumps and they define a new nonparametric estima-
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tor, called Threshold Bipower Variation (TBV). In particular, according to the authors TBV is
able to correct for the positive bias of BV in the case of consecutive jumps:

TBVt = µ−2
1

N(∆)

∑
j=2
|rt,j||rt,j+1)|1{|rt,j|2<θj}1{|rt,j+1||2<θj+1}

where θ is strictly positive random threshold function equal to V̂tc2
θ , V̂t is an auxiliary esti-

mator and c2
θ is a scale-free constant that allows to change the threshold. The jump detection

test presented by Corsi et al. (2010) is the following:

C-Tz = N(∆)−1/2 (RVt − TBVt)RV−1
t√

(π2

4 + π − 5)max{1, TTriPVt
TBV2

t
}
−→d N(0, 1) (5)

where TTriPV is a quarticity estimator which is obtained by multiplying the TBV by µ−3
4/3.

Also in this case the jumps and the continuos component are identified and estimated re-
spectively as:

JVt = 1{C-Tzt>Φα}(RVt − TBVt)

CVt = RVt − JVt = 1{C-Tzt≤Φα}RVt − 1{C-Tzt>Φα}TBVt
(6)

The other measure chosen in this work is the Range volatility (RA) presented by Parkinson
(1980):

RAt =
1

4 log 2
(log(Ht)− log(Lt))

2 (7)

This estimator is constructed by taking the highest price (H) and the lowest price (L) for
each day as summary of the intraday activity, i.e. the full path process. Its major empirical
advantage is that for many assets these informations are ready available. The RA estimator,
as RV, includes both continuos and discontinuous components and, as shown in Alizadeh
et al. (2002), it is affected by a much lower measurement error and it is more robust to mi-
crostructure noise in a stochastic volatility framework and it allows to extract efficiently la-
tent volatility.

3.2 Forecasting volatility using High Frequency Data

In the literature there is no consensus if jumps help to forecast volatility. In this sense this
work can be useful in order to understand, in a VaR framework, if allowing for an explicit
jump component is important to forecast volatility, independently of the sampling frequency
of the price process. Moreover, if different sampling frequencies (daily and 5-minutes) are
considered then a discrimination between the two kinds if data used, according to VaR fore-
casts, can be done.
For all forecasting models that I am going to describe in this section, I define a log spec-
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ification both for inducing normality and for ensuring positivity of volatility forecasts 12.
The natural starting point in forecasting volatility is to use an Autoregressive (AR) specifica-
tion13. The first model for both RV and RA is the AR model. In particular, an AR(8) model
is identified for both RV measure and for Range estimator14. These specifications are easy
to implement but they are not able to capture the volatility long-range dependence due to
the slowly decaying autocorrelation of returns. As alternative it is possible to use the Het-
erogenous Autoregressive model proposed by Corsi (2009). This model can be seen as an
approximation of long memory model, namely it exploits longer dependence but it is eas-
ier to implement than the pure long-memory model (see Andersen et al., 2007, Corsi and
Renó, 2009). The second forecasting model for both volatility measures is the Heterogeneous
Autoregressive model (HAR) that is able to capture serial dependence in volatility. The ag-
gregate measures for the daily, weekly and monthly realized volatility are computed as sum
of past realized volatilities over different horizons:

RV(N)
t =

1
N

RVt + · · ·+ RVt−N+1 (8)

where N is typically equal to 1, 5 or 22 according to if the time scale is daily, weekly or
monthly.
Then, HAR-RV becomes:

log RVt+h = β0 + β1 log RVt+h−1 + β2 log RV(5)
t+h−1 + β3 log RV(22)

t+h−1 + εt (9)

where εt is IID zero mean and finite variance noise 15

Moreover, as suggested in Corsi and Renó (2009), the heterogeneous structure applies
also to leverage effect and, as a consequence, volatility forecasts are obtained by considering
asymmetric responses of realized volatility not only to previous daily negative returns but
also to their weekly and monthly components. So, the past aggregated negative returns are
constructed as:

l(N)
t =

1
N
(rt + · · ·+ rt−N+1)1{(rt+···+rt−N+1)<0} (10)

12Volatility forecasts at each time is obtained by applying the exponential transformation.
13It is also possible to use an ARMA model to forecast volatility in order to consider some measurement errors

since the empirical sampling is not done in continuous time.
14The identification procedure for the order of both AR models is done by exploiting the sample autocorre-

lation and the sample partial autocorrelation function, by running both AIC and BIC information criteria and
significance of single parameters. Then I check the properties of the residuals: they are normal and the Ljung
Box test does not reject the null of no autocorrelation at any significance level.

15Corsi and Renó (2009) model the dynamic of the latent quadratic variation, call it σ̃t. Suppose that V̂t is
a generic unbiased estimator of σ̃t and log(σ̃t) = log(V̂t) + ωt where ωt is a zero mean and finite variance
measurement error. Then εt is independent from ωt.
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Then the L-HAR model is defined as:

log RVt+h =β0 + β1 log RVt+h−1 + β2 log RV(5)
t+h−1 + β3 log RV(22)

t+h−1+

β4lt+h−1 + β5l(5)t+h−1 + β6l(22)
t+h−1 + εt

(11)

The explanatory variables of the HAR-RV model can be decomposed into continuous and
jump components, in this way the forecasting model obtained is:

log RVt+h =β0 + β1 log CVt+h−1 + β2 log CV(5)
t+h−1 + β3 log CV(22)

t+h−1+

β4 log (1 + JVt+h−1) + β5 log (1 + JV(5)
t+h−1) + β6 log (1 + JV(22)

t+h−1) + εt

(12)

Depending on how the jump component is detected three different forecasted realized volatil-
ity are obtained. First, the HAR-Jumps is obtained according to (2) and for the continuos
component to (1). Second, the HAR-CV-JV model is obtained following Andersen et al.
(2007), namely according to (4). The last model, HAR-C-J is defined according to (6) follow-
ing the estimation strategy presented in Corsi and Renó (2009). Also in the case of jumps
the leverage variable is considered. In this way the three forecasting specifications used are
obtained by adding to (12) the cascade leverage variables computed as in (10):

log RVt+h =β0 + β1 log CVt+h−1 + β2 log CV(5)
t+h−1 + β3 log CV(22)

t+h−1+

β4 log (1 + JVt+h−1) + β5 log (1 + JV(5)
t+h−1) + β6 log (1 + JV(22)

t+h−1)+

β7lt+h−1 + β8l(5)t+h−1 + β9l(22)
t+h−1 + εt

(13)

Referring to the previous consideration about the way of computing the two volatility com-
ponent I obtain three new model specifications LHAR-Jumps, LHAR-CV-JV and LHAR-C-J.
As explained in Section 2, RA, assuming that starting from daily data it sum up the trading
information at a given day, performs remarkably well given its simplicity. Starting from the
previous considerations and from the fact that RV and RA are both ex-post volatility mea-
sures I want to asses the forecast ability of the RA also according to the heterogeneity in the
time horizons of investors in the financial market and considering the leverage effect. In this
way I define two different forecasting models, in addition to the AR(8) model:

log RAt+h =β0 + β1 log RAt+h−1 + β2 log RA(5)
t+h−1 + β3 log RA(22)

t+h−1 + εt (14)

called Range-HAR and

log RAt+h =β0 + β1 log RAt+h−1 + β2 log RA(5)
t+h−1 + β3 log RA(22)

t+h−1+

β4lt+h−1 + β5l(5)t+h−1 + β6l(22)
t+h−1 + εt

(15)
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called Range-L-HAR, where RA in computed as in (7).

3.3 Forecasting volatility using daily data

The first specification for the continuous volatility component is the GARJI model 16:

Rt = µ + σtzt +
Nt

∑
i=1

X(i)
t (16)

λt = λ0 + ρλt−1 + γξt−1 (17)

σ2
t = γ + g(Λ,Ft−1)ε

2
t−1 + βσ2

t−1 (18)

g(Λ,Ft−1) = exp(α + αjE(Nt|Ft−1) (19)

+ 1{εt−1<0}[αa + αa,jE(Nt|Ft−1)])

where εt = ε1,t + ε2,t = σtzt + ∑Nt
i=1 X(i)

t , zt ∼ N (0, 1), Nt ∼ Poisson(λt), X(j)
t ∼ N (µ, ω2)

and ξt−1 = E[Nt−1|Ft−1)− λt−1.
As explained in Maheu and McCurdy (2004), the last equation allows for the introduction of
a differential impact if past news are deemed good or bad. If past news are business as usual,
in the sense that no jumps occurred, and are positive, then the impact on current volatility
will be exp(α)ε2

t−1. If no jump took place but news are bad, the volatility impact becomes
exp(α + αa)ε2

t−1. If a jump took place, with good news, the impact is exp(α + αj)ε
2
t−1. If a

jump took place, with bad news, then the impact becomes exp(α+ αj + αa + αa,j)ε
2
t−1. The ar-

rival rate of jumps is assumed to follow a non homogeneous Poisson process while jump size
is described by a Normal distribution. In this way the single impact of extraordinary news on
volatility is identified through the combination of parameters in g(Λ,Ft−1). The idea of the
authors is the following: the conditional variance of returns is a combination of a smoothly
evolving continuous-state GARCH component and a discrete-jump component. In addition
previous realization of both innovations, ε1,t and ε2,t affect expected volatility through the
GARCH component of the conditional variance. This feedback is important because once
return innovations are realized, there may be strategic or liquidity tradings related to the
propagation of the news which are further sources of volatility clustering17. With this model
it is possible to allow for several asymmetric responses to past returns innovations and then
obtain a richer characterization of volatility dynamics, especially with respect to events in
the tail of the distribution (jumps).
In particular E[Nt−1|Ft−1) is the ex-post assessment of the expected number of jumps that

16The ARJI specification is obtained by imposing αj = αa = αa,j = 0
17A source of jumps to return can be important and unusual news, such as earnings surprise (result as an

extreme movement in price) while less extreme movements in price can be due to typical news events, such as
liquidity trading and strategic trading.
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occurred from t − 2 to t − 1 and it is equal to ∑∞
j=0 jP(Nt−1 = j|Ft−1). Therefore ξt−1 is

the change in the econometrician’s conditional forecast on Nt−1 as the information set is
updated, it is the difference between the expected value and the actual one. As shown by
Maheu and McCurdy (2004) this expression may be inferred using Bayes’ formula:

P(Nt = j|Ft−1) =
f (Rt|Nt = j,Ft−1)P(Nt = j|Ft−1)

f (Rt|Ft−1)
for j = 0, 1, 2, . . . (20)

Indeed, conditional on knowing λt, σt, and the number of jumps that took place over a time
interval, Nt = j, the density of Rt in terms of observable is Normal:

f (Rt|Ft−1) =
∞

∑
j=0

f (Rt|Nt = j,Ft−1)× P(Nt = j|Ft−1) (21)

where

f (Rt|Nt = j,Ft−1) =
1√

2π(σ2
t + jδ2)

exp
(
− (Rt − µ + θλt − θ j)2

2(σ2
t + jδ2)

)
(22)

Naturally the likelihood function is defined starting from (22), where θ̃ is the vector of the
parameters of interest, i.e. θ̃ = (γ, ρ, θ, δ2, α, αj, αa, αaj, ω, β, λ0, µ):

L(Rt|Nt = j,Ft−1; θ̃) =
T

∏
t=1

f (Rt|Nt = j,Ft−1) (23)

and the log-likelihood is:

l(Rt|Nt = j,Ft−1; θ̃) =
T

∑
t=1

log f (Rt|Nt = j,Ft−1) (24)

In order to deal with the infinite summation in the likelihood and in the filter (20), I adopt
Nt = 10 because the conditional Poisson distribution has almost zero probability in the tails
for values of Nt ≥ 10, as suggested in Maheu and McCurdy (2004). Even if this is not the
focus of this paper, GARCH-t model and Beta-t-GARCH model for conditional volatility are
chosen in order to understand if GARJI model can provide a better fit to the empirical dis-
tribution of the data and a better quantile forecast with respect to volatility specifications
based on fat tails, such as t-Student. Beta-t-GARCH model consists of an observation driven
model based on the idea that the specification of the conditional volatility as a linear combi-
nation of squared observations is taken for granted but the consequences are that it responds
too much to extreme observations and the effect is slow to dissipate. So, the authors define
a model in which the observation are generated by a conditional heavy tailed distribution
with time varying scale parameters and where the dynamics rare driven by the score of the
conditional distribution. In this way the model counts the innovation outliers but also the
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additive outliers.

4 Computing and comparing VaR forecasts

The predicted VaRs are based on the predicted volatility and they depend on the assump-
tion on the conditional density of daily returns. The one day-ahead VaR prediction at time
t + 1 conditional on the information set at time t is:

V̂aRt+1|t =
√

σ̂2
t+1|tF

−1
t (α) (25)

In (25) σ̂2
t+1|t is the returns variance, estimated in both parametric and non-parametric mod-

els, F−1
t (α) is the inverse of the cumulative distribution of daily returns while α indicates the

degree of significance level. In the case of HF data σ̂2
t+1|t is equal to R̂Vt or R̂At estimated

as explained in the section 3.2 while for GARJI model the returns variance is not simply the
modified GARCH dynamic but it also consist of the variance due to jumps (Hung et al.,
2008):

V̂aRt+1|t =
√

σ̂2
t+1|t + (θ̂2

t + δ̂2
t )λ̂t F̃−1

t (α) (26)

where F̃−1
t (α) = F−1

t (α) + 1
6 ((F−1

t (α))2 − 1)Sk(Rt|tFt−1) and Sk(Rt|tFt−1) is the conditional
return skewness computed after estimating the model. Once obtained VaR forecasts, I asses
the relative performance of the models through the violation18 rate and the quality of the
estimates by applying backtesting methods19.
A violation occurs when a realized return is greater than the estimated return. The violation
rate is defined as the total number of violations divided by the total number of one period-
forecasts20. The tests used in this paper are the Unconditional Coverage and Conditional

18In the testing literature exception is used instead of violation because the former is referred, as I explain later,
to a loss function. The loss function changes according to the test applied and the motivation behind the testing
strategies.

19The backtesting tests give the possibility to interpret the results and then the quality of the forecasting model
choose in inferential terms.

20As well explained in Gençay et al. (2003) atq th quantile, the model predictions are expected to underpredict
the realized return α = (1− q) percent of the time. A high number of exceptions implies that the model exces-
sively underestimates the realized return. f the exception ratio at the q th quantile is greater than α percent, this
implies excessive underprediction of the realized return. If the number of exceptions is less than α percent at
the q th quantile, there is excessive overprediction of the realized return by the underlying model. Notice that
the estimated return determines how much capital should be allocated for a given portfolio assuming that the
investor has a short position in the market. Therefore, a high number of exceptions implies that the model sig-
nals less capital allocation and the portfolio risk is not properly hedged. In other words, the model increases the
risk exposure by underpredicting it. On the other hand, exceptions excessively lower than the realized returns
implies that the model signals a capital allocation more than necessary. In this case, the portfolio holder allocates
more to liquidity and registers an interest rate loss. A regulatory body may prefer a model overpredicting the
risk since the institutions will allocate more capital for regulatory purposes. Institutions would prefer a model
underpredicting the risk, since they have to al- locate less capital for regulatory purposes, if they are using the
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Coverage tests suggested respectively by Kupiec (1995) and Christoffersen (1998) . These
tests asses the adequacy of the models by considering the number of VaR exceptions, i.e. days
when returns exceed VaR estimates. If the number of exceptions is less than the selected
significance level would indicate, the system overestimates risk; on the contrary too many
exceptions signal underestimation of risk. In particular the first test examines whether the
frequency of exceptions over some specified time interval is in line with the selected signif-
icance level. A good VaR model produces not only the “correct” amount of exceptions but
also exceptions that are independent each other, i.e. not clustered over time. Tests of con-
ditional coverage take into account for the number of exceptions and when the exceptions
occur. The tick loss function considered in order to run the tests is defined as Binary loss
function (BLF). The aim of the BLF is to count the number of exceptions, that are verified
when the loss is larger than the forecasted VaR:

BLFt+1 =

1 if Rt+1 < V̂aRt+1|t

0 if Rt+1 ≥ V̂aRt+1|t
(27)

where V̂aRt+1|t is the estimated VaR at time t that refers to the period t + 1.
The Likelihood Ratio test of unconditional coverage tests the null hypothesis that the true
probability of occurrence of an exception over a given period is equal to α:

H0 : p = α

H1 : p 6= α

where p̂ = n0
n1+n0

is the unconditional coverage (the empirical coverage rate) or the failure
rate and n0 and n1 denote, respectively, the number of exceptions observed in the sample
size and the number of non-exceptions.
The unconditional test statistic is given by:

LRUC = −2 log
(
(1− α)n1 αn0

(1− p̂)n1 p̂n0

)
∼ χ2(1) (28)

So, under the null hypothesis the significance level used to forecast VaRs and the empirical
coverage rate are equal. The test of conditional coverage proposed by Christoffersen (1998)is
an extended version of the previous one taking into consideration whether the probability
of an exception on any day depends on the exception occurrence in the previous day. The
loss function in constructed as in (27) and the log-likelihood testing framework is as in (28)
including a separate statistic for independence of exceptions. Define the number of days

model only to meet the regulatory requirements. For this reason, the implemented capital allocation ratio is
increased by the regulatory bodies for those models that consistently underpredict the risk
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when outcome j occurs given that outcome i occurred on the previous day as nij and the
probability of observing an exception conditional on outcome i of the previous day as πi.
Summarizing:

π0 =
n01

n00 + n01
π1 =

n11

n10 + n11
π =

n01 + n11

n00 + n01 + n10 + n11
(29)

The independence test statistic is given by:

LRIND = −2 log
(

(1− π)n00+n10 πn01+n11

(1− π0)n00 πn01
0 (1− π1)n10 πn11

1

)
(30)

Under the null hypothesis the first two probabilities in (29) are equal, i.e. the exceptions do
not occur in cluster. Summing the statistics (28) and (30) the conditional coverage statistic is
obtained, i.e. LRCC = LRUC + LRIND and it is distributed as a χ2 with two degrees of free-
dom since two is the number of possible outcomes in the sequence in (27). In order to avoid
the possibility that the models considered pass the joint test but fail either the coverage or
the independence test I choose to run LRCC and also its decomposition in LRUC and LRIND.

5 Data and Empirical results

5.1 Data

In order to assess which volatility measure and, in turn, which sampling frequency is
better in terms of VaR forecasting and accuracy, I use S&P 500 index from 5 Jan.1996 to 30
Dec.2005 both for daily and high frequency samples.

The total number of trading days is equal to 2516 which coincides with the number of
daily returns. In the top panel of Figure 1 the level of the S&P 500 index is presented. The
corresponding daily returns are displayed in the bottom panel of Figure 1.

Given the literature on the effects on microstructure noise of estimates of RV and the
forecast performance of RV models based on different sampling frequency, I use 5-minutes
data for a total of 197, 689 observations and I compute 5-minutes intraday returns as the
log-difference of the closing prices in two subsequent periods of time. The daily returns are
computed taking the last closing prices in each trading day. The range volatility at each date
is calculated as scaled log-difference between the highest and the lowest price in a trading
day over all the prices recorded.
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Figure 1: Top: daily S&P 500 index from 5 Jan.1996 to 30 Dec.2005. The horizontal axis
corresponds to time while the vertical axis displays the value of the index. Bottom: daily
S&P 500 percentage returns calculated by rt = log(pt/pt−1), where pt is the value of the
index at time t.

Table 1: Summary Statistics

Rt Rt/
√
(RVt) RVt BVt JVt RAt

Mean 0.0279 0.1378 0.8250 7.93E-05 3.15E-06 9.70E-05
St. Dev. 1.1520 1.3138 1.0097 9.85E-05 1.00E-05 1.52E-04

Skewness -0.0951 0.253 4.8721 4.8786 19.9283 7.1671
Kurtosis 5.9165 2.8505 39.1013 39.3401 659.3967 84.1687

Min -7.1127 -3.6092 0.0281 0.0281 0 0.0206
Max 5.3080 4.7161 11.890 11.890 3.6200 25.931

Notes: the rows report the sample mean, standard deviation, skewnwss, kurtosis, sample minimum
and maximum for the daily returns (Rt), the standardized daily returns (Rt/

√
(RVt)) the daily real-

ized volatility (RVt), the daily bipower variation (BVt), the daily jump component (JVt) and the daily
range estimator (RAt). Retuns are expressed in percentage.

Table 1 reports the descriptive statistics of S&P 500 index for RVt and its decomposition
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in BVt and JVt. In particular JVt is computed as max{RVt − BVt, 0}.21 and Range measure.
A number of interesting features are founded. Firstly, returns exhibit negative asymmetry
and leptokurtosis. As shown in Andersen et al. (2007) the daily returns standardized with
respect to the square root of the ex-post realized volatility are closed to Gaussian. In fact its
mean and asymmetry are close to zero, its variance is close to one while its kurtosis is near to
3. This result is clear from Figure 2 in which the empirical density distribution is plotted with
the normal density distribution for Rt/

√
RVt. Moreover if I compare RVt and BVt the latter

is less noisy than the former, considering the role of jumps. Finally, jump process shows any
Gaussian feature 22.

Figure 2: The graph displays the density distributions, i.e. empirical (dashed lines) vs normal
(solid lines), for the daily returns standardized with respect to the square root of the ex-post
realized volatility computed for the and S&P500 stock index based on 5-minute returns.

Figure 3 shows the plot of RVt, BVt, JVt and RAt estimators. It is evident RVt, BVt and JVt

follow a similar pattern and JVt tends to be higher when RVt is higher even if its maximum
does not correspond to RVt (and BVt) maximum. The jumps exhibit a relatively small degree
of persistence as consequence of the clustering effect. Moreover RAt estimator follows the
same pattern of RVt assuming that both of them are ex-post volatility measures.

21The summary statistics of the continuous and disontinuous components computed according to Andersen
et al. (2007) and Corsi et al. (2010) are not reported because are very similar to those presented in Table 1.

22In particular, jumps computed according to (6)exhibit a higher mean with respect to those computed accord-
ing to (4), given that the former exploits the possibility of consecutive jumps.
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Figure 3: Top: RVt computed using 5- minutes data from 5 Jan.1996 to 30 Dec.2005. The
horizontal axis corresponds to time while the vertical axis displays the value RV. Second: BVt
computed using 5- minutes data from 5 Jan.1996 to 30 Dec.2005. Third: JVt = max{RVt −
BVt, 0} is computed using 5- minutes data from 5 Jan.1996 to 30 Dec.2005. Bottom: Range
estimator computed using daily data from 5 Jan.1996 to 30 Dec.2005.

5.1.1 Estimation results based on daily data

Table A1, reported in Appendix A, provides parameter estimates for both GARJI and
ARJI model applied to S&P500. The parameter estimates are presented separating the diffu-
sion component from the jump component. First, both parameters ρ and γ are significantly
different from zero. The former represents the persistence of the arrival process of jumps
that is quite high for both models which implies the presence of jump clustering. The latter,
γ, measures the change in the conditional forecast of the number of jumps due to the last
days information. The significance of these two parameters suggests that the arrival pro-
cess of jumps can deviate from its unconditional mean. The implied unconditional jump
intensity is 0.8727 while the average variance due to jumps is equal to 0.5516 which means
that the index is volatile. This result is confirmed by the average proportion of conditional
variance explained by jumps that is equal to 0.3068, jumps explained almost the 23% of the
total returns variance. Moreover the jump size mean θ is negative for both model and the
most interesting feature is that it affects conditional skewness and conditional kurtosis. The
sign of θ indicates that large negative return realizations due to jumps are associated with an
immediate increase in the variance explaining the contemporaneous leverage effect: when
jumps are realized they tend to have a negative effect on returns. In particular the average
conditional skewness is equal to −0.2766 while the average conditional kurtosis is equal to
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3.2814. Furthermore the feedback coefficient g(Λ,Ft−1) tends to be smaller when at least
one jump occurs because the total innovation is larger after jumps . Consider the first col-
umn of Table A1, the feedback coefficient associated with good news and no jump is equal
to 0.0005 and it increases if one jump occurs, i.e. 0.0010. If no jumps occur and in presence of
bad news the coefficient is equal to 0.0411 and it is equal to 0.0348 in case of bad news if one
jump occurs. These results provide evidence for the asymmetric effect of good and bad news
and they show that the asymmetry associated to bad news is more important in the absence
of jumps, namely for normal innovations. In fact the difference between the coefficient esti-
mates for both good and bad news in the case of no jumps and one jump are quite similar.
This means that news associated with jump innovations is incorporated more quickly into
current prices. The second column of Table A1 presents the estimated parameters for the
model with αj = αa = αa,j = 0. With this specification and through the LR test it is possible
to understand if the asymmetric effect of good versus bad news is statistically significant:
the asymmetric news effect is statistically significant.

5.1.2 Estimation results based on high frequency data

All the estimates presented in Table A2 and Table A3 in Appendix A, are computed em-
ploying the OLS method over the entire sample period, i.e. from 5 Jan. 1996 to 30 Dec. 2005,
for the S&P500 index. Table A2 shows the results for the models presented in Section 3.2
for models based on RV, its decomposition in BV and JV and the cascade structure for the
leverage effect. The coefficients of the continuos component expressed as daily, weekly and
monthly measures, respectively β1,β2 and β3 are significants in all models. Moreover jump
components appear to be fundamental to forecast one step ahead volatility; the predictive
power is higher for those specifications that allows for RV decomposed in its continuous and
discontinuous components, regardless the identified method used for jump magnitude. Fur-
thermore, the estimates for the aggregate variables representing the asymmetric responses of
volatility to negative returns are negatives (as expected) and significants and the predictive
power increases adding leverage regressors.

This finding confirms the different reaction of daily volatility to negative returns. The
estimates of the forecasting models based on the Range estimator are reported in Table A3.
The coefficients of the HAR specification are statistically significant; these results imply a het-
erogenous structure also for RA volatility measure. the highest predictive power is recorded
for the L-HAR model. Indeed also in this case, the heterogenous structure in the leverage
effect has an important role in predicting future volatility.
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5.2 VaR accuracy results

To asses the models capability of predicting future volatility, I report the results of the
Kupiec (1995) and the Christoffersen (1998) tests described in the Section 4. Both tests ad-
dress the accuracy of VaR models and their results interpretation give insigths into volatility
models useful to risk managers and supervisory authorities. The tests are computed for both
models based on HF data and on daily data. In evaluating models performance, the avail-
able sample is divided into two subsamples: in-sample period is equal to 1677 observation,
around 2/3 of the total sample, while the out-of-sample period is around 1/3 of the total
sample, equal to 839 observations. A moving window procedure is used to implement and
evaluate the models according to the tests. After estimating the alternative VaR models, the
one-day-ahead VaR estimate is computing using the in-sample period. Then the in-sample
period is moved forward by one period and the estimation is runned again. This procedure
is repeated step by step for the remaining 839 days, until the end of the sample. For both tests
the expected number of exceedances is chosen equal to 10%, 5% and 1% level. The results,
displayed in Table 2, show that for all models presented in the Section 3.2 the unconditional
coverage test (LUC) rejects at 10%, 5% and 1% significance levels the null of an accurate in-
terval forecast. This means that the actual number of violations is statistically different from
the expected fraction, i.e. 10%, 5% and 1% levels. The only exception is represented by the
AR(8) model at 1% significance level. This VaR model predicts the actual fraction of violation
that is equal to the expected fraction (1%). Moreover the Christoffersen (1998) test reject the
null for all models and for all confidence level assumed, excepted for the AR(8) model at 1%.
Since the null hypothesis of the LRCC test is the independence of the observed violations,
this finding can be associated with the presence of violations clustering ascibable to volatil-
ity persistence. The same conclusions can be done also for models based on RA measure as
showed in Table 3, even for the AR(8) model (at 1%). This is in line with the interpretation of
RA. So, exploring informations of the intraday activity using daily data gives a similar VaR
accurancy with respect to informations obtained sampling data at higher frequency. These
results highlight an interesting aspect related to HF based models capability of predicting
tail events. All models reject the null in both tests and some models present the same value
for the test statistcs. For example, from Table 2 LHARC-Jumps, LHAR-CV-JV and LHAR-C-J
present the same conclusions for LRUC and LRCC. These models are characterized by the
same heterogeneous structure for continuous and discontinuous volatiltiy components and
leverage effect 23.

23The leverage variables are the same in all models based on high frequency data. They are constructed aggre-
gating the past negative returns in the same time span obtaining a cascade structure.
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These models differ in the strategy adopted to detect spikes in the price trajectories. LHAR-
Jumps model accounts for jumps as difference between RV and BV, LHAR-CV-JV detects sig-
nificant jumps according to the procedure presented by Andersen et al. (2007) while LHAR-
C-J asses consecutive jumps according to the test proposed by Corsi et al. (2010).

Table 3: Results of models based on Range estimator

α AR(8) HAR L-HAR

S&P 500
10%

Unconditional Coverage 21.008 (0.0000) 29.905 (0.0000) 46.909 (0.0000)
Independence Test 3.6806 (0.0551) 0.2033 (0.6520) 0.7011 (0.4024)
Conditional Coverage 24.689 (0.0000) 30.108 (0.0000) 47.610 (0.0000)

5%
Unconditional Coverage 13.332 (0.0002) 36.429 (0.0000) 60.244 (0.0000)
Independence Test 0.3588 (0.5492) 0.3985 (0.5279) 0.0540 (0.8162)
Conditional Coverage 13.691 (0.0011) 36.827 (0.0000) 60.298 (0.0000)

1%
Unconditional Coverage 0.7578 (0.3840) 66.253 (0.0000) 41.962 (0.0000)
Independence Test 0.0865 (0.7686) 0.4793 (0.4888) 1.8083 (0.1787)
Conditional Coverage 0.8443 (0.6556) 66.732 (0.0000) 43.769 (0.0000)

Notes: the results refer to the VaR accurancy for the three models based on Range estimator reported
on each column. First row report the test statistics value with the p-values in parenthests of the Ku-
piec (1995)test, whereas the test statistics value with the corresponding p-values of the Christoffersen
(1998) are included in third rows. The second rows presents the completes the decomposition of
Christoffersen (1998) test. All tests are evaluated in terms of the 90-th quantile, the 95-th quantile and
the 99-th quantile.

Even if all three models offer different one step ahead VaR forecasts, none of them can be
interpreted as an improvement in terms of prediction accurancy of extreme events. In same
cases the fraction of violations detected is the same, producing the same test statistics. An-
other interesting comparison can be done between AR(8) and HAR models. The heteroge-
neous structure for volatility is introducted by Corsi and Renó (2009) to approximate serial
dependence in volatility using a model that is easier to implement than a pure long memory
model. This model reproduces the memory persistence exploiting the asymmetric propaga-
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tion of volatility between long and short time horizons generated by the actions of different
types of market participants according to the Heterogeneous Market Hypothesis. According
to the results shown in Table 2 HAR volatility model does not provide a better accuracy of
predicting tail events than the AR(8) model. The cascade structure of the HAR model is not
sufficient to reproduce more accurate VaR estimates. The AR(8) model is even more accu-
rate than the HAR since it predicts extreme events and independent violations, at least at 1%
level.

Table 4: Results for models based on data sampled at daily frequency

α GARJI ARJI GARCH-t Beta-t-GARCH

S&P 500
10%

Unconditional Coverage 9.0010 (0.0027) 10.608 (0.0011) 24.971 (0.0000) 24.971 (0.0000)
Independence Test 1.9256 (0.1652) 1.1724 (0.2789) 4.7647 (0.0290) 4.7647 (0.0290)
Conditional Coverage 10.927 (0.0042) 11.780 (0.0028) 29.736 (0.0000) 29.736 (0.0000)

5%
Unconditional Coverage 9.4524 (0.0021) 14.815 (0.0001) 6.3469 (0.0118) 6.3469 (0.0118)
Independence Test 4.6974 (0.0302) 2.9323 (0.0868) 1.1706 (0.2793) 1.1706 (0.2793)
Conditional Coverage 14.149 (0.0008) 17.747 (0.0001) 7.5175 (0.0233) 7.5175 (0.0233)

1%
Unconditional Coverage 4.6314 (0.0314) 7.0781 (0.0078) 0.2432 (0.6219) 0.0177 (0.8942)
Independence Test 0.0216 (0.8833) 0.0096 (0.9221) 0.1179 (0.7313) 0.1542 (0.6945)
Conditional Coverage 4.6530 (0.0976) 7.0877 (0.0289) 0.3611 (0.8348) 0.1719 (0.9176)

Notes: The results refer to the VaR accurancy for the GARJI, ARJI, GARCH-t and Beta-t models. All of
them are daily based models with different assumption about the distribution of conditional returns.
First row report the test statistics value with the p-values in parenthests of the Kupiec (1995)test,
whereas the test statistics value with the corresponding p-values of the Christoffersen (1998) are in-
cluded in third rows. The second rows presents the completes the decomposition of Christoffersen
(1998) test. All tests are evaluated in terms of the 90-th quantile, the 95-th quantile and the 99-th
quantile.

Different conclusions can be derived from Table 4. GARJI model does not reject the null
for both LRUC and LRCC at 1% significance level. This finding can be interpreted in favour
to forecasting volatility models, and in turn VaR models, based on daily data. Daily data are
preferred to the use of HF data since the former offer more accurate VaR measures. Table
4 also records the 10%, 5% and 1% VaRs’ results for GARCH-t and Beta-t-GARCH models.
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Both of them are constructed on the idea that the standardized returns present fatter tails
than a normal distribution. For this reason VaR estimates are computed assuming a t-Student
distribution for standardized returns. Both models lead to the same outcome: they pass VaR
tests only at 1% level. The nice thing is that the magnitude of all test statistics are equal at
10% and 5% level. A possible motivation could be recognized in the fact that in the limit, as
the degrees of freedom go to infinity, the Beta-t-GARCH model coincide with the standard
GARCH-t model. Given this last comparison there is no difference in terms of VaR accurancy
between a model that allows for an explicit jump component and a fat-tail distributional
assumption. Neverthless, providing jumps gives to a risk manager important informations
about the market response to outside news.

6 Conclusions

This paper assesses the economic value of different forecasting volatility models, in par-
ticular by comparing the performances of HF-data and daily-data models in a VaR frame-
work. In so doing, two key assumptions are introduced: jumps in price and leverage effect
in volatility dynamics. I consider various specifications of HF-data models for volatility
forecast, which differs along three main dimensions: different time-horizons for investors,
separation of continuous and discontinuous volatility components and, finally, a cascade dy-
namic for the leverage effect. I also consider different variants of the daily-data models, in
form of GARJI models either with or without an asymmetric effect of news on volatility, as
well as in form of two fat-tails models, namely the GARCH-t and the Beta-t GARCH mod-
els. All these models are compared with a correspondent and equivalent model, based on
the Range volatility measure; the latter is expected to estimate a level of volatility which
is intermediate with respect to those measured by HF-data and daily-data models. This
analysis highlights two important issues. First, it stresses the importance of the sampling
frequency for data needed in economic applications such as the VaR measurement. Second,
it emphasizes the strict relationship between VaR measures and the type of model used to
forecast volatility. In sum, daily-data models are preferred to HF-data models: all volatility
forecasting models based on HF-data do not pass the VaR tests (at 10%, 5% and 1%, except
for the AR (8) model at 1% level). On the contrary, the GARJI model does not reject the
null for both the Unconditional and Conditional Coverage tests (at 1% significance level).
Moreover, it seems that the accurancy of the VaR measure does not significantly improve
when introducing both an explicit jump component and a fat-tail distribution in forecasting
volatility models, independently on the type of data (HF or daily) required by the model.
However, introducing jumps allows risk managers to have relevant information on the mar-
ket reaction to outside news. Hence, it seems plausible to argue that a more sophisticated
model for volatility might, in principle, improve the accuracy of the VaR results. In partic-
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ular for the case of HF-data models, conditional normality does not appear as a reasonable
assumption: based on the VaR results obtained in this paper, these models do not manage to
make the tails of the conditionally Gaussian distribution fat enough to match the uncondi-
tional distribution, even when jumps contribution is accounted for. Such conjectures might
be tested by using a model in which the future values of RV is explained based on a larger set
of explanatory variables, including, for instance, the level of market activity. An alternative
option may be represented by a model which assumes a distribution of asset returns that is
fatten than the Normal, even if RV are model-free estimators and standardized returns are
Normal distributed. All these questions are left for future research, together with a possible
replication of the same analysis proposed by this paper, but performed on data for a differ-
ent time period or different asset returns. Indeed, the normal distribution of standardized
returns should not be confirmed when using different samples: in this case, VaR forecasting
might require an empirical distribution for standardized returns, fatten than the Normal.
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Appendix A

Table A1: GARJI and ARJI models estimates

Process Parameters S&P 500

GARJI ARJI
Diffusion

µ 0.0106 (1.9839) 0.0153 (2.1142)
ω 0.0036 (0.0005) 0.0034 (0.0005)
α -7.7048 (0.4332) -4.7623 (0.3063)

αj 0.8096 (0.7538) -
αa 4.5131 (0.4213) -

αa,j -0.9776 (0.7204) -
β 0.9696 (0.0002) 0.9787 (0.0000)

Jump
λ0 0.0211 (0.0039) 0.0229 (0.0052)

ρ 0.9758 (0.0025) 0.9757 (0.0030)
γ 0.5262 (0.0501) 0.4792 (0.0641)
θ -0.9895 (0.3985) -0.9793 (0.4501)

δ2 0.0005 (0.0000) 0.0000 (0.0000)

Log-likelihood -3570.8 -3574.4

Notes: ARJI model is obtained assuming αj = αa = αa,j = 0. Standard errors are in parenthesis.
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Table A3: Estimation of models based on Range estimator

Parameters AR(8) HAR L-HAR

β0 0.2347 (0.0000) -02601 (0.0000) -0.8119 (0.0000)
β1 0.2542 (0.0000) 0.1147 (0.0000) -0.0279 (0.2066)
β2 0.1141 (0.0000) 0.4502 (0.0000) 0.3013 (0.0000)
β3 0.0986 (0.5333) 0.3209 (0.0000) 0.3530 (0.0000)
β4 0.0141 (0.4953) - -0.3011 (0.0000)
β5 0.0620 (0.0027) - -0.3765 (0.0000)
β6 0.0078 (0.7034) -0.3509 (0.0160)
β7 0.0825 (0.0002) -
β8 0.1244 (0.0000) - -

Obs. 2494 2494 2494
R2 0.2592 0.3914 0.4337

Adj.R2 0.2568 0.3907 0.4323

Notes: Estimates of models based on Range volatility estimator. The coefficients refer to models
presented in Section 3.2. Standard errors are in parenthesis.
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