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Abstract 
This paper identifies the globally stable conditions under which an individual facing the same 

choice in many subsequent times learns to behave as prescribed by the expected-utility model. To 

do so, the analysis moves from the relevant behavioural models suggested by psychology (i.e., 

weighted probabilities applied to regret and rejoice theory), and by updating probability estimations 

and outcome preferences according to the learning models suggested by neuroscience (i.e., adaptive 

learning aimed at reducing surprises), and analogous to Bayesian updating. The search context is 

derived from experimental economics, whereas the learning framework is borrowed from 

theoretical economics. Analytical results show that obstinate and lucky individuals are better off in 

the short-run (i.e., a low density of events in the reference period), but they do not learn, and this is 

true to a greater extent in a simple context; in contrast, reactive and unlucky individuals are worse 

off in the short-run, but they learn and are better off in the long-run (i.e., all individuals are equally 

lucky or unlucky), and this is true to a greater extent in a complex context. The expected-utility 

model explains real behaviours in the long-run whenever unlucky events are more likely than lucky 

events. 
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1. Introduction 

Three main econometric analyses of dynamic choices under uncertainty in real or experimental 

contexts have been performed. Zagonari (1995) applied ordinary least-squares estimators to panel 

data (104 individuals) from a real rural daily-rated labour market in India, and showed that the 

expected-utility model performed about as well with linear and non-linear subjective probabilities 

for representing the decision-making process of women who were repeatedly dealing with the same 

kind of uncertainty in the same kind of framework. Moreover, an econometric analysis based on 

experimental data from two samples of subjects sequentially facing 90 similar pair-wise choice 

problems showed that the random preference model (which assumes uncertainty about preferences) 

is more successful than the Fechner model (which depicts uncertainty at the calculation stage) and 

the constant error model (which assumes uncertainty about actions), and the estimated random 

preference model tends towards the same results as in the expected-utility model as the number of 

choices tends to infinity (Loomes et al., 2002). Finally, Ben-Elia et al. (2013) applied a mixed 

multinomial logit model to experimental data (49 participants) from simple route choices involving 

different levels of time variability, and showed that experienced regret explains travel behaviour 

better than anticipated regret, and that learning seems to mitigate the amplitude of regret emotions, 

although to a smaller extent in more risky contexts. 

Note that many experimental studies can be found that deal with repeated dynamic decision-making 

under uncertainty. For recent examples, see Hopfensitz & Van Winden (2008) in an investing 

context; Norman et al. (2012), Huang & Hutchinson (2013) in a shopping context; and Di Cagno et 

al. (2014) in a bidding context. 

The purpose of the present study was to identify circumstances, in terms of observable conditions, 

in which the explanatory power of the expected-utility model for observed behaviours increases 

over time in repeated decision-making. Section 2 provides the theoretical economic background for 

such settings. To identify these circumstances, Section 3 borrows the search context from 

experimental economics. In particular, offers are independently drawn from a continuous 

distribution, which is either a uniform or an exponential distribution in [0,n]; the searcher knows 

these probability distributions and has a non-binding budget constraint; one offer can be presented 

each time and the cost of one search action is constant. Note that in this context, the searcher cannot 

accept a previously rejected offer. 

Section 4 refers to psychological studies that attempted to identify the initial biases with respect to 

standard decision-making (i.e., unbiased expected-utility theory) in estimating probabilities and 

realisations. In particular, Loomes and Sugden (1982) provide a source for representing regret and 

rejoice, and Prelec (1998) depicts under-estimation of small probabilities and over-estimation of 

large probabilities. Note that these formulas were chosen for their simplicity (alternatively, the 

analysis could have used the two-parameter formulation by Lattimore et al., 1992) and their 

consistency with a dynamic context (alternatively, the analysis could have used the rank-dependent 

expected-utility theory of Quiggin, 1982 or the cumulative prospect theory of Tversky and 

Kahneman, 1992). 

Section 5 borrows the learning strategy that has been described in neurological studies. In 

particular, at each point in time, individuals adapt their probability estimations to reduce their biases 

in estimating the probabilities of experienced events, and satisfaction evaluations to reduce their 

regret and rejoice perceived from experienced outcomes. The Appendix shows how this learning 

mechanism is related to the Bayesian updating rule. Note that the present search context differs 

from one-armed-bandit models, because individuals face a single stochastic machine with a known 

probability distribution, so no exploration is needed, whereas it is similar to reinforced learning, 

because individuals refer to optimal decision-making, although no long-run optimal behaviour is 

assumed, and thus, no long-term convergence is ensured. 

Section 6 considers decision-makers who apply the reservation-value rule (i.e., they stop searching 

at a given time if the marginal cost of an additional search action exceeds its expected marginal 

benefit), consider the expected regret and rejoice, and potentially over-weight or under-weight 
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probabilities of the outcomes (i.e., an optimist over-estimates and a pessimist under-estimates the 

probability of lucky events). 

Section 7 presents two main results of this analysis. Procedurally rational individuals (i.e., those 

who attempt to maximise their utility with imperfect information) could be better off in the short-

run (i.e., few choices per reference time, or a low density of events in the reference period) by 

adopting ex ante a weighted regret and rejoice model (as opposed to the expected-utility model) if 

they turn out to be lucky ex post, this is true to a larger extent if they are obstinate (as opposed to 

reactive), although they will not learn, and to a greater extent in a simple world (here represented by 

a uniform distribution of events). In contrast, all individuals will learn to behave fully rationally 

(i.e., to maximise utility based on perfect information) according to the expected-utility model in 

the long-run (i.e., all individuals are equally lucky or unlucky, or the law of large numbers applies) 

in a complex world, and they will be better off than those who adopt a weighted regret and rejoice 

model, provided that unlucky events are more likely than lucky events. In other words, individuals 

learn over time to behave more rationally and optimally, on average, although this behaviour might 

not be optimal for a subsequent time. Thus, the model presented in this paper accounts for the 

econometric evidence obtained by Zagonari (1995), Loomes et al. (2002), and Ben-Elia et al. 

(2013). 

2. Background 

Three main economic analyses on convergence to the expected-utility model in a context of 

dynamic choices under uncertainty have been performed. The present study relates to these analyses 

as follows. First, like Agastya & Slinko (2015): 

 Individuals are considered to be procedurally rational even if not fully rational. 

 They do not care about the chronological order in which realisations have occurred (i.e., 

exchangeability). 

 Realisations are not necessarily continuous. 

 Preferences for all actions do not change if, in the current period, all actions receive the 

same (and expected) payoff (i.e., consistency). 

 Path-dependence in preferences for actions across time is allowed (i.e., the history of 

decision-makers, or their past experiences, affect their current choices as they mould their 

preferences). 

 Monetary rewards represent an arbitrary (but finite) set. 

 The set of actions is finite. 

 Preferences are based on rewards rather than on lotteries, as in Mengel & Rivas (2012). 

 Preferences for actions are revised to account for the individual’s history of outcomes. 

 A preference relationship for any set of actions is a complete, transitive, and reflexive 

ordering of elements. 

 The decision-maker observes the rewards of all actions, including those not chosen by the 

decision-maker, as in Easley & Rustichini (1999); this assumption is reasonable in a social 

context such as portfolio choice or labour supply, but not always reasonable in individual 

contexts such as route choice and consumption demand.  

However, the decision-maker prefers one action over another if the former shows a larger average 

utility with respect to the empirical distribution of the historical rewards up to a given time; that is, 

the decision-maker remembers the historical frequencies of all rewards linked to all actions, and 

chooses actions that represent the best response to these frequencies. This assumption is reasonable 

in an analytical context such as portfolio choice, but not in intuitive contexts such as labour supply, 

route choice, or consumption demand. In addition, results by Agastya & Slinko (2015) suggest that 

a backward-looking (fictitious player) decision-maker will behave as a forward-looking (maximiser 

of expected utility) decision-maker if the stochastic process of events (rewards) is a (restrictively) 

exchangeable sequence (i.e., any permutation of events has the same probability distribution as the 

original sequence. 
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As in Oyarzun & Sarin (2013), individuals update their behaviour according to what has been 

observed. However, individuals show an increasing probability to choose the action suggested by 

the expected-utility model: this assumption is not suitable in intuitive contexts, in which an action is 

either chosen or not chosen. In addition, this research suggests that the learning rule converges with 

high probability on the set of actions that dominate all others according to a second-order stochastic 

criterion only if individuals are sensitive to second-order stochastic dominance in all states (specific 

conditions) and if an individual’s learning is slow in response to their experience (unobservable 

conditions). 

As in Gilboa & Schmeidler (1996), individuals learn by starting from a specific decision model 

other than expected utility. However, the set of conceivable cases is necessarily assumed to be 

infinite: this assumption is not suitable in intuitive contexts, in which infinity is an implausible 

concept to be applied. In addition, results by Gilboa & Schmeidler (1996) suggest that the decision-

maker will choose actions that maximise their expected utility only if the aspiration level is 

(bizarrely) adjusted over time, both realistically (i.e., it relates to the average of its previous level 

and the best average performance so far) and ambitiously (i.e., it is higher than the maximum 

average performance sufficiently often to support this ambition). 

In summary, this paper will combine in a single framework the same determinants identified by the 

economic literature (e.g., realised outcomes, learning rates) by disregarding the most implausible 

assumptions (i.e., that decision-makers remember the frequencies of all historical rewards linked to 

all actions, individuals choose probabilities to take an action rather than actions, and the set of 

conceivable cases is infinite) by adding observable insights, based on explicable assumptions, in 

realistic contexts (see Section 8 for details). 

3. The search context 

Many search contexts have been suggested by experimental economics; for recent examples, see 

Duffy and Puzzello (2014) and Kloosterman (2016). However, these contexts differ based on three 

main features. First, the situation that is referred to differs. For example, sometimes subjects are 

provided with a random offer, and choose to take that offer (Hey, 1987); sometimes searchers draw 

prices from a known distribution, choose the price at which they are willing to buy a fictitious 

commodity, and resell the commodity to the experimenter at a predetermined price (Kogut, 1990); 

and sometimes subjects receive an article, ask for one or more bids, and decide whether to sell the 

article to the experimenter for the highest bid so far (Sonnemans, 1998). Second, the order of bids 

that is given differs. Sometimes searchers face random sequences of offers, as in the case of Hey 

(1987) and Kogut (1990). Sometimes subjects face the same pre-selected sequences of offers; this is 

the case in the study by Sonnemans (1998), in both his experiment 1 (in which any search strategy 

was allowed) and his experiment 2 (in which the reservation-value rule was enforced). Third, the 

information set that is provided differs. In most experimental studies, subjects are sequentially 

presented with random offers from a known distribution. This was a normal distribution in Hey 

(1987), but a uniform distribution in Kogut (1990) and Sonnemans (1998). 

In particular, the present study will refer to the following search context. Offers are independently 

drawn from a known continuous distribution, in which two alternative scenarios are considered: a 

uniform distribution in [0,n] (i.e., p = 1/n) and an exponential distribution in [0,n] (i.e., p =  exp[- 

x]). I define those individuals who correctly estimate probabilities as realists, and those who over-

estimate and under-estimate the likelihood of bids with lower probability and higher pay-off as 

optimists and pessimists, respectively. The searcher has a non-binding budget constraint so that an 

unlimited number of searches can be assumed. One offer is presented at each point in time (t) and 

the cost of one search action is constant (c) so that at each time t, individuals must decide whether 

to accept the last bid r(t) or to reject it; in the former case, they receive r(t) – c, but in the latter case, 

they pay c. The searcher cannot accept a previously rejected offer; thus, a time horizon of one 

period ahead is assumed. 
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4. Initial biases 

Many biases with respect to the expected-utility decision-making have been suggested by 

psychological studies. For recent examples, see Glaser et al. (2012), Reyna (2012), Sherstyuk et al. 

(2013), Romm (2014), and Ben-Elia and Avineri (2015). However, the most relevant studies in our 

context refer to the biases in estimating probabilities of outcomes (section 4.1) and in predicting 

satisfaction from outcomes (section 4.2). 

4.1. Weighted probabilities 

Several behavioural probability-weighting functions have been suggested to account for observed 

choices that are inconsistent with the subjective expected-utility model. For recent examples, see 

Koster & Verhoef (2012), Riddel (2012), Capra et al. (2013), Charupat et al. (2013), Hensher et al. 

(2013), Petrova et al. (2014), Huang et al. (2015), Blavatskyy (2016), Boos et al. (2016), Keskin 

(2016), and Traczyk & Fulawka (2016). For the sake of simplicity, I will apply the probability-

weighting function derived axiomatically by Prelec (1998), with weights (w) normalized over 

probabilities so that w(0) = 0 and w(1) = 1: 

𝑤𝑢[𝑝(𝑦)] = exp[−[− ln(1 𝑛⁄ )]βu(𝑡)] 

𝑤𝑒[𝑝(𝑦)] = exp [−[−ln(λ exp−λ y)]
βe(𝑡)

] 

where wu represents the weight for a uniform distribution, we represents the weight for an 

exponential distribution, y represents a given outcome, n represents the largest outcome, λ 

represents the parameter characterising the exponential distribution, βu(t) and βe(t) represent the bias 

coefficients for uniform and exponential distributions (respectively) at time t, such that β(t) > 1 

represents the degree of optimism, and β(t) < 1 represents the degree of pessimism. In other words, 

I will assume that probabilities are processed non-linearly and that the attention given to an 

outcome does not depend on its ranking with respect to other outcomes but only on its probability. 

Note that the assumption of the absence of two distinct domains, together with evidence by 

Cavagnaro et al. (2013) and Chechile & Barch (2013), which show that the (second) elevation 

parameter is domain-dependent, will justify the use of a one-parameter variant of the probability-

weighting function in the case of multi-outcome (e.g., monetary) lotteries. Without loss of 

generality, I will fix n at 10 and approximate λ as 1, where 1/λ represents the mean of an 

exponential distribution, which is 0.9995 if n is 10. This lets me compare the uniform and 

exponential contexts by focusing on other crucial parameters. 

4.2. Regret and rejoice 

Several behavioural utility models expressed as a function of outcomes have been applied in the 

literature to explain observed choices that are inconsistent with the subjective expected-utility 

model. For recent examples, see Bracha & Brown (2012), Jouini & Napp (2012), Wolpert & Leslie 

(2012), Chorus & Bierlaire (2013), Krähmer & Stone (2013), Dekker (2014), Leong & Hensher 

(2014), Riella & Teper (2014), Qu (2015), and Charles-Cadogan (2016). For the sake of simplicity, 

I will assume a constant absolute risk aversion utility model as a function of outcomes: 

𝑢(𝑦, 𝑡) = 1 − exp−α(𝑡) 𝑦 − ∫ 𝑤[𝑝(𝑥)][1 − exp−γ(𝑡) 𝑥]𝑑𝑥 + ∫ 𝑤[𝑝(𝑥)][1 − exp−δ(𝑡) 𝑥]𝑑𝑥
𝑦

0

𝑛

𝑦

 

where α(t), γ(t), and δ(t) represent the degrees of risk aversion, regret, and rejoice at time t, 

respectively, and where w[p(x)] = wu[p(x)] and w[p(x)] = we[p(x)] in the cases of uniform and 

exponential distributions, respectively. In other words, I will assume that individuals do not 

perceive outcomes as gains and losses, but perceive the regret from having taken a decision that ex 

post turns out to be the wrong decision and the rejoice from having taken a decision that ex post 

turns out to be the right decision. Note that the perceived regret for missing a better bid and the 

perceived rejoice for avoiding worse bids are weighted according to the (possibly biased) estimated 

probabilities of these events. For the sake of simplicity, I will assume that γ(t) = δ(t) for each t. This 
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lets me de-emphasize the learning impacts of unlucky events, without focusing on bad or good 

events. 

5. The learning mechanism 

Many alternative learning mechanisms have been suggested for estimating probabilities. For recent 

examples, see Fennell & Baddeley (2012), Hayashi (2012), Di Caprio et al. (2014), Balcombe & 

Frazer (2015), and Bisière at al. (2015). However, neuroscience (e.g., Schwartenbeck et al., 2013) 

suggests that individuals aim to reduce surprises. Here, individuals are assumed to compare the 

probability of what happened according to the perceived distribution of outcomes with the 

probability according to the known distribution, and to update the bias parameter β to reduce the 

difference between these two probabilities, in both the uniform and exponential contexts: 

βu(𝑡 + 1)  =  βu(𝑡) – εu{1 − 𝑤𝑢[𝑝(𝑦)]/(1 𝑛)⁄ } 

βe(𝑡 + 1)  =  βe(𝑡) – εe{1 − 𝑤𝑒[𝑝(𝑦)]/(λ exp−λ 𝑦)} 

Where εu and εe represent the learning rates (i.e., the inverse of the reliabilities attached to the 

perceived distributions of outcomes) in the uniform and exponential contexts, respectively, and y 

represents the experienced outcome. Note that the learning rule suggested here is formally 

analogous to Bayesian updating; that is, p[Hi|E] = p[E|Hi] p[Hi]/p[E], where p[Hi|E] is the posterior 

probability distribution over the space of hypothesis Hi for event E, p[E|Hi] is the likelihood of 

observing event E according to generative distribution Hi, p[Hi] is the prior probability distribution 

over the space of hypothesis Hi, and p[E] is the a priori probability of the event E (Eberhardt and 

Danks, 2011). Indeed, the learning rule suggested here boils down to the Bayesian updating if εu = 

{ln[1/n](2βu0 – 1) – ln[p[Hi]])} / {ln[1/n](1 – (1/n)
βu0–1

)} and εe = {y[2βe0 – 1) – ln[p[Hi]])} / {y(1 – 

exp[–y]
βe0–1

)}, where βu0 = βu(0) and βe0 = βe(0) in the uniform and exponential contexts, 

respectively (see the Appendix for details). In other words, individuals are told how the world 

works in the long run (i.e., probability distributions on average), but do not think that the law of 

large numbers (i.e., the tendency of observed frequencies to approach the statistical expectation 

with large sample sizes) should be applied in calculating probabilities in the short-run (i.e., few 

choices) (Li et al., 2013). Actually, with few experiences, individuals could have events that differ 

from the average and thereby reinforce their bias in the short-run (Lu et al., 2016). See Van De 

Kuilen (2009) for findings based on experimental choices consistent with convergence towards 

linearity of the subjective probability-weighting function. 

Many alternative learning mechanisms have been suggested for discovering preferences. For recent 

examples, see Friston at al. (2013), Hinvest et al. (2014), Shen et al. (2014), and Turi et al. (2015). 

However, neuroscience (e.g., Rutledge et al., 2015) suggests that individuals aim to reduce 

surprises. Individuals are here assumed to compare the ex post satisfaction obtained from 

experiencing an accepted bid, regret from missing better bids, and rejoice from avoiding worse bids, 

with the utility without regret and rejoice feelings, and to update the bias parameter γ to reduce this 

difference: 

γ(𝑡 + 1) =  γ(𝑡)–  ζ [1 −  𝑢(𝑦, 𝑡)/𝑈(𝑦)] 
with 

𝑈(𝑦) = 1 − exp−𝐴 𝑦 

where ζ represents the learning rate (i.e., the inverse of the reliability attached to the assumed 

utility) at each time t and A represents the actual degree of risk aversion. Note that u(t) and γ will be 

replaced by uu(t) and γu, ue(t) and γe, uub(t) and γub, and ueb(t) and γeb in the following sections to 

depict unbiased uniform, unbiased exponential, biased uniform, and biased exponential contexts, 

respectively. For the sake of simplicity, I will assume α(t) = α for each t, as in Buckert et al.’s 

(2014) discussion of learning risk aversion. This lets me consider a potential gap between the 

perceived (α) and actual (A) degree of risk aversion by focusing on the dynamics of regret and 

rejoice. Note that individuals do not have meta-preferences (i.e., I would like to be an expected-

utility decision-maker, but I am not, and it takes me effort and time to become this type of decision-

maker). Otherwise, people would decide as an expected-utility decision-maker from the beginning. 
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Here, decision-makers are told how to behave in the long run (i.e., the expected-utility model, on 

average), but do not think that the same rules should be applied in the short run (i.e., they anticipate 

regret and rejoice from their choices; see Horvath and Sinha, 2015). Actually, if decision-makers 

are ex ante optimistic and ex post lucky, they could be better off by following a weighted regret and 

rejoice model so to reinforce their bias in the short-run (Chorus, 2014). See Matsumoto & Spence 

(2016) for findings based on reported expectations for real online textbook prices from a survey of 

1224 college students, which is consistent with learning in beliefs about price distribution. Without 

loss of generality, I will assume A = 1, but see Analytis et al. (2014) for a discussion of multi-

attribute alternatives. This amounts to a normalisation with respect to the utility obtained by an 

expected-utility decision-maker. Note that replacing these learning mechanisms based on 

comparing ratios (i.e., u(y,t)/U(y)) with learning mechanisms based on minimising squares (i.e., 

[u(y,t) - U(y)]
2
) do not alter the results qualitatively. 

6. The decision rule 

Consider an individual who makes decisions at each time t by accounting for the level of 

satisfaction derived from experiencing a given outcome (y), together with the regret due to missing 

better bids (from y to n) and the rejoice due to avoiding worse bids (from 0 to y) (Bault et al., 2016). 

Individuals are procedurally rational (see Bordley and Uberti, 2015), by myopically applying the 

reservation rule at each time t (Shoji & Kanehiro, 2012). That is, they stop searching at a given time 

if the marginal cost of an additional search action exceeds its expected marginal benefit. In 

particular, individuals will accept a bid at time t if and only if it is larger than r(t), where r*(t) 

solves the following implicit equation: 

𝑢[𝑟(𝑡), 𝑡] =  ∫ 𝑤(𝑝)[1 − exp−α [𝑟(𝑡)−𝑐]]𝑑𝑟
𝑛

0

− ∫ 𝑤(𝑝)[1 − exp−γ(𝑡) 𝑟(𝑡)]𝑑𝑥 + ∫ 𝑤(𝑝)[1 − exp−γ(𝑡) 𝑟(𝑡)]𝑑𝑥
𝑟(𝑡)

0

𝑛

𝑟(𝑡)

 

Where w(p) = wu(p) and w(p) = we(p) in the cases of uniform and exponential distributions, 

respectively. 

Individuals will then draw a bid y by accepting the bid if it is larger than or equal to the reservation 

bid [i.e., y ≥ r*(t)] and thereby perceiving u(y, t), and by rejecting the bid if it is smaller than the 

reservation bid [i.e., y < r*(t)] and thereby perceiving u(–c, t). 

Having experienced these outcomes, individuals then update their preference bias parameter (γ) in 

order to reduce the perceived regret or rejoice. Contextually, having observed an event y whose 

likelihood differs according to the estimated probability distribution and the known probability 

distribution, individuals update their probability bias parameter (β) in order to reduce this 

difference. Note that individuals are not fully rational in the short-run (i.e., they obtain something 

different from what they expected), unless u(y,t) = U(y) at time t, although they could choose 

optimally in the short-run if they get more than they would obtain as suggested by the expected-

utility model in the long-run. 

Finally, individuals will apply the updated reservation rule at time t+1. 

Note that the assumption that the searcher can never accept a previously rejected offer implies that 

the reservation bid for a risk-neutral individual (α = 0) who is not affected by regret or rejoice (γ = 

0) is he expected value, if there is no cost of search (c = 0): it will be 5 in the case of a uniform 

distribution and 1 in the case of an exponential distribution. Moreover, the reservation bid depends 

on how events affected the updating of the preferences. Cubitt et al. (2012) discuss the implications 

of a lack of evidence on the separability principle, in which behaviour is independent of history and 

of unreachable eventualities (i.e. events that are expected to be impossible to occur). Finally, 

uncertainty in the bid context might be (implicitly or explicitly) reversed with respect to labour or 

route contexts; this inversion is irrelevant, since individuals are procedural rational, and they do not 

change their reservation bid once the bid has been drawn. 
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7. Results 

In this section, I will look for the existence of globally attractive fixed points for β(t) and γ(t) in 

alternative contexts, where individuals reach the equilibria β* = 1 and γ* = 0 through small steps 

from below if the initial values of β0 < 1 and γ0 < 0, and are thus smaller than the long-run optimal 

value, and if they are characterized by a large inertia (i.e., small learning rates ε and ζ); individuals 

learn through progressively smaller jumps above and below the long-run optimal value if they do 

not attach a sufficiently large reliability to the currently assumed degree of realism or of regret and 

rejoice (i.e., large learning rates ε and ζ); individuals reach the equilibrium through small steps from 

above if the initial values of β0 > 1 and γ0 > 0, and are thus are larger than the long-run optimal 

value, and if they are characterized by a large inertia (i.e., small learning rates ε and ζ). Specifically, 

subsections 7.1 and 7.2 will show when individuals learn unbiased probabilities in the case of 

uniform and exponential probabilities, respectively, and then subsections 7.3 to 7.6 will compare 

learning conditions in four alternative scenarios (i.e., uniform probabilities without bias, 

exponential probabilities without bias, uniform probabilities with bias, and exponential probabilities 

with bias, respectively). This will reveal the most relevant variables in each learning process. 

7.1. Learning unbiased probabilities with a uniform distribution 

Consider an individual who over-estimates or under-estimates probabilities of outcomes (i.e., βu ≠ 

1), but who updates their bias at separate time intervals (i.e., in a discrete time t) according to the 

following rule: 

βu(𝑡 + 1)  =  βu(𝑡) – εu[1 −  𝑛(1/𝑛)βu(𝑡)] 
where εu is the learning rate. 

Result 1 
In the case of a uniform distribution of bids, individuals learn unbiased probabilities if their learning 

rate is small enough: ε ≤ 0.868. 

Proof: 

At βu* = 1, -1 < ∂βu(t+1)/∂βu(t) = 1 + εu ln(1/10) < 1. 

Figure 1. Phase diagram for βu(t) with εu = 0.5. The increasing linear line represents y = x. 

 
 

This result is illustrated graphically in Figure 1. Thus, βu* = 1 is globally stable, and the most 

commonly observed biases (i.e., βu > 1) favour the learning process. If the previous learning rule is 

analysed in a continuous time t (i.e., individuals uninterruptedly update their bias), we obtain the 

following dynamics of βu(t): 

βu(𝑡 + 1)  =  − ln[10 +  (1/10)𝑡 εu – ln[−10 + 10^βu0]/ln(10)]/ln(1/10) 

Note that time (t) is multiplied by the learning rate εu: in other words, the learning period (i.e., the 

learning rate multiplied by the time period) rather than the learning rate (εu) or time (t) taken 

0 1 2 3 4 5
beu t

1

2

3

4

5
beu t 1
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separately turns out to be crucial. The following dynamics of βu(t), which depend on the initial 

values βu0 and learning period ηu (i.e., ηu = εu × t), will be used: 

β𝑢(𝑡) = 1 + (βu0 − 1) exp−ηu 
Where βu0 depends on the individual’s previous experiences. 

7.2. Learning unbiased probabilities with an exponential distribution 

Consider an individual who over-estimates or under-estimates probabilities of outcomes (i.e., βe ≠ 

1), but who updates their bias according to the following rule in a discrete time t: 

βe(𝑡 + 1)  =  βe(𝑡) – εe{1 −  (exp[−[− ln(λ exp−λ 𝑥)]βe(𝑡)])/(λ exp−λ 𝑥)} 

where εe is the learning rate. 

Result 2 
In the case of an exponential distribution of bids, an individual learns unbiased probabilities if their 

learning rate is small enough: εe ≤ 2/y. 

Proof 

At βe* = 1, –1 < ∂βe(t+1)/∂βe(t) = 1–y εe < 1. 

Figure 2. Phase diagram for βe(t) with εe= 0.5 and y = 5. The increasing linear line represents y = x. 

 
 

This result is illustrated graphically in Figure 2. Comparing Result 1 for a uniform distribution with 

Result 2 for an exponential distribution suggests that stability conditions for the exponential 

distribution are more demanding than those for the uniform distribution whenever y > 2.30. Thus, 

βe* = 1 is globally stable, and the most commonly observed biases (i.e., βe > 1) again favour the 

learning process. If the previous learning process is analysed in a continuous time t, we obtain the 

following dynamics of βe(t): 

βe(𝑡) =   ln[exp𝑦 + (exp−𝑦)𝑡 εe+βe0]/𝑦 
Note that time t is again multiplied by the learning rate εe. The following dynamics of βe(t), which 

depend on the initial values of βe0 and the learning period ηe (i.e., ηe = εe t) will be used below: 

βe(𝑡) = 1 + (βe0 − 1) exp−ηe 
Where βe0 depends on the individual’s previous experiences. 

7.3. Learning expected utility without bias in estimating a uniform 
probability distribution 

Consider an individual who perceives regret and rejoice (i.e., γu ≠ 0) in accepting or rejecting bids 

that are uniformly distributed, but who updates their bias according to the following rule in a 

discrete time t (e.g., a daily labour supply without personal experiences so that βu = 1): 

γu(𝑡 + 1)  =  γu(𝑡) – ζu[1 − 𝑢𝑢(𝑦, 𝑡)/𝑈(𝑦)] 
Where 
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𝑢𝑢(𝑦, 𝑡) = 1 − exp−α 𝑦 − ∫ (1 𝑛⁄ )[1 − exp−γu(𝑡) 𝑥]𝑑𝑥 + ∫ (1 𝑛⁄ )[1 − exp−γu(𝑡) 𝑥]𝑑𝑥
𝑦

0

𝑛

𝑦

 

𝑈(𝑦) = 1 − exp−𝐴 𝑦 

and ζu is the learning rate. 

Result 3 
Provided that an individual knows their absolute risk aversion (i.e., α = A), they learn the expected 

utility (i.e., γu = 0) if their learning rate and experienced outcomes are small enough: 

ζu ≤ 20(1 − exp−𝑦)/(50 − 𝑦2) 

y ≤ 5√2 

Proof 

If and only if α = 1, γu* = 0 is an equilibrium for ζu ≠ 0. At γu* = 0, ∂γu(t+1)/∂γu(t) = 

[−10+exp𝑦ζu(10 + (−50 + 𝑦2))] [10(−1 + exp𝑦)]⁄ . 

Figure 3. Phase diagram for γu with ζu = 1 and y = 5. The increasing linear line represents y = x. 

 
 

This result is illustrated graphically in Figure 3. Thus, even if an individual is not affected by biases 

in probability assessment, and probability distributions are simple (i.e., uniform), they learn the 

expected utility provided a single aspect of their psychological behaviour must be uncovered. Thus, 

γu* = 0 is globally stable, and the most commonly observed biases (i.e., γu > 0) again favour the 

learning process. 

Figure 4. Contour plot for γu = 0 stability conditions as a function of ζu and y. Numerical values on each line 

represent ∂γu(t+1)/∂γu(t) in [-1,1]. 
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Figure 4 provides stability conditions as a function of the learning rate ζu and the observed outcome 

y, where these conditions must be met for each time t during the whole learning process. 

Thus, everybody must be moderately unlucky (say, y < 6/10), but an individual who is less reactive 

(say, ζu < 1) must be more unlucky. If the previous learning process is analysed in a continuous time 

t, we obtain the following dynamics of γu(t): 

γu(𝑡) = IF ∫
exp10𝑧+𝑦 𝑧𝑧

2exp2𝑦+10𝑧[2exp10𝑧 − exp𝑦𝑧 + 2exp(𝑦+10)𝑧(2𝑦 − 11)]
𝑑𝑧

#

1

 

Where IF means the inverse function, and 

# =
exp−𝑦𝑡ζu

10(−1 + exp𝑦)
+ γu0 

Where γu0 = γu(0). Thus, the learning period (here θu = ζu × t) is again crucial. In case of 

convergence: 

γu(𝑡) = γu0 exp−θu 
Where γu0 depends on the individual’s previous experiences. In particular, in the case of 

convergence, the difference between perceived regret and rejoice and perceived utility (i.e., uu – U), 

which depend on the experienced outcome y and the learning time θu, is depicted in Figure 5. 

Thus, in the short-run (i.e., few experiences), individuals who are pretty lucky (say, y > 6/10) are 

better off if they adopt an expected regret and rejoice approach than if they adopt an expected-utility 

approach, and the improvement will be greater for individuals who are less reactive. Note that θu 

may increase either because individuals are more reactive (i.e., a larger ζu) or because they have 

additional experiences (i.e., a larger t). However, the mean of the difference between uu and U over 

all y values (Du) is given by: 

𝐷u = ∫ (
1

𝑛
) (𝑢𝑢 − 𝑈)

𝑛

0

𝑑𝑦

=
1

50
exp−10exp [−θu]+θu(−5 − 5exp10exp[−θu] − expθu + exp10exp[−θu]+θu) < 0 

for each θu  ≥ 0, where this difference tends to 0 if θu tends to infinity, the minimum Du is -0.14 at θu  
= 1.25 and its intercept is -0.08 at θu  = 0. Thus, in the long-run (i.e., many experiences), where 

there are no lucky or unlucky individuals (i.e., the law of large numbers applies), individuals are 

better off if they are reactive. 

Figure 5. Gains from uu (i.e., uu – U) as a function of θu and y if γu0 = 1. Numerical values on each line represent 

uu – U ≥ 0. The white area represents uu < U. 
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Therefore, if individuals are reactive (say, ζu > 1), they gain less in the short-run if they are lucky 

(say, y > 6/10), although they learn, and they lose less in the long-run once they have learned. In 

contrast, individuals who are obstinate (say, ζu < 1) gain more in the short-run if they are lucky (say, 

y > 6/10), although they do not learn, and they lose more in the long-run. In other words, in the case 

of repeated unlucky events, reactive individuals will be better off than obstinate individuals, 

because the former will learn more quickly to behave according to the expected-utility approach. 

7.4. Learning expected utility without bias in estimating an exponential 
probability distribution 

Consider an individual who perceives regret and rejoice (i.e., γe ≠ 0) in accepting or rejecting bids 

in the case with an exponential distribution, but who updates their bias according to the following 

rule in a discrete time t (e.g., a daily portfolio choice without personal experiences, so that βe = 1): 

γe(𝑡 + 1)  =  γe(𝑡) – ζe[1 − 𝑢𝑒(𝑦, 𝑡)/𝑈(𝑦)] 
Where 

𝑢𝑒(𝑦, 𝑡) = 1 − exp−α 𝑦 − ∫ (λ exp−λ 𝑥)[1 − exp−γ𝑒(𝑡) 𝑥]𝑑𝑥 + ∫ (λ exp−λ 𝑥)[1 − exp−γe(𝑡) 𝑥]𝑑𝑥
𝑦

0

𝑛

𝑦

 

𝑈(𝑦) = 1 − exp−𝐴 𝑦 

and ζe is the learning rate. 

Result 4 
Provided that the individual knows their absolute risk aversion (i.e., α = A), they learn the expected 

utility (i.e., γe = 0) if their learning rate and experienced outcomes are small enough: 

ζe ≤ −
2exp10(−1 + exp𝑦)

11exp𝑦 + exp10+𝑦 − 2exp10(1 + 𝑦)
 

𝑦 ≤ 1 − ProductLog[−
11 + exp10

2exp11
] 

Proof 

If and only if α = 1, γe* = 0 is an equilibrium for ζe ≠ 0. At γe* = 0, ∂γe(t+1)/∂γe(t) = 

[11exp𝑦ζe + exp10+𝑦(1 + ζe) − exp10(1 + 2(1 + 𝑦)ζe)] [exp10(−1 + exp𝑦)]⁄ . 

Figure 6. Phase diagram for γe with ζe = 1 and y = 5. The increasing linear line represents y = x. 

 
 

This result is illustrated graphically in Figure 6. Comparing Result 3 for a uniform distribution with 

Result 4 for an exponential distribution suggests that convergence conditions are more demanding 

in a more complex context: all individuals must be pretty unlucky (say, y < 2/10). Thus, γe* = 0 is 

globally stable, and the most commonly observed biases (i.e., γe > 0) again favour the learning 

process. 
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Figure 7. Contour plot for γe = 0 stability conditions as a function of ζe and y. Numerical values on each line 

represent ∂γe(t+1)/∂γe(t) in [-1,1]. 

 
 

Figure 7 provides stability conditions as a function of the learning rate ζe and the observed outcome 

y, where these conditions must be met for each time t during the whole learning process. 

Comparing Figure 4 and Figure 7 suggests that in a more complex world, there is less difference 

between reactive and obstinate people (say, ζe below and above 1, respectively). If the previous 

learning process is analysed in a continuous time t, we obtain the following dynamics of γe(t): 

γe(𝑡)

= IF ∫
exp10𝑧(1 + 𝑧)

−exp𝑦 + 2exp10+𝑦+10𝑧+𝑦[−1−𝑧] + exp10+𝑦+10𝑧𝑧 − 2exp10(1+𝑧)(1 + 𝑧) + exp𝑦+10𝑧(1 + 𝑧)
𝑑𝑧

#

1

 

Where IF means the inverse function, and 

# =
𝑡ζe

exp10(−1 + exp𝑦)
+ γe0 

Where γe0 = γe(0). Thus, the learning period (here θe = ζe × t) is again crucial. In the case of 

convergence, 

γe(𝑡) = γe0 exp−θe 
where γe0 depends on the individual’s previous experiences. In particular, in the case of 

convergence, the difference between perceived regret and rejoice and perceived utility (i.e., ue –U), 

as a function of the experienced outcome y and the learning time θe, is depicted in Figure 8. 

Comparing Figure 5 with Figure 8 suggests that obstinate people are better off in a simpler context. 

Thus, in the short-run (i.e., few experiences), individuals who are moderately lucky (say, y > 

1.6/10) are again better off if they adopt an expected regret and rejoice approach than if they adopt 

an expected-utility approach, and the improvement is larger if they are less reactive. Note that θe 

may increase either because they are more reactive (i.e., a larger ζe) or because they have additional 

experiences (i.e., a larger t). However, the mean of the difference between ue and U (De) over all 

values of y is given by: 

𝐷e = ∫ (λ 𝑦 exp−λ 𝑦)(𝑢𝑒 − 𝑈)
𝑛

0

𝑑𝑦

=
exp−20−10exp [−θe] +θe(2exp10+θe(−1 + exp10exp [−θe]) − (−1 + exp10)(1 + exp10(1+exp [−θe])))

(1 + expθe)(1 + 2expθe)
< 0 
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for each θe ≥ 0, where this difference tends to 0 if θe tends to infinity, with its minimum and its 

intercept (-0.15) at θe = 0. Comparing Du and De (i.e., Du < De for each θ) suggests that, in the long-

run (i.e., many experiences), obstinate people are worse off than reactive people in a complex 

world, and that the magnitude of the difference is greater than in a simple world. 

Figure 8. Gains from ue (i.e., ue – U) as a function of ζe and y. Numerical values on each line represent ue – U ≥ 0. 

The white area means ue < U. 

 
 

Therefore, in a more complex world, everybody must be more unlucky (i.e., y < 16% rather than y < 

66%) in order to learn in the long-run, whereas the difference between reactive and obstinate people 

is smaller in the short-run, both in terms of the relative unluckiness required to learn and in terms of 

gains with respect to the expected-utility choices. However, the opposite difference applies in the 

long-run, with reactive people being better off than obstinate people, and to a greater extent in a 

more complex world. 

7.5. Learning expected utility with bias in estimating a uniform 
probability distribution 

Consider an individual who misperceives uniform probabilities (i.e., βu ≠ 1) and who perceives 

regret and rejoice in accepting or rejecting bids in the case with a uniform distribution (i.e., γub ≠ 0), 

but who updates their bias according to the following rule in a discrete time t (e.g., a daily route 

choice with personal experiences, so βu ≠ 1): 

γub(𝑡 + 1)  =  γub(𝑡) – ζub[1 − 𝑢𝑢𝑏(𝑦, 𝑡)/𝑈(𝑦)] 
Where 

𝑢𝑢𝑏(𝑦, 𝑡) = 1 − exp−α 𝑦

− ∫ exp[−[− ln (
1

𝑛
)]βu(𝑡)][1 − exp−γu(𝑡) 𝑥]𝑑𝑥

𝑛

𝑦

+ ∫ exp[−[− ln (
1

𝑛
)]βu(𝑡)][1 − exp−γu(𝑡) 𝑥]𝑑𝑥

𝑦

0

 

𝑈 = 1 − exp−𝐴 𝑦 

Result 5 
In the case of a biased uniform distribution of bids, an individual learns the expected utility (i.e., γub 

= 0) if their learning rate and experienced outcomes are small enough: 

ζub ≤ −
2exp−𝑦+(−1)(βu0−1)exp [−ηu]ln[10]1−(βu0−1)exp [−ηu]

(−1 + exp𝑦)

−50 + 𝑦2
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y ≤ 5√2 

Proof 

At γub* = 0, ∂γub(t+1)/∂γub(t) = [−1 + exp𝑦 + exp𝑦−(−1)(−1+βu0)exp [−ηu]ln[10]exp [−ηu](−1+βu0+exp [ηu])

ζub(−50 +

𝑦2)] /[−1 + exp𝑦] 

Figure 9. Phase diagram for γub with ζub = 0.001, ηu = 0, y = 5, and βu0 = 2. The increasing linear line represents y 

= x. 

 
 

This result is illustrated graphically in Figure 9. Comparing Result 5 for a biased uniform 

distribution with Result 3 for an unbiased uniform distribution suggests that the convergence 

conditions are extremely more demanding for Result 5 in terms of reactivity and equally demanding 

in terms of unluckiness: all individuals must be moderately unlucky (say, y < 6/10) and extremely 

obstinate (say, ζub < 1/1000). 

Figure 10. Contour plot for γub stability conditions as dependent on ζub and y with ηu= 1 and βu(0) = 2. Numerical 

values on each line represent ∂γub(t+1)/∂γub(t) in [-1,1]. 

 
 

Figure 10 illustrates the stability conditions as a function of the learning rate ζub and observed 

outcome y, where these conditions must be met for each time t during the whole learning process. 

Note that if ηu is large enough (e.g., ηu > 50) to depict previous learning of βu, we obtain the same 

result obtained in section 7.4. 

Therefore, in an unrealistic context in which people do not learn (uniform) probability distributions 

before learning to reduce regret and rejoice (although reducing biases in assessing the probabilities 
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might require a larger number of observations), only very obstinate individuals will learn to behave 

according to the expected-utility model, in which luck is not relevant. 

7.6. Learning expected utility with bias in estimating an exponential 
probability distribution 

Consider an individual who misperceives exponential probabilities (i.e., βe ≠ 1) and who perceives 

expected regret and rejoice in accepting or rejecting bids in the case with an exponential distribution 

(i.e., γeb ≠ 0), but who updates their bias according to the following rule in a discrete time t (e.g., a 

daily consumption demand based on personal experiences, so βe ≠ 1): 

γeb(𝑡 + 1)  =  γeb(𝑡) – ζeb[1 − 𝑢𝑒𝑏(𝑦, 𝑡)/𝑈(𝑦)] 
Where 

𝑢𝑒𝑏(𝑦, 𝑡) = 1 − exp−𝛼 𝑦

− ∫ exp[−[− ln(λ exp−λ x)]βe(𝑡)][1 − exp−γ𝑒(𝑡) 𝑥]𝑑𝑥
𝑛

𝑦

+ ∫ exp[−[− ln(λ exp−λ 𝑥)]βe(𝑡)][1 − exp−γ𝑒(𝑡) 𝑥]𝑑𝑥
𝑦

0

 

𝑈 = 1 − exp−𝐴 𝑦 

Result 6 
In the case of a biased exponential distribution of bids, an individual learns the expected utility (i.e., 

γeb = 0) if their learning rate and experienced outcomes are small enough: 

ζeb

≤
2exp−ηe−𝑦(#)2(exp𝑦 − 1)

expηe + exp−10 #exp[−η𝑒](10(−1 + βe0) + 11expηe) − 2(exp−𝑦)#exp [−η𝑒]((−1 + βe0)𝑦 + expηe(1 + 𝑦))
 

1 + (1 + 10βe0)ⅇ−10βe0 − 2(exp−𝑦)βe0(1 + 𝑦 + (−1 + βe0)𝑦) ≤ 0 

expηe + exp−10exp [−η𝑒](−1+exp [η𝑒])(−10 + 11expηe)

− 2(exp−𝑦)exp [−η𝑒](−1+exp [η𝑒])(−𝑦 + expηe(1 + 𝑦)) ≤ 0 

where 

# = −1 + βe0 + expηe 
Proof 

At γeb* = 0, ∂γeb(t+1)/∂γeb(t) = 1 + [expηe+𝑦ζeb(expηe + exp−10 exp[−η𝑒](−1+βe0+exp[η𝑒])(−10 +

10βe0 + 11eηe) − 2(exp−𝑦)exp[−η𝑒](−1+βe0+exp[η𝑒])((−1 + βe0)𝑦 + expηe(1 + 𝑦)))]/(−1 +
βe0 + expηe)2(−1 + exp𝑦) 

Figure 11. Phase diagram for γeb with ζeb = 1, ηe= 1, y = 0.5, and βe0 = 2. The increasing linear line represents y = 

x. 

 
 

This result is illustrated graphically in Figure 11. Comparing Result 6 for a biased exponential 

distribution with Result 4 for an unbiased exponential distribution suggests that convergence 
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conditions are less demanding in terms of reactivity and more demanding in terms of unluckiness 

for Result 6: all individuals must be definitely unlucky (say, y < 1/12), regardless of their reactivity. 

Figure 12. Contour plot for γeb = 0 stability conditions as a function of ζeb and y with ηe= 1 and βe0 = 2. Numerical 

values on each line represent ∂γeb(t+1)/∂γeb(t) in [-1,1]. 

 
 

Figure 12 illustrates the stability conditions as a function of the learning rate ζeb and observed 

outcome y, where these conditions must be met for each time t during the whole learning process. 

Note that if ηe is large enough (e.g., ηe > 50) to depict previous learning of βe, we obtain the same 

result as in section 7.5. 

Therefore, in a realistic context where people do not learn (exponential) probability distributions 

before learning to reduce regret and rejoice (since reducing biases in assessing probabilities requires 

a larger number of observations), only very unlucky individuals will learn to behave according to 

the expected-utility model, in which their reactivity is slightly relevant. 

8. Discussion 

Generally speaking, by referring to keywords such as short-run vs. long-run, lucky vs. unlucky, 

learning vs. non-learning, reactive vs. obstinate, simple vs. complex world, better off vs. worse off., 

the insights obtained by this study can be summarised as follows. 

In order to learn (in the long-run), individuals must be obstinate and unlucky in the short-run, 

although in a complex world, being unlucky is the most significant condition. However, individuals 

are better off if they are obstinate and lucky in the short-run, and the benefit is greater in a simple 

world, although they will be worse off in the long-run, and the drawbacks will be greater in a 

complex world. Note that obstinate individuals must be more unlucky than reactive individuals to 

learn in the long-run, and the magnitude of the effect is greater in a simple world. 

Obstinate people are better off than reactive individuals in the short-run if they are lucky, although 

they do not learn and are worse off in the long-run, and the magnitude of the effect is greater in a 

complex world. However, unless individuals are repeatedly lucky, they must and will converge on 

the expected-utility model, and obstinate individuals must be even more unlucky than reactive 

people in a simple world. 

In order to be better off, individuals must learn in the long-run and must be lucky in the short-run. 

However, if individuals are lucky (in the short-run), they do not need to learn and do not learn. Note 

that reactive people will learn more quickly (in the long-run) than obstinate people, and the 

magnitude of the effect will be greater in a complex world, whereas obstinate people will be better 
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off than reactive people, if lucky (in the short-run), and the magnitude of the effect will be greater in 

a simple world. 

Lucky people (in the short-run) will not learn, although they will be better off in the short-run, and 

the magnitude of the effect will be greater in a simple world. However, if individuals are repeatedly 

lucky, they do not need to converge on the expected-utility model, and are even better off if they are 

obstinate. 

The insights obtained by this paper can be summarised with respect to previous economic studies as 

follows. Like Gilboa & Schmeidler (1996), I show that individuals learn to behave according to the 

expected-utility model, but my findings do not depend on aspiration levels changing continuously. 

Like Oyarzun & Sarin (2013), I show that optimistic individuals choose a risky strategy, but my 

results do not depend on strictly preferences for second-order stochastic dominance. Like Agastya 

& Slinko (2015), I show that individuals will learn provided that certain events happen, but my 

insights do not depend on the stochastic process being an exchangeable sequence. 

In summary, I combined the two main determinants of learning (i.e., reactions by individuals and 

the type of distribution of outcomes), but I obtained more realistic insights by starting from more 

realistic biases in more realistic contexts. Moreover, my results do not depend on individual 

characteristics that are difficult to observe (e.g., small learning rates) but on observable contextual 

characteristics (e.g., unlucky events that are more likely than lucky events). Finally, I develop 

insights by explaining how learning time is more relevant than the learning rate, where the former 

refers to an individual characteristic (i.e., large ε or ζ means high reactivity), whereas the latter 

refers to a contextual characteristic (i.e., small t means a relatively low level of repetition). 

The main strengths of this approach can be summarised as follows: 

1. The context is suitable to perform experiments on essential variables that lead to the 

expected-utility model. 

2. The starting point is based on psychological studies. 

3. The reason and approach to learning are based on neurological studies, 

4. The endpoint is based on statistical studies. 

5. The results are suitable for suggesting policies on the information that should be provided to 

lead to the expected-utility model. 

The main weaknesses can be summarised as follows: 

1. There is no exploration. However, exploitation is more likely to explain behaviours by the 

majority of individuals in real life, and exploration is meaningless here because individuals 

are assumed to know the probability distribution in their specific situation. 

2. Specific utility functions are used. However, these are common to the literature and let me 

achieve analytical solutions, which in turn permitted a comparison of the results in 

alternative scenarios. This is not possible in the general learning framework used in the 

theoretical economics literature. 

3. Regret and rejoice are weighted equally (i.e., δ = γ). However, more realistic alternative 

assumptions (e.g., δ < γ), which would differentiate a larger regret from being unlucky from 

a smaller rejoice from lucky events, would imply that individuals are expected to uncover 

one additional parameter, and individuals must be more unlucky. 

4. A single-parameter, inverse-S-shaped probability-weighting function is used. However, this 

is well supported by empirical findings. 

5. Individuals are assumed to know the probability distribution that exists for their specific 

situation. However, the comparison of scenarios in terms of their complexity suggests that in 

more complex worlds, where individuals are expected to learn additional parameters, 

convergence on the expected-utility model will require more unlucky individuals. 

Note that the adopted simple search context allowed me to obtain the optimal decision at each time t 

in formal terms (i.e., the reservation bid). This let me explain the psychological determinants of the 

observed increasing adoption of the reservation rule over time obtained by experimental economics 

(e.g., Di Cagno et al., 2014) without relying on the context characteristics (e.g., recall vs. no-recall), 

and let me explain the adoption of intuitive decisions over optimal decisions at a given time, as has 



19 
 

been obtained by numerical economics (e.g., Sahm & von Weiszäcker, 2016), without relying on 

unobservable searching costs (e.g., the opportunity cost of time, the cognitive effort, and the 

information acquisition). 

9. Conclusions 

For economists who are accustomed to working with models of rational agents, it is easy to 

overlook how strong the assumptions of von Neumann-Morgenstern expected utility are. 

Experimental and empirical evidence show that agents typically act in some, but not all, 

circumstances according to what is predicted by this theory. The question of when the assumptions 

of von Neumann-Morgenstern expected utility may have greater empirical success must be 

addressed; in other words, the question of what leads to easy representation of the observed 

behaviour by those assumptions must be asked (see, for example, Klüppelberg et al., 2014). 

This paper identified the contexts in which the expected-utility model can be taken as a behavioural 

model with the circumstances when learning is more likely to happen. In particular, learning is 

more probable in more realistic contexts, where a smaller number of observations are needed to 

reduce biases in predicted preferences than in estimated probabilities. Moreover, some individuals 

learn in the short-run (i.e., only unlucky individuals will learn), but all individuals learn (on 

average) in the long-run, whenever the probabilities of unlucky events are larger than those of lucky 

events. In other words, this study provides insights about the utility of misfortune. Finally, learning 

is more probable in more lifelike contexts, in which individuals are affected by the most frequently 

observed biases (i.e., anticipated or perceived regret and rejoice, over-assessment of small 

probabilities and under-assessment of large probabilities). 

Note that the expected-utility model turns out to explain or predict individual behaviour, on 

average, when individuals know their degree of risk aversion. However, this feature is only weakly 

challenged by the economic and psychological literature. 

Therefore, by applying a learning mechanism conceptually borrowed from neuroscience, although 

formally related to Bayesian updating, to the degree of regret or rejoice and to the degree of realism, 

this paper demonstrates that individuals who repeatedly make the same decision will behave 

procedurally rationally according to a non-expected-utility model at the beginning, and will behave 

fully rationally according to the expected-utility model at the end of the learning process. However, 

behaving fully optimally (on average) over time does not imply fully optimal behaviour at each 

time. Thus, non-standard decision-making theories seem to be most relevant only when the learning 

process has not been properly developed due to little experience with decisions (Birnbaum and 

Schmidt, 2015; Bonnefon and Sloman, 2013). 

Note that the theoretical assumptions presented in this paper may appear to be daunting. Indeed, the 

fact that individuals do not know their degree of regret or rejoice and their degree of realism implies 

that individuals fail to predict the satisfaction that will arise from their choices: the standard 

assumption that preferences are exogenous is undermined, and the alternative assumption that 

preferences are constructed is supported. However, the theoretical findings presented in this paper 

appear encouraging. Indeed, the fact that each individual learns their degree of regret or rejoice and 

becomes steadily more realistic suggests that individuals refer to a finely tuned and fully assembled 

kit of preferences, although they can and will apply it only to already experienced decision 

problems (Ortner, 2016). 

Needless to say, the findings presented in this paper require further investigation, both within the 

same contexts (e.g., by allowing the degree of risk aversion to be updated according to experience, 

or the degree of regret to differ from the degree of rejoice) and in alternative contexts. For example, 

research should consider unknown probability distributions (Palley and Kremer, 2014), unobserved 

outcomes of foregone alternatives, the additional possibility of choosing actions for exploration 

(Gonzalez, 2013; Cox, 2015), and learning from other people’s experience. 
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Appendix 

In the case of a uniform distribution, the Bayes updating is given by: 

𝑝[𝐸|𝐻𝑖] =  (1 𝑛⁄ )𝛽𝑢1 =
(1 𝑛⁄ ) 𝑝[𝐻𝑖]

(1 𝑛⁄ )β𝑢0
=

𝑝[𝐸|𝐻𝑖] 𝑝[𝐻𝑖]

𝑝[𝐸] 
 

By applying logarithms to both sides, we obtain: 

βu1 ln[(1 𝑛⁄ )] = (1 − βu0)ln[(1 𝑛⁄ )] + ln[𝑝[𝐻𝑖]] 
By subtracting βu0 from both sides, we obtain: 

Δβu = (1 − 2βu0) + ln[𝑝[𝐻𝑖]]/ln[(1 𝑛⁄ )] 
In the case of a uniform distribution, the learning rule adopted in the present study is given by: 

Δβu = −εu[1 − (1 𝑛⁄ )βu0−1] 
By equating the right-hand sides of the last two equations, we obtain: 

εu =
ln[(1 𝑛⁄ )](2βu0 − 1) − ln[𝑝[𝐻𝑖]]

ln[(1 𝑛⁄ )][1 − (1 𝑛⁄ )βu0−1]
 

In the case of an exponential distribution, the Bayes updating is given by: 

𝑝[𝐸|𝐻𝑖] =  exp[−𝑦]βe(1) =
exp[−𝑦] 𝑝[𝐻𝑖]

exp[−𝑦]βe0
=

𝑝[𝐸|𝐻𝑖] 𝑝[𝐻𝑖]

𝑝[𝐸] 
 

By applying logarithms to both sides, we obtain: 

−𝑦 βe1  = −𝑦 (1 − βu0) + ln[𝑝[𝐻𝑖]] 
By subtracting βu0 from both sides, we obtain: 

Δβe = (1 − 2βe0) − ln[𝑝[𝐻𝑖]]/𝑦 

In the case of a uniform distribution, the learning rule adopted in the present study is given by: 

Δβe = −εe[1 − exp[−𝑦]βe0−1] 
By equating the right-hand sides of the last two equations, we obtain: 

εe =
𝑦 (2βe0 − 1) − ln[𝑝[𝐻𝑖]]

𝑦[1 − exp[−𝑦]βe0−1]
 

Note that both εu and εe are decreasing in p[Hi] (i.e., individuals learn to a greater extent if they trust 

their a priori estimation to a smaller extent), with both εu and εe tending to infinity if p[Hi] tends to 

0 (i.e., individuals learn to the greatest extent if they trust their a priori estimation to the smallest 

possible extent), and increasing in βu if βu > 1 and in βe if βe > 1, respectively (i.e., individuals learn 

to a greater extent if they are affected by the most frequently observed over-assessment of small 

probabilities and under-assessment of large probabilities). 
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