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Abstract

Understanding how to sustain cooperation in the climate change global dilemma

is crucial to mitigate its harmful consequences. Damages from climate change typ-

ically occurs after long delays and can take the form of more frequent realizations

of extreme and random events. These features generate a decoupling between emis-

sions and their damages, which we study through a laboratory experiment. We find

that some decision-makers respond to global emissions, as expected, while others

respond to realized damages also when emissions are observable. On balance, the

presence of delayed/stochastic consequences did not impair cooperation. However,

we observed a worrisome increasing trend of emissions when damages hit with delay.
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1 Introduction

Although scientists have convincingly established a causal link between greenhouse gas

emissions and global climate change (IPCC, 2014), the way in which citizens perceive the

issue may simply be through the experience of damages. News headlines are generally on

the consequences of extreme events such as record temperatures, hurricanes or flooding

that are outcomes of pollution and affect specific geographical areas. Another peculiar

feature of climate change is the lag built into the earth system between the polluting

actions and the system’s reaction in terms of climate-related human impacts. Both these

features imply a decoupling between polluting actions and their consequences. An usually

unspoken argument among politicians and climate change experts is that it will likely take

one or more major disasters to motivate citizens and nations to jump start mitigation

efforts. Suffering environmental stress may be what can trigger citizens into action to

stop climate change more than national plans contemplating changes in emissions. This

conjecture motivates our behavioral study.

We focus on the ability to reach ambitious mitigation policies through voluntaristic

actions when no binding treaty is in place, such as for example with the scheduling of pe-

riodic encounters after the Paris Agreement (Tollefson, 2016). More precisely, we design

a climate change game as a N -person voluntary public bad game where decision-makers

repeatedly interact under a long-run horizon (Dutta and Radner, 2004; Calzolari et al.,

2016). Each decision-maker decides on a level of emissions, which brings individual bene-

fits from production and consumption but generates a negative externality to everyone in

terms of climate damages. Cooperation entails limiting the level of emissions. Through a

laboratory experiment we vary how damages occur across treatments and study its influ-

ence on the ability to cooperate. The damage function is one of the fundamental elements

for evaluating alternative policies to cope with climate change (Nordhaus, 2010) and has

been the focus of a recent debate calling for a need to rethink the way damage functions

are designed within Integrated Assessments Models (Wagner and Weitzman, 2015; Stern,

2015). Here we target two critical dimensions of damage functions – the random and

delayed relation between polluting actions and their consequences – because they could

both affect the behavioral ability of decision-makers to cooperate. All our specifications of

damage vary its riskiness or timing but keep constant its overall level in terms of expected

present value. We do so to make easier the empirical comparison across treatments. In

a Stochastic treatment the damage takes the form of a random accident, whose proba-

bility increases in the level of global emissions. This treatment models the consequences

of emissions in terms of extreme events, like flooding, droughts, or hurricanes. The aim

is not to capture a global catastrophe but instead low probability-high impact events

that hit a country. We contrast this setting with a Control treatment where the damage
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from climate change occurs deterministically in proportion of global emissions. In a Delay

treatment the damage is deterministic but hits decision-makers with a delay of two rounds

– unlike the other two treatments where current damages depend on current emissions.

While some aspects of the field nicely map into our experiment, we made three major

simplifications in order to facilitate participants’ understanding of the task and to ease

the empirical identification of the effects of the different treatments. First, we model

climate damages as a flow externality that linearly increases in emissions, although a

more accurate function would be a stock externality with possible non-linearities between

emissions and damages (Burke et al., 2015; Dannenberg et al., 2015). A previous experi-

ment showed a negative empirical effect of pollution persistence on the empirical levels of

aggregate cooperation (Calzolari et al., 2016).1 Second, we consider a limited number of

players. Third, we include the deep income inequalities that exist in the field (Nordhaus,

2010; Tavoni et al., 2011) by having two types of participants, rich and poor, who simply

differ in their private benefits from emissions.

In all our treatments, monitoring is perfect. After each round of play decision-makers

can observe individual emission choices and damages of everyone else. These are propi-

tious circumstances for cooperation to emerge. Under a long-run horizon – like the one

considered here – the mitigation of damages may in fact realize under the threat of a pun-

ishment activated with the observation of an unexpected increase in others’ emissions (the

folk theorem, e.g. Fudenberg and Maskin, 1986). Such theoretical result would assume

that all individuals follow strategies based on the observation of actions, i.e. emissions.

However, individuals may in practice adopt strategies that react to experienced damages

rather than actions. The reason may be behavioral, either related to salience or the cog-

nitive costs to process information. On the one hand, damages directly influence payoffs

and thus could be more salient to the decision-maker. On the other hand, even when

observable, actions have to be interpreted in terms of motivating intentions, particularly

when decision-makers form heterogeneous beliefs.

To sum up, greenhouse gas emissions generate delayed, random damages and hence

actions (emissions) can be decoupled from their consequences (damages). What motivates

this study is the possibility that some decision-makers rely more on experienced damages

than actions, which calls for an empirical analyses of how different damage specifications

could produce different outcomes in terms of mitigation.

The major result of our experiment concerns the strategies employed by participants

in sustaining a cooperative mitigation. We show that participants react both to emis-

1Another dimension of the damage function that we do not consider here is its inter-generational
feature (Sherstyuk et al., 2016).
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sions and damages. In particular, some participants react to the emissions of others,

as suggested by a canonical trigger strategy. Other participants, instead, react only to

the extreme events or to the realized damages. A third group of participants respond

to both emissions of others and individual damages. In Section 7 we conjecture on how

the presence of these different types of individuals can relate to the differences in the

overall cooperation levels we detect, in particular the withstanding levels of cooperation

with stochastic and delayed damages and the increasing trend of emissions in the latter

treatment.

The paper proceeds as follow. Section 2 places the contribution within the context of

the literature about experiments on climate change and lung-run cooperation. Section 3

presents the formal setup and experimental design. Section 4 puts forward some theoret-

ical considerations about equilibrium predictions. Section 5 explains how the experiment

was run. Section 6 describes the main results about aggregate emissions and strategies,

while Section 7 discusses the results, some policy implications and concludes.

2 Related Literature

We contribute to two branches of the literature, one on climate change and another about

sustaining long-run cooperation.

There exists a small but growing experimental literature on mitigation policies for

climate change.2 Some experiments model climate change as a problem of sustaining

cooperation when facing an emission thresholds that may activate a catastrophe, while

others, including the present one, model it with an incremental damage from pollution.

Among the former category, the pioneering study is Milinski et al. (2008), who show that

a higher probability of a catastrophe reduces emissions in the presence of a known tipping

point. This result becomes weaker if the location of the tipping point is random, and more

so in case of ambiguity (Barrett and Dannenberg, 2012, 2014; Dannenberg et al., 2015).

Income inequality and the ability to communicate also affect the frequency of avoiding

a catastrophe: Tavoni et al. (2011) show that success is more likely in groups making

choices that reduce inequality and able to communicate.

The experiments with a gradual impact of pollution on damages are relatively more

recent. Sherstyuk et al. (2016) compares overlapping generations versus long-lived agents

and reports that cooperation is harder to sustain for overlapping generations; Pevnitskaya

2Although experiments on climate change face challenges of external validity, they play an important
role integrating and complementing theory and field data. One definitive advantage of laboratory experi-
ments is the possibility to control the environment and manipulate parameters, which enables to identify
causal effects (Falk and Heckman, 2009).
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and Ryvkin (2013) contrasts finite and indefinite horizons and find that participants learn

to cooperate faster in the former setting, although they experience a last round drop;

finally, Calzolari et al. (2016) study pollution persistence in a dynamic setting and show

that it does not hamper cooperation per se but report a declining trend of cooperation

for higher stocks of pollution. The novelty in our experimental design is to decouple

actions and their consequences on damages, which in most studies are instead associated

and indistinguishable. Our aim is to uncover the behavioral responses in a setting that

replicates these key features present in the field.

The contribution of our paper to the vast literature about sustaining cooperation

in repeated games rests on the distinction and observability of actions (emissions) and

their consequences (damages). When the “shadow of the future looms sufficiently large”,

cooperative outcomes can be obtained, possibly also the socially optimal outcome, with

strategies punishing actions that deviate from a cooperative norm (Friedman, 1971; Dal Bó

and Fréchette, 2017). Beginning with Green and Porter (1984), Abreu et al. (1990),

Fudenberg et al. (1994), and Dutta (1995), the standard folk theorem has been extended to

the case in which decision-makers do not perfectly observe others’ actions, either because

actions are observed with delay, as in our Delay treatment, or because observability only

refers to an imperfect signal, such as the accident realization in our Stochastic treatment.

Applying these results, we experimentally show that although the temptation to deviate

from cooperation is generally stronger for strategies based on damages than emissions,

cooperation could still be sustained when participants value sufficiently the payoffs from

future interactions.

Some experimental papers on cooperation are related to our study. Bereby-Meyer and

Roth (2006) study a repeated game with observable actions where outcomes can be either

deterministic or probabilistic, depending on treatments. Relying on the psychological

concept of “reinforcement” (Robbins, 1971), they report how a deterministic environ-

ment, granting a systematic reinforcement in the learning process, fosters cooperation

as compared with the partial reinforcement available with random outcomes. Fuden-

berg et al. (2012) study the effects on cooperation of errors in implementing intended

actions. They show considerable diversity in strategies, as we document in our analy-

sis, and that successful strategies are “lenient” and “forgiving”: unexpected actions are

not immediately punished, with attempts to restore cooperation. Camera and Casari

(2009) manipulate monitoring of individual histories and aggregate information on past

cooperation that selectively add and remove the possibility to retaliate or adopt various

punishment strategies. Finally, Nicklisch et al. (2016) experimentally find that when par-

ticipants can jointly reduce the probability of a common stochastic damage, cooperation

is enhanced. We confirm and extend this result to the extent that our stochastic dam-
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ages are individual and participants have the possibility to observe emissions as well. In

both cases participants appear to assess others’ behavior with an ex post perspective, i.e.

considering also the realization of outcomes.

3 Experimental Design

We model climate change as a repeated social dilemma under three treatments – Control,

Delay, and Stochastic – that vary the form taken by damages from the pollution exter-

nality. In a group of N = 4 decision-makers, everyone simultaneously takes a decision in

every round t = 1, 2, . . . over how much to emit, ei = (1, 2, . . . 18). Individual payoffs are

the difference between a benefit and a damage function:

πi ≡ Benefitsi (ei)−
1

N
Damagesi (E) (1)

where E =
∑N

j=1 ej is the global emissions.

The benefit of an extra unit of emissions is private as it falls entirely on the decision-

maker, while only 1/N of the damage does. Hence, emissions generate a negative ex-

ternality on others in the group. There are four modifications with respect to the usual

public good experiment, which make our framework similar to the model of Dutta and

Radner (2004) as for payoffs.3 First, the game is framed as a public bad where the public

project is fully provided by default and every unit of emission corresponds to moving

contributions away from the group account into the private account. Second, the theoret-

ical benchmarks of the one-shot Nash equilibrium and the socially optimal emission are

not on the boundary of the action space, which is a desirable feature of an experimental

design (Laury and Holt, 2008). Our benefit function is non-linear in emissions, as addi-

tional units have a lower return, while the damage function is linear. As we will see, this

generates an interior Nash at 12, which is far from the upper bound of 18 and allows for

anti-social behavior. Moreover, the socially optimal level of emission is at 3. Third, to

mimic GDP inequality in the world arena, we introduced payoff heterogeneity within the

group, with rich decision-makers enjoying a higher return from the private account (i.e.

the benefit function) than poor ones while suffering identical levels of damages. More

precisely, the benefit function is, for a level of emission e(t) at time t:

Benefitsi(t) ≡ 100 ln (aiei(t)) (2)

3Dutta and Radner (2004) study dynamically persistent emissions that accumulate in a stock over
time, while in our analysis there is no persistence (Calzolari et al., 2016, experimentally study pollution
persistence).
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The parameter ai is set at 40.05 for half of the group members (rich) and 8.01 for the

others (poor). This asymmetry in ai could capture technological differences in carbon in-

tensity leading decision-makers to achieve different benefits for the same level of emission.4

Fourth, we implement a long-run horizon to capture the long life of state entities and of

the climate change problem. In the lab, the interaction is indefinite and is implemented

through a random stopping rule. After every round there is a random draw: an additional

round is played with probability δ = 0.92 and the sequence stops with probability (1− δ).
As a consequence, the length of a sequence is variable and nobody knows when the last

round will take place. The “shadow of the future” remains the same as the rounds pro-

ceed because the continuation probability δ is constant and common knowledge. Such

probability can be interpreted as the discount factor of a risk-neutral decision-maker who

lives forever.

While the benefit function is identical in all treatments, the damage function is

treatment-specific (Table 1). In the Control treatment damages from global emissions

are deterministic and hit immediately in the same round of emissions according to the

following damage function:

Damagesi(t) ≡ c1× E(t) (3)

where the parameter c1 = 33.375 determines the magnitude of the damage for each unit

of emissions. Damages are proportional to emissions to keep the design simple.5

In the Delay treatment, the damages are also deterministic but hit with a delay of two

rounds. As a consequence, there will be no damages in the first two rounds:

Damagesi(t) ≡

0, if t = 1, 2

c2× E(t− 2), if t > 2
(4)

4Both types of decision-makers have the same emission capacity. To ensure rich and poor decision-
makers have the same social optimum and stage-game Nash equilibrium (see Section 4) and ease empirical
comparisons, the gap between rich and poor decision-makers is modeled as a gap in private benefits
(Equation 2). While this is a strong simplification, the experiment roughly reflects stylized facts from
IPCC (2014) and the RICE model (Nordhaus, 2010). Rich decision-makers mirror high income countries
with a per capita GNI above $12,745 (World Bank threshold in 2010), whose GHG emissions amounted
to 18.7Gt in 2010 (IPCC, 2014). Instead, poor decision-makers approximately resemble countries with a
per capita GNI lower than $12,745: upper-middle income countries’ emissions were quite close to high
income countries’ emissions (18.3Gt), emissions from low and lower-middle income countries were instead
lower (11.3Gt). When focusing on the regions of the RICE model, rich regions have an average GNI per
capita 4.8 times higher than poor regions. Poor regions are Africa, China, Eurasia, India, and Other Asia
(N = 5, average GNI per capita=$7,125.9); rich regions are EU, Japan, Latin America, Middle East,
Russia, USA, and Other High Income (N = 7, average GNI per capita=$34,085).

5As already mentioned, in the field, damages are likely to be a convex function of temperatures
(Burke et al., 2015) but in theoretical models others have also employed a linear approximation (Dutta
and Radner, 2004). Moreover, pollution persistence is not included in the model to simplify the design.
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The damage parameter c2 = 39.432 is set taking as reference the value in the Control

treatment, c2 = δ2c1, so to keep the same present value for the damage generated by one

unit of emissions.6

Finally, in the Stochastic treatment, damages hit immediately but at random: a fixed

accident of magnitude K = 830 may hit one or more decision-makers with a probability

which linearly increases at a constant rate of about 1 percentage point for every unit of

global emissions (α= 0.01005):

Probability of an accidenti(t) ≡ α× E(t) (5)

The accident’s probability ranges from a minimum of 0.0402 if everyone emits 1 through

0.7236 if everyone emits 18.7 By design there is no way to reduce accident’s risk to zero

and, no matter how high emissions are, the accident always remains uncertain. All group

members share an identical risk of suffering an accident as the probability depends on

the global rather than individual emissions. However, there are independent draws for

each decision-makers to determine if an accident occurs. Hence, the damage level will be

identical across group members only in event of zero or N accidents and will differ in all

other random events. In expectation, the marginal damage from a unit of emissions is

similar to the Control treatment, α×N ×K = c1.8

There are many alternative ways to incorporate the randomness of climate change

into the design. Through the Stochastic treatment we aim to model extreme events

rather than global catastrophes. While a global catastrophe causes similarly losses to all

players, extreme events such as hurricanes tend to hit areas asymmetrically. This original

feature sets this study apart from the previous climate change experiments. Furthermore,

it facilitates a cleaner empirical identification of individual-level effects: a common shock

to all participants would limit the variation of impacts and hence restrict the possibility

to identify individual strategies, which is a main goal.

In the Stochastic treatment, before the climate game, we elicited the risk preferences

of all participants following the design of Karle et al. (2015). In particular, participants

were administrated two tasks, one in the gain domain and the other in the loss domain. In

the former task, participants had to make six binary choices. Each decision was between

6This calibration leaves the stage-game Nash and the socially optimal levels of emissions unaffected
under the assumption of risk-neutral decision-makers.

7We modeled extreme events through a linear function rather than a Pareto distribution to make it
simple for participants to understand the environment. Adopting cooperative strategies allows partici-
pants to induce a fairly low probability of an accident.

8The equivalence is almost exact as the value is 33.366 in Stochastic and 33.375 in Control. This
calibration leaves the Nash and socially optimal levels of emissions unaffected holds under the assumption
of risk-neutral decision-makers.
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a 50-50 lottery yielding either 0 or 3e, and a certain amount (0.3, 0.6, 0.9, 1.2, 1.5, or

1.8e). The latter task was similar except for that the certain amount was always 0e

and the lottery either paid 3e or involved a loss (-0.3, -0.6, -0.9, -1.5, -2.1, or -3e). One

of these twelve decisions was randomly drawn at the end of the session, and participants

were paid accordingly. Participants did not receive any feedback on the lotteries outcomes

until the end of the session.

The present expected value of a decision-maker i’s current and future payoffs is,

Πi =
∞∑
t=0

δtπi(t) . (6)

4 Theoretical Benchmarks

This Section provides the theoretical benchmarks which will be useful to evaluate and

interpret the experimental results. We proceed in three steps. In step one we identify

the socially optimal level of emissions and in step two we present the level of emissions in

the one-shot equilibrium with decentralized choices. The contrast between the two levels

of emissions highlights the social dilemma dimension of the climate game. In step three

we characterize some relevant equilibria of the repeated game. According to the standard

folk theorem (Friedman, 1971), when the shadow of the future looms sufficiently large

and monitoring is perfect, decision-makers can adopt strategies that support cooperative

outcomes, possibly also the socially optimal one. These strategies can take the form

of grim triggers where decision-makers contemplate permanent punishment when they

observe a deviation from a cooperative norm. The punishment is collective because in

our setting it is impossible to target a single decision-maker. As usual, a multiplicity

of equilibria arise, hence coordination is a relevant empirical issue. We assume that all

decision-makers are risk neutral.

If decision-makers cooperate maximizing the unweighted sum of individual present-

valued payoffs,

Π =
N

2
(Πr + Πp),

then they set a time-invariant socially optimal emission e∗∗ = 3, where the marginal

benefit from the individual emission, 100/ei, equals to the marginal damage caused on

the whole group. In the Control treatment the marginal group’s damage is N × c1
N

. In

the other two treatments – given our parametrization – the marginal group’s damage is

equal, in expectation, to the level in the Control treatment and hence the socially optimal

emission is also at e∗∗ = 3.

When decision-makers act independently there always exists an equilibrium in which

the level of emissions in any round corresponds to the Nash equilibrium of the one-shot
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stage-game. Here, each decision-maker equates the marginal benefit from her individual

emission to the individual marginal damage, which is a fraction 1
N

of the group’s damage.

As in standard public goods games, this condition does not depend on others’ emissions,

hence the one-shot Nash equilibrium emission e∗=12 is unique, and is equal to N×e∗∗

in all treatments.

We now turn to other levels of emission that can be supported in the repeated game,

distinguishing between strategies based on the observation of others’ emissions and strate-

gies based on damages suffered.9

“Observational Equilibria”. Here we consider equilibria supported by strategies that

are based on the past individual emissions of all N decision-makers as observed at the

end of each round, which are the most common class of strategies in the Folk theorem

literature. Observability allows decision-makers to use trigger strategies that contemplate

a punishment upon observing levels of emission that are interpreted as deviations. One

can easily prove the following.

Remark 1. In all treatments, if decision-makers are “observational”, they can support

in equilibrium any level of individual emission between e∗∗ = 3 and e∗ = 12.

A proof of Remark 1 hinges on the canonical grim trigger strategies. Consider the

Control treatment first. Suppose N − 1 decision-makers rely on a strategy that contem-

plates emitting a low level 3 ≤ ê < 12 if this is what happened in the past rounds and,

instead, a permanent reversion to the Nash equilibrium emission e∗ if they observe an

individual emission different from ê. One can show that at any round t, a decision-maker

prefers to keep low emissions ê instead of (the optimal deviation) e∗. The present value

payoffs of emitting ê is,

Πi =
1

1− δ

[
100 ln (aiê)−

c1

N
ê×N

]
. (7)

Alternatively, the payoff for emission e∗ is the sum of the current round payoff when every-

one else emits ê and the future rounds payoffs when everyone else enters the punishment

mode and also emits e∗,

Πi =

[
100 ln (aie

∗)− c1

N
(3(N − 1)× ê+ e∗)

]
+

δ

1− δ

[
100 ln (aie

∗)− c1

N
e∗ ×N

]
(8)

9In Section 7 we will discuss the consequences of the interaction between decision-makers who base
their strategies on observed emissions and others on damages.
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The payoff Πi in Expression 7 is always larger than that in Expression 8 if the decision-

maker is sufficiently patient. With the parameter values set in the experiment, the con-

dition that guarantees this preference if we want to support the socially optimal outcome

ê = e∗∗ is a discount factor δ above the critical threshold δ ≈ 0.3. Such condition is well

satisfied in the experiment given that δ = 0.92.10

The same reasoning applies to the Stochastic treatment because it is isomorph to the

Control treatment. The proof for the Delay treatment is also similar, except that the

cost of punishment hits the deviator only after three rounds. In fact, in the round of

the deviation the other decision-makers are taken by surprise and start punishing the

following round, with consequences accruing after two additional rounds. Although here

the punishment is less effective because it hits with delay, this treatment admits the

socially optimal outcome as an equilibrium for a discount factor higher than δ ≈ 0.7,

which is larger than in the other treatments but still smaller than δ = 0.92.

“Experiential Equilibria”. We now consider all decision-makers who follow strate-

gies exclusively based on realized damages rather than global emissions. In the Control

treatment, the distinction between observational and experiential equilibria is immaterial

since there is no decoupling between actions and damages.

In the Stochastic treatment, the experiential strategy is based on the realized accidents.

We first consider the case of decision-makers keeping track of all realized accidents in their

group, and then we briefly move to the case of decision-makers keeping track only of their

own accidents.11

Unlike with observational” decision-maker, “experiential” decision-makers can never

be sure that a deviation has effectively occurred in the group. We define A(t) as the

event in which at least one accident occurred in round t and Pr(A|Ê) as its probability

for a given level of global emissions Ê = ê×N . A cooperative outcome can be sustained

with a punishment mode that lasts for a finite number T of rounds (instead of being

permanent). When no accidents have occurred, decision-makers emit ê. Instead, when

at least one accident has occurred in the group, they temporarily emit e∗ for the next

T rounds, regardless of additional accidents; this is the so-called “quasi-punishment”

10Emission levels larger than 12 should not occur in equilibrium because individually and collectively
dominated by e∗.

11Recall that in our experiment others’ accidents are observable, and so are individual emissions.
If decision-makers keep track of all individual realized damages, the game is one with “imperfect public
information” (Fudenberg and Tirole, 1992). If instead decision-makers disregard the realizations of others’
accidents, then the Stochastic treatment becomes a complex game of “imperfect private monitoring”
where the possibility to obtain cooperation via a Folk theorem argument is limited (Yamamoto, 2012).
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phase.12 On the equilibrium path the expected payoff is,

πi = 100 ln (aiê)− αÊK + δ(1− Pr(A|Ê))πi+

δPr(A|Ê)

{
1− dT

1− δ
[100 ln (aie

∗)− αNe∗K] + δT+1πi

}
. (9)

Here we construct the experiential equilibria as if monitoring was imperfect due to

unobserved emission, although in the experiment they were observable. Under imperfect

monitoring, decision-makers do not know for sure if the realization of an accident is the

consequence of a deviation or not and this will trigger some high emissions e∗ also along the

equilibrium path (the term in curly brackets). Moreover, a deviation may go “unnoticed”

unless it triggers an accident, in which case it induces a continuation payoff that is the

same as the one along the equilibrium path (the same curly brackets just described).

Notwithstanding this reduced incentive power of punishments, one can show that there

exists a (decreasing) function T (ê), such that πi is larger than the payoff associated with

a deviation if T ≥ T (ê). By keeping emissions low at ê < e∗, decision makers keep the

probability to trigger the quasi-punishment low. The longer the punishment phase, the

more efficient is the emission level that can be implemented (ê = e∗ for T ≥ 10).

Hence, the type of cooperation reached by experiential decision-makers contemplates

higher emissions in some rounds triggered by the realization of stochastic accidents. Even

if in equilibrium decision-makers are able to sustain a level of individual emission ê without

accidents, they will switch to T rounds of quasi-punishment with higher emissions after

the realization of any accident and end up with an average level of emissions well above

ê. This implies that, even in the most cooperative scenario, experiential decision makers

will emit on average more than the socially optimal emission e∗.

When decision-makers consider their own accidents only and disregard those of the

others, what matters is the probability Pr(Ai|Ê) that decision-maker i experiences an

accident. The enhanced difficulty in sustaining cooperation is that quasi-punishment

rounds are here asynchronous because different decision-makers care for different and

independent accidents. A quasi-punishment phase may thus trigger accidents to other

decision-makers who, in turn, activate their own quasi-punishments propagating even

higher emissions. Although an explicit derivation of an equilibrium would considerably

complicate the analysis, one can see that the difficulty to jointly identify and react to

deviations makes cooperation weaker although not impossible. What is relevant to us is

12With our parametrization, the probability of an accident is bounded away from zero and from one for
any level of global emission. This implies that temporary punishment upon the observation of a damage
is necessary to support more efficient outcomes in our game with “full support”, as in Green and Porter
(1984).
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that in any case decision-makers would individually react by increasing emissions when

an individual accident has occurred (Yamamoto, 2012).

Finally, consider the Delay treatment. Here, experiential decision-makers can realize

that a deviation occurred by simply inspecting the current damage. However, since this

observed deviation refers to two preceding rounds, their punishment begins with a delay

with respect to observational decision-makers. More precisely, a deviation is detected

two rounds later so that in the second, third and forth rounds after deviation the other

decision-makers’ emission are still lower at ê. Only from the fifth round onward the

deviator is hit by the punishment and all decision-makers revert to the Nash stage-game

emissions e∗. The logic for the possibility to support emissions more cooperative than e∗ is

the same as with no delayed damages, except for the “diluted” efficacy of the punishment.

Observational decision-makers can support the socially optimal outcome in the Delay

treatment if sufficiently patient, with a threshold value for δ now being δ = 0.84.

We can now summarize the following theoretical results.

Remark 2. Experiential decision-makers react to damages and, although they are slower

to react to deviations than observational decision-makers, they may still be able to coop-

erate reducing emissions. (i) In the Stochastic treatment, they increase emissions after

realized individual or collective accidents. (ii) In the Delay treatment, they increase emis-

sions reacting to damages of two-rounds previous emissions.

5 Experimental Procedures

We have run 9 sessions at the University of Bologna, with a total of 180 participants.

Procedures aimed at ensuring that all participants had a good level of understanding

of the instructions. To this end, in every session we recruited 25 participants but only

20 were actually performing the main task: the selection was based on a quiz about

the instruction.13 There was a sequence of “dry runs” played against robots that were

varying their emission level round after round. A session comprised three or four sequences

of interaction with monetary incentives.14 After every sequence, all participants were

rematched with completely different people to play the next sequence (perfect stranger

13The excluded participants had to do a side task with a flat payment of 0.50e per round plus a
show-up fee of 5e.

14Participants were recruited for up to three hours and a half. For long sessions (more than two hours
and forty minutes), we informed participants that the current sequence of interaction was the last one
and that the experiment would end within thirty minutes. In this case the exact termination moment was
random, as we explained to the participants, with a random draw between 1 and 30. In one session of the
Delay treatment, the session was terminated during the second sequence due to time constraints. Since
long sessions were randomly and unexpectedly interrupted, this should have no impact on participants’
behavior. We did not conduct any ex post debriefing to limit the duration of the session.
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matching protocol).

Table 1: Overview of the Experiment.

Control Delay Stochastic

Parameters
D
(∑

i ei
)

Damage function Deterministic and Deterministic and Immediate random
immediate delay of two rounds accident of K = 830

(c1 = 33.375) (c2 = 39.432) (α = 0.01005)
δ Discount factor (continuation probability) 0.92 0.92 0.92
ar Benefit parameter for rich decision-maker 40.05 40.05 40.05
ap Benefit parameter for poor decision-maker 8.01 8.01 8.01

Predictions and results
e∗∗ Social optimum (individual emission) 3 3 3
e∗ Nash equilibrium 12 12 12
ei Result: average emission (range 1-18) 9.4 7.9 8.5

Sessions (dd/mm/yy)
20/05/15 16/03/16 23/06/16
21/05/15 17/03/16 24/06/16
27/05/15 18/03/16 27/06/16

Number of participants (main task + side task) 60+15 60+15 60+13
Number of groups 55 45 45
Number of sequences 11 9 9
Average length of a sequence 10.8 16.8 13.8

Notes: Data from sessions in the Control treatment have also been analyzed in a re-
lated paper (Calzolari et al., 2016, Immediate treatment). Average emissions are com-
puted as the mean of the individual emissions in a group in a sequence. For time con-
straints, sessions 20/5/2015 (Control), 17/03/2016 (Delay), and 24/06/2016 (Stochastic) were
interrupted during the third sequence following the protocol described in footnote 14; ses-
sion 18/03/2016 (Delay) was interrupted during the second sequence. In session 24/06/2016
(Stochastic), only 23 volunteers showed up, so two participants to the side task were missing.

6 Results

We report six main results, some about aggregate outcomes (Results 1–2) and others

about the strategies followed by participants (Results 3–6).

6.1 Aggregate Results

Result 1 (Aggregate cooperation). Delayed damages lower aggregate emissions and

Stochastic damages do it to a marginal extent.

Support for Result 1 comes from Figure 1 and Table 2. Figure 1 shows that the

average emission is 7.9 in Delay, which is statistically significantly less than 9.4 in Control

both according to a non-parametric test (Wilcoxon-Mann-Whitney test: p-value= 0.011,

NC = 55, ND = 45) and OLS regressions (Table 2, col. 1 and 2). The evidence for the

Stochastic treatment is somewhat weaker in terms of magnitude (8.5 vs. 9.4). Differences

in emissions are statistically significant between Control and Stochastic according to a

non-parametric test (Wilcoxon-Mann-Whitney test: p-value= 0.036, NC = 55, NS = 45)

but not to OLS regressions (Table 2, col. 3 and 4). The unit of observation in the

14



regressions of Table 2 is a group in a sequence and we control for sequences order and

length. After checking for heterogeneous responses, we will discuss these observations in

the concluding Section.

Figure 1: Average Emission by Treatment.
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Notes: The unit of observation is a group in a sequence (N = 55 in Control, N =
45 in Delay, N = 45 in Stochastic). Individual emissions can range from 1 through
18. The vertical segments represent the 95% confidence interval. The red-upper and
the green-lower horizontal lines respectively indicate the Nash individual emission of the
stage-game (e∗ = 12) and the socially optimal level of individual emissions (e∗∗ = 3).
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Table 2: Treatment Effects on the Average Emission.

Control vs. Delay Control vs. Stochastic

Dependent variable: (1) (2) (3) (4)
Average emission in a group First round All rounds First round All rounds

Treatment dummies

Delay –1.289** –1.213*
(0.541) (0.661)

Stochastic 0.252 –0.560
(0.653) (0.597)

Sequence dummies

Sequence 2 0.748 0.022 1.085 1.261*
(0.652) (0.745) (0.742) (0.699)

Sequence 3 1.022 –0.072 1.338* 1.125
(0.688) (0.787) (0.784) (0.716)

Sequence 4 –0.036 0.457
(0.847) (0.965)

Length of past sequence –0.147*** –0.135** –0.097** –0.068*
(0.046) (0.057) (0.042) (0.038)

Length of current sequence 0.060*** 0.035
(0.023) (0.022)

Constant 8.968*** 9.727*** 8.248*** 8.721***
(0.709) (0.900) (0.722) (0.724)

Observations 100 100 90 90

Notes: Results from OLS regressions are reported. The unit of observation is a group in a sequence.
Variables “Delay” and “Stochastic” are dummies respectively taking value 1 in the Delay and Stochastic
treatments, and 0 in the Control treatment. The variable “Length of past sequence” counts the number
of rounds in the previous sequence; in sequence 1 it is set to 12.5. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Result 2 (Time trends). With delayed damages, emissions exhibit a steadily increasing

trend over the rounds. No clear trend emerges in Control and Stochastic treatments.

Support for Result 2 comes from Figure 2 and Table 3. Figure 2 illustrates the emis-

sions trend within a sequence. The Delay treatment starts with emissions that are re-

markably lower than in Control (Figure 1 and Table 2, col. 1) and then emissions steadily

increase over the rounds. This trend is confirmed by an OLS regression explaining indi-

vidual emission choices (Table 3, col. 2) that controls for a host of factors such as sequence

order and length, rich vs. poor type, level of understanding of the instructions, and lim-

ited liability issues.15 For the Control treatment, Figure 2 shows an upward tendency

that is not statistically significant (Table 3, col. 1).16 No trend emerges in the Stochastic

treatment (Figure 2 and Table 3, col. 3).

Figure 2: Average Emission over Rounds.
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Notes: The unit of observation is a group in a sequence. In round 1 the number of observations is N =
55 in Control, N = 45 in Delay, N = 45 in Stochastic; in round 23 the number of observation is N = 5
in Control, N = 15 in Delay, N = 10 in Stochastic. Individual emissions can range from 1 through 18
with the socially optimal level e∗∗ = 3 and the Nash equilibrium of the stage-game e∗ = 12.

15In some observations a participant ended up with negative cumulate earnings. In this case limited
liability may have played a role for their subsequent actions. These observations were 8.2% in Control,
2.4% in Delay, and 4.3% in Stochastic. The unit of observation is a participant’s choice in a round.
Limited liability occurs if a participants’ show-up fee and cumulate earning over the session is below 10e.

16To reconcile the apparent differences in average emissions reported in Figures 1 and 2 recall that the
indefinite horizon naturally generates a declining number of observations (e.g. in our Control treatment,
in round 23 there are five groups only). Therefore, observations in the last rounds “weight” much less
than those in the first rounds when calculating overall average emissions.
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Table 3: Regressions of Individual Emission.

Dependent variable: (1) (2) (3)
Individual emission in the current round Control Delay Stochastic

Time trend within a sequence (round) –0.005 0.091** 0.017
(0.032) (0.038) (0.029)

Sequence dummies

Sequence 2 –2.417 –0.226 1.818**
(1.613) (1.155) (0.689)

Sequence 3 –0.114 –0.847 0.078
(1.392) (1.060) (0.779)

Sequence 4 –0.672 1.264
(1.531) (1.634)

Length of past sequence –0.134 –0.121 –0.123***
(0.134) (0.087) (0.034)

Rich participant dummy 0.739 –0.716* –1.011
(0.605) (0.419) (0.761)

Mistakes in the quiz 0.187 0.251 0.715*
(0.319) (0.268) (0.364)

Limited liability 3.136** 5.286** 0.833
(1.400) (2.193) (0.902)

Risk averse in the gain domain –0.022
(0.463)

Risk seeking in the gain domain 0.713
(0.597)

Risk averse in the loss domain –0.422
(0.415)

Risk seeking in the loss domain 1.151**
(0.557)

Constant 11.261*** 8.663*** 8.305***
(1.811) (1.327) (0.863)

Observations 2380 3020 2480
R2 0.0571 0.1825 0.0690

Notes: Results from OLS regressions are reported. The unit of observation is a participant’s emission
choice in a round. Standard errors are clustered at the level of a group in a sequence. The variable
“Length of past sequence” counts the number of rounds in the previous sequence; in sequence 1 it is
set to 12.5. The variable “Mistakes in the quiz” counts the number of mistakes that a participant
made in the quiz on the instructions. The variable “Limited liability” is a dummy taking value 1 if the
emission decision was made under limited liability, and 0 otherwise. The dummy “Risk averse in the
gain domain” is equal to 1 if the participant chose the lottery against the certain positive amount less
than three times. The dummy “Risk seeking in the gain domain” is equal to 1 if the participant chose
the lottery against the certain positive amount more than three times. Dummies “Risk averse in the
loss domain” and “Risk seeking in the loss domain” are similarly defined. All risk dummies neglect
whether the participant violated single crossing. * p < 0.1, ** p < 0.05, *** p < 0.01.
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Two noteworthy patterns emerge from the data about inequality and risk preferences.

On average, poor participants emit more than rich ones in every treatment (9.7 vs. 9.1 in

Control, 8.1 vs. 7.6 in Delay, and 9.1 vs. 7.9 in Stochastic), but the difference in aggregate

behavior is statistically significant only in the Delay and Stochastic treatments according

to non-parametric tests (two-sided sign tests: Control: p-value= 0.892, NR = NP = 55,

Delay: p-value= 0.073, NR = NP = 45, Stochastic: p-value= 0.036, NR = NP = 45). The

evidence is more mixed when using OLS regressions (Table 3, rich participant dummy).17

For the Stochastic treatment we can also evaluate the role of individual risk preferences

over emission choices. When risk attitude is elicited in the gain domain (the precise

definition of the dummies is in the note of Table 3), it is not significantly correlated with

emissions (Table 3, col 3). Instead, when risk attitude is elicited in the loss domain,

there is a statistically significant relation with emissions: risk seeking participants have

on average higher emissions than those that are neutral.

6.2 Strategies of the Representative Participant

Our experimental design allows to go beyond the aggregate results about cooperation and

to shed light on the type of strategies followed by participants in the repeated game. Here

we study the strategies of the representative participants (Results 3–4) and in Section 6.3

we provide a simple classification of the individuals to further corroborate and specify

the findings. The main theme of analysis is how a participant who may want to cooper-

ate in reducing emissions reacted to a perceived defection. We begin with the study of

observational strategies.

Result 3 (Observational strategies). In the Control treatment, the representative par-

ticipant responds to a perceived defection with a temporary increase in emissions.

Support for Result 3 comes from Figure 3 and Table 4. Data from the Control treat-

ment suggest that when the representative participant observed high emissions by others

in the group, she switched from a cooperative to a punishment mode. As seen in Section

4, an appropriately defined trigger strategy can sustain a fully cooperative equilibrium in

our setting. While previous experiments with two players and two moves have already

documented a similar pattern (Camera and Casari, 2009; Dal Bó and Fréchette, 2017),

the novelty of our result mainly lies in showing it in a N -person game with a multi-level

action space.

17 Despite this, the highest level of inequality is reached in Delay (Gini coefficient= 0.429) compared
to Control (0.591) and Stochastic (0.482). The unit of observation is one participant’s total earnings at
the end of a sequence.
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Recall that, following a defection of some opponent, a trigger strategy involves a shift to

a punishment mode with higher emissions for some number of subsequent rounds. For the

Control treatment, the finding emerges from an OLS regression that explains individual

emission choices using regressors that trace the strategy and a set of controls (Table 4, col.

1 and 2). Controls include dummies for round, sequence, participant, and limited liability,

as well as the length of the past sequence. In the regression model, we assume that a

defection occurs if the emissions of the other three group members are on average equal

or above 12, but we have checked other levels (see Table A.12 in Appendix). This analysis

sheds light on the type of strategies employed by the representative participant generalizes

that of Camera and Casari (2009) to N players and a multi-level action space. Although

the way to code regressors in order to trace strategies is subject to some discretion, the

approach has the advantage to detect whether participants followed theoretically well-

known strategies, such as grim trigger or tit-for-tat.

The regressors that code the strategy aim to trace the response of the representative

participant in the rounds that follow a perceived defection. We mostly focus to the four

rounds after a defection by including four “Lag” regressors, which have a value of 1 only

in one round following a defection and 0 otherwise. For example, the “Lag 1” regressor

takes value 1 only in the round after the defection (0 otherwise). The “Lag 2” regressor

takes value 1 only in the second round following a defection (0 otherwise). Similarly for

the “Lag 3” and “Lag 4” regressors. However, we also consider a “grim trigger” regressor

labeled “Any previous round”, which has a value of 1 in all rounds following a defection

and 0 otherwise.

Figure 3 panel (a) illustrates the estimated reaction in emissions over the rounds,

following an observed defection in the Control treatment. The illustration for round lags

1 though 4 is based on the sum of the coefficients of the grim trigger regressor and the

lag regressor with the appropriate Lag. The illustration for round Lag 5 is based on the

effect of the grim trigger regressor only.18

The pulse pattern of response to an observed defection suggests a temporary downward

shift in cooperation levels immediately after a defection. The lag 1 regressor is signifi-

cantly different from zero, while the estimated coefficients of all other strategy regressors,

including the grim trigger one, are not significantly different from zero (Table 4).

A pattern along the lines of Result 3 emerges also from the analyses of observational

18If at least one of the five strategy regressors estimated in Table 4 has a positive coefficient, then this
could be the consequence of a representative participant switching from a cooperative to a punishment
mode. We can illustrate this by the following example: a representative participant who punishes for
exactly three rounds following a perceived defection generates estimated positive coefficients for the Lag
1, Lag 2, and Lag 3 regressors.
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strategies in the other treatments. The finding comes from a similar estimation procedure

carried out for the Delay and Stochastic treatments using the same emission threshold of

12.19

In the Delay treatment, the representative participant immediately increases emissions

after an observed defection in a statistically significant way (Lag 1, Table 5, col. 1); also

in the Stochastic treatment there is a statistically significant immediate response (Table

6, col. 1). The main differences between Control and the other treatments seem to

be (i) the presence of a more permanent punishment to a defection, as estimated by

the “Any previous round” regressor (Tables 5 and 6, col. 1); (ii) a moderated pulse

response to defections in the Delay and Stochastic treatments as compared with the

Control treatment. Figure 3 illustrates these pulse pattern of responses to an observed

defection through the solid lines in panels (b) and (c) labeled “Observational”.

19Robustness checks with alternative thresholds can be found in Appendix (Tables A.13 and A.14).
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Table 4: Strategies of the Representative Participant in the Control Treatment.

Dependent variable: (1) (2) (3) (4)
Individual emission in current round

Trigger: average emission of others > 12

Lag 1 1.808*** 1.821*** 1.791***
(0.435) (0.429) (0.404)

Lag 2 0.282 0.237 0.227
(0.343) (0.345) (0.313)

Lag 3 0.017 0.213
(0.218) (0.161)

Lag 4 0.251 0.325
(0.237) (0.292)

Any previous round 0.360 0.324 0.767
(0.524) (0.516) (0.514)

Trigger: personal loss in round payoff

Lag 1 1.248* 0.120
(0.626) (0.491)

Lag 2 0.639 0.342
(0.462) (0.411)

Lag 3 –0.508 –0.673
(0.437) (0.440)

Lag 4 0.102 –0.066
(0.254) (0.307)

Any previous round –0.625 –1.345**
(0.636) (0.585)

Constant 3.916** 3.955** 3.877* 4.638**
(1.818) (1.812) (2.060) (1.811)

Round dummies Yes Yes Yes Yes
Sequence dummies Yes Yes Yes Yes
Participant dummies Yes Yes Yes Yes
Length past sequence Yes Yes Yes Yes
Limited liability Yes Yes Yes Yes
Observations 2160 2160 2160 2160
R2 0.4463 0.4466 0.4253 0.4507
Adjusted R2 0.4137 0.4134 0.3908 0.4164

Notes: Results from OLS regressions are reported. The unit of observation is a participant emission
decision in a round. Decisions in round 1 are dropped. Standard errors are clustered at group level.
* p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 5: Strategies of the Representative Participant in the Delay Treatment.

Dependent variable: (1) (2) (3) (4) (5)
Individual emission in current round

Trigger: average emission of others > 12

Lag 1 1.103** 0.987* 0.938*
(0.498) (0.501) (0.502)

Lag 2 0.581* 0.159 0.155
(0.319) (0.281) (0.286)

Any previous round 1.221* 1.047* 1.045*
(0.630) (0.582) (0.592)

Trigger: damage > 12× 39.432

Lag 1 1.504*** 1.124*** 1.422***
(0.396) (0.318) (0.347)

Lag 2 0.726** 0.514 0.534*
(0.349) (0.321) (0.313)

Any previous round 0.296 –0.287 –0.495
(0.518) (0.370) (0.373)

Trigger: personal loss in round payoff

Lag 1 –0.123 –0.954**
(0.343) (0.417)

Lag 2 0.382 0.009
(0.325) (0.328)

Any previous round 1.450*** 0.771
(0.514) (0.541)

Constant 6.860*** 6.936*** 6.810*** 7.001*** 6.766***
(0.931) (0.982) (0.928) (0.968) (0.915)

Round dummies Yes Yes Yes Yes Yes
Sequence dummies Yes Yes Yes Yes Yes
Participant dummies Yes Yes Yes Yes Yes
Length past sequence Yes Yes Yes Yes Yes
Limited liability Yes Yes Yes Yes Yes
Observations 2840 2840 2840 2840 2840
R2 0.5619 0.5576 0.5655 0.5504 0.5669
Adjusted R2 0.5446 0.5401 0.5479 0.5326 0.5487

Notes: Results from OLS regressions are reported. The unit of observation is a participant emission
decision in a round. Decisions in round 1 are dropped. Standard errors are clustered at group level. *
p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 6: Strategies of the Representative Participant in the Stochastic Treatment.

Dependent variable: (1) (2) (3)
Individual emission in current round

Trigger: average emission of others > 12

Lag 1 0.994*** 0.861***
(0.288) (0.298)

Lag 2 0.357 0.274
(0.339) (0.296)

Lag 3 –0.189 –0.162
(0.398) (0.424)

Lag 4 0.183 0.139
(0.504) (0.515)

Any previous round 0.479* 0.443*
(0.245) (0.240)

Trigger: personal accident occurs

Lag 1 1.481*** 1.408***
(0.293) (0.286)

Lag 2 –0.034 –0.067
(0.210) (0.216)

Lag 3 –0.039 –0.070
(0.230) (0.239)

Lag 4 0.184 0.154
(0.201) (0.196)

Any previous round –0.010 –0.011
(0.303) (0.285)

Constant 13.775*** 13.596*** 13.229***
(0.553) (0.614) (0.534)

Round dummies Yes Yes Yes
Sequence dummies Yes Yes Yes
Participant dummies Yes Yes Yes
Length past sequence Yes Yes Yes
Limited liability Yes Yes Yes
Observations 2300 2300 2300
R2 0.3795 0.3921 0.3983
Adjusted R2 0.3518 0.3650 0.3701

Notes: Results from OLS regressions are reported. The unit of observation is a participant emission
decision in a round. Decisions in round 1 are dropped. Standard errors are clustered at group level. *
p < 0.1, ** p < 0.05, *** p < 0.01.
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Figure 3: Strategies of the Representative Participant.
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Notes: Own emission change comes from regressions coefficients summing up the estimated coefficient
for “Any previous round” and “Lag X”. For Control, see Table 4 col. 2; for Delay, see Table 5 col. 3;
for Stochastic, see Table 6 col. 3. 25



Result 4 (Experiential strategies). The strategy of the representative participant re-

sponds both to the observed actions as well as to the experienced damage.

Support for Result 4 comes from Figure 3 and Tables 5–6. These findings emerge from

the Stochastic and Delay treatments, where one can possibly decouple these observational

and experiential strategies. Let’s begin with the evidence from the Stochastic treatment,

where the empirical distinction between the two classes of strategies is more intuitive. We

exploit the presence of random accidents, which determined a large shock on the current

earnings, and tracked the reaction to them in terms of emissions of the representative

participant. The empirical frequency of accidents in a group was as follow: in 2% of cases

everyone in the group experienced an accident and in 21% of cases nobody experienced

an accident. The mode was of one accident in the group in the round (38%). The

data suggests that the representative participant increased emissions immediately after

experiencing an accident (Table 6, col. 2). The reaction was statistically significant but

temporary, i.e. limited to Lag 1. As already mentioned, the estimate of observational

strategies shows a strong immediate reaction (Lag 1) and a smaller but permanent effect

(Any previous round, Table 6, col. 1). We also performed a joint estimate of observational

and experiential strategies and the patterns do not change substantially, with coefficients

slightly smaller in magnitude (Table 6, col. 3). The two classes of strategies are illustrated

with the two (solid and dashed) lines in Figure 3 panel (c). Hence, the representative

participant is responding with higher emissions both to others’ actions when higher than

a threshold and also to personal payoffs shocks.

A similar pattern emerges from the Delay treatment. Disentangling experiential and

observational strategies is statistically more difficult in this design. We limit our focus to

just the two rounds following a defection, plus a grim trigger regressor, to minimize the

chances of confounding the reaction to actions or to damages (Table 5). In an experiential

strategy, a defection occurs if the experienced damage in a round was the outcome of a

(previous) average emission in the group above 12, but a robustness check has been per-

formed for other threshold levels (available upon request). Notice that both specifications

of experiential strategy in Delay and Stochastic treatments measure an impact on payoffs

that is the consequence of both own and others emission choices.

The data suggests that the representative participant increased emissions after ex-

periencing high damages (Table 5, col. 2). The coefficient of the Lag 1 regressor for

the damage is statistically significant and suggests an immediate reaction, with a smaller

coefficient for the Lag 2 regressor and an insignificant coefficient for the grim trigger re-

gressor. As already mentioned, the stand-alone estimate of observational strategies using

a threshold of 12 yielded statistically significant and positive coefficients for all regressors

(Table 5, col. 1). Also in the Delay treatment the reaction to an observed defection seems
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more permanent than in the Control treatment. When both experiential and observa-

tional strategies are jointly estimated, the patterns do not substantially change (Table 5,

col. 3). The two classes of strategies are illustrated in Figure 3 (solid and dashed lines)

panel (b). Hence, in the Delay treatment the representative participant is responding

with higher emissions both to others’ actions and also to damage higher than a threshold.

From a behavioral stand point, participants may exhibit discontinuities in strategies

when payoffs move into the loss domain. The experimental design allows to study also

this possibility, given that in all treatments negative round payoffs were possible. Using

the same econometric technique outlined above for strategy estimation, we tracked the

response of a representative participant to the experience of a negative round payoffs in

the Control and Delay treatments. In the Stochastic treatment the event of an accident

coincide with the experienced of a negative round payoff, and hence it is impossible to

disentangle the effects of each component on strategies. Result 5 below summarize the

findings.

Result 5 (Reaction to losses). In the Control and Delay treatments, the experience of

negative round payoffs modifies the strategy of the representative participant: it reduces

the magnitude of the immediate response to a perceived defection.

Support for Result 5 comes from Tables 4 and 5. The response to losses could share

an element of punishment for the high levels of others’ emissions causing the loss itself, as

well as behavioral elements related to loss aversion and other factors. For this reason, it

is important to disentangle the two in the empirical analysis. In the Control treatment,

an estimate that tracks the reaction to the experience of negative round payoffs shows

a statistically significant increase in emissions in the round following the loss (a positive

Lag 1 coefficient in Table 4, col. 4). However, when jointly estimating an observational

strategy of a trigger type together with the reaction to losses, the net effects are drasti-

cally different (Table 4, col 5): the sign of the statistically significant coefficients become

negative (Lag 3 and Any previous round), and remain so also when summed up with the

coefficient of “Any previous round” with the various lags. When taken together, these

two regressions support Result 5 and show that without controlling for the use of a trigger

strategy we would have drawn the wrong conclusions about the behavioral effects of a loss.

The reason is that the more canonical response due to a punishment for high emissions

of others quantitatively dominates the behavioral response to losses, at least if we focus

on the round immediately following the event.

In the Delay treatment the findings are analogous. An estimate that tracks the reac-

tion to the experience of negative round-payoffs shows a permanent increase in emissions

(positive coefficient for Any previous round in Table 5, col. 4). However, when jointly

estimating an observational strategy of a trigger type together with the reaction to losses,
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the net effects are drastically different (Table 5, col. 5): we observe a statistically sig-

nificant negative coefficient for the Lag 1 regressor, which remains negative also when

summed up with the coefficient of “Any previous round”. Also in this treatment, these

two regressions support Result 5.

6.3 Strategies at the Individual Level

The empirical evidence on strategies from Section 6.2 is compatible with everyone re-

sponding to both emissions and damages, and to the presence of two separate types of

decision-makers, those who respond exclusively to emissions, and those that respond ex-

clusively to damages. The theoretical and empirical implications of these two scenarios

are rather different, which is why we also carried out a classification of individuals.

Our theoretical considerations in Section 4 reflect a scenario with homogeneous decision-

makers in terms of strategy adoption. The presence of heterogeneity in behavior may

require a significant period of learning to envisage other decision-makers’ strategies and

to build cooperation. One could expect that during this learning process in the Delay

and the Stochastic treatments, where experience and observation may be decoupled for

some decision-makers, initial emissions are kept cautiously low. At the same time, the

learning process may not converge fast enough and the coexistence of experiential and

observational decision-makers in the same group may induce spiraling emissions.

We now explain how we classified the participants. The algorithm we used aims at

identifying strategies of a “trigger” type where an individual deterministically transitions

from a cooperative mode to a punishment mode in the round following an event that

is considered a defection. The definition of defection depends on the class of strategy,

either experiential or observational, and is associated to a given threshold. The algorithm

defines as defection either an observed average action of others above a threshold or

the experience of damage, which takes the form of a random accident in the Stochastic

treatment, or of a damage level beyond a threshold in the Delay treatment. We check

whether each individual’s behavior is compatible with an observational trigger strategy

and / or an experiential trigger strategy. The unit of observation is a participant in a

sequence.

In the Control treatment we cannot distinguish between observational and experi-

ential strategies because there is no decoupling between emission actions and damages.

Nonetheless, when basing our counting on observational strategies about 36% (79) of the

individuals can be classified. An individual belongs to the observational strategy category

if her emission in the round immediately following a defection is strictly higher than in

the previous round, when taking an average over all instances of defections in a sequence.

Moreover, in the earliest instance of defection, the individual must have increased emis-
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sions in the following round. This definition applies to all treatments. A defection occurs

if the average emission by the other three members of the group is above a given threshold.

This threshold is individual-specific and is identified looking at the participant’s behavior

when making the largest emission increment over a single round, e(t)−e(t−1). To be con-

sidered belonging to the observational trigger strategy, this emission increment must be

in response to an emission increment of the other three group’s members in the previous

round (strictly positive on average). This category is meant to capture individuals follow-

ing grim trigger or T -round punishment strategies, although the conditions are neither

necessary nor sufficient. Some individuals could also follow strategies other than trigger.

The algorithm always places an individual in a sequence of just one or two rounds in the

“unclear” category because the data are too sparse. Individuals with constant emissions

over time, or emissions that monotonically decline also belong to the “unclear” category.

Similarly, an individual belongs to the category of experiential trigger strategy if her

emission in the round immediately following a defection is strictly higher than in the

previous round when taking an average over all instances of defections in a sequence. Here,

however, the definition of defection is tied to the personal level of damage. In the Delay

treatment, the definition of a defection event follows an analogous rule as in observational

strategies but using damages. The threshold that an individual employs to define a

defection could be different between experiential and observational strategies.20 Again,

we identified the threshold of the experiential strategy by looking at the participant’s

behavior when making the largest emission increment over a single round, e(t)− e(t− 1).

To be classified as following an experiential strategy, the individual must have performed

this jump in emission in response to a strictly positive damage increment over the previous

round. In the Stochastic treatment, a defection event occurs every time the individual

experiences an accident.21

The outcomes of this classification algorithm are illustrated in Figure 4 and discussed

below.

20With respect to the estimate carried out for the representative participants, in the classification of
individuals (i) the strategy thresholds can vary by individual, and (ii) the same individual may adopt a
different threshold for observational and experiential strategies.

21Hence, there is no issue of defining a threshold as in the observational strategies. The definition of
defection is the same for everyone.
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Result 6 (Heterogeneous strategies). In the Control and Delay treatments, some

participants react exclusively to others’ actions, some exclusively to changes in payoffs

and a third group reacts to both payoffs and actions.

Among those participants who use trigger strategies, some exclusively respond to

actions, others exclusively respond to damages, and another set responds to both actions

and damages. These three sets of participants are roughly similar in size. Figure 4

illustrates that 44%-46% of the classified individuals fall into the observational strategy

category in the Delay (N = 42) and the Stochastic (N = 43) treatments, respectively.

19%-29% into the experiential strategy (N = 18 and N = 27, respectively). About

38%-25% of classified individuals belong to both categories.

Figure 4: Classification of Participants by Strategy Employed.

Notes: The unit of observation is a participant in a sequence. The number of observations is 180
treatment.

We test whether there are differences in strategy adoption between the Delay and

Stochastic treatments using a Probit regression and report no significant effects (Table

7). Although the games and the classification algorithm are in part treatment-specific, we

find similar shares of participants who can be classified as observational or as experiential

(p-values of Stochastic dummy are p = 0.503 and p = 0.123, respectively).

No systematic difference between rich and poor emerges in the type of strategy adopted.

Instead, the lower is the level of rule understanding about the experiment (Mistakes in the

quiz), the more likely it is that the participant an experiential strategy. Such regularity

does not appear for the adoption of observational strategies, but instead there is a posi-

tive and significant effect of the length of the current sequence. To evaluate this evidence

one must adjust for the inclusion in Table 7 of all the unclassified individuals. When

removing them, we find the higher is the level of rule understanding, the more likely it

is that a participant follows an observational strategy (Probit regression, p-value= 0.073,

N = 189). Moreover, the coefficient of the length of the current sequence looses signifi-

cance: its effect in Table 8 most likely originates from the fact that participants in longer

sequences are easier to classify.
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Table 7: Determinants of Strategy Adoption.

Dependent variable: (1) (2) (3)
Individual strategy adopted (0, 1) Observational Experiential Both

Stochastic treatment dummy 0.034 0.055 –0.065
(0.050) (0.036) (0.040)

Rich –0.073 0.010 0.039
(0.049) (0.035) (0.040)

Mistakes in the quiz –0.008 0.041*** 0.041**
(0.026) (0.016) (0.018)

Length of the current sequence 0.007*** 0.002 0.004***
(0.002) (0.001) (0.001)

Sequence –0.007 0.020 0.003
(0.021) (0.018) (0.021)

Observations 360 360 360

Notes: Marginal effects from Probit regressions are reported. Delay and Stochastic treatments only.
The unit of observation is a participant in a sequence. Standard errors are clustered at the level
of a participant. The variable “Mistakes in the quiz” counts the number of mistakes made by the
participant in the quiz on the instructions. * p < 0.1, ** p < 0.05, *** p < 0.01.

These findings from the classification of individuals reinforce Results 3 and 4 obtained

for the representative participants: a large fraction of participants follow a trigger strat-

egy; moreover, some participants respond both to the observed actions as well as to the

experienced damage. The corroboration of Result 4 comes from using an empirical tech-

nique that is distinct from the regression analysis of Tables 5 and A.14 both in terms of

criteria to define strategy types and in terms of unit of analysis. Hence, the classification

of individuals strengthens the findings by adding a new point of view on the data.

We conclude our analyses by studying how within-group heterogeneity in strategies

affects the group’s cooperation. Table 8 reports estimates from an OLS regression where

the dependent variable is the average group emission in a sequence and the main covariates

are the number of experiential and observational participant in the group. The regression

also controls for sequences length and order. We find that a bigger number of experiential

participants is associated with a significantly higher average group emission. Instead,

the number of observational participants does not affect the average group emission in

a statically significant way. These patterns emerge both in the Delay and Stochastic

treatments.

7 Discussion and Concluding Remarks

We show that two typical features of climate change, namely the delayed and uncertain

damages originating from greenhouse gas emissions have relevant and unexpected conse-
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Table 8: Relation between Aggregate Emissions and Group Composition.

Dependent variable: (1) (2)
Average emission in a group Delay Stochastic

Number of experiential types in the group 0.956* 1.181*
(0.555) (0.633)

Number of observational types in the group –0.320 0.108
(0.481) (0.390)

Sequence dummies

Sequence 2 –0.181 0.630
(1.173) (1.118)

Sequence 3 –1.475 0.307
(0.918) (0.888)

Sequence 4 0.818
(1.718)

Length of current sequence 0.022 –0.013
(0.053) (0.043)

Length of past sequence –0.163* –0.069*
(0.090) (0.037)

Constant 9.770*** 8.514***
(1.458) (1.109)

R2 0.3928 0.2124
Observations 45 45

Notes: Results from OLS regressions are reported. The unit of observation is a group in a sequence.
* p < 0.1, ** p < 0.05, *** p < 0.01.

quences on mitigation behavior. These features, which are reproduced in our experiment,

remove the tight link between the emission action and consequences in terms of damages.

Such link, which characterizes most studies on cooperation, facilitates learning about oth-

ers’ preferences, rationality level, and strategies, as well as about the rules of interaction

(Bereby-Meyer and Roth, 2006).

With delayed or uncertain damages, coordinating on a mitigation policy may be harder

because some decision-makers condition their actions on emissions while others on actual

damages. Sustaining cooperation on climate issues without a binding international treaty

requires informal punishments upon deviations from an agreement. From a policy point

of view it is thus interesting whether decision-makers decide to react to emissions or to

damages. In fact, most theories of long-run cooperation assume homogeneous decision-

makers who focus on actions. When instead decision-makers differ in their attitude to

reactions, it is important to know if cooperation is at risk.

Here we design and carry out a laboratory experiment to study the ability of partici-

pants to cooperate under different damage functions and emissions-damages decoupling.

Clean evidence on these issues is hard to gather with observational data. We report two
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major sets of results. First, a sizable share of participants is of an experiential type, in

the sense of conditioning their emission actions on the level of damages that they indi-

vidually experience, despite having the possibility to observe also the emission choices of

others. Experiential types simply employ personal payoffs as a rule of thumb for decisions.

This behavioral finding is novel and contrasts with customary assumptions in theoretical

models of cooperation, where everyone does benefit from taking into account the most

accurate and timely information available (observational type). A variety of reasons can

explain why a decision-maker is experiential or observational. Our evidence suggests that

the level of understanding of the situation is systematically worse for experiential than

observational types. Experiential decision-makers may find it very costly to keep track

and interpret all the information available and thus may fail to appreciate the exact causal

connections or the strategies of the others.

Typically, groups are heterogeneous, with members of different types. That would also

be very likely when dealing with many countries with widely different political regimes

and institutions at the international level. In the experiment, those groups with more

experiential types show significantly higher levels of emissions, a result that may origi-

nate from miscoordination. Consider the interaction between one experiential and one

observational decision maker. A stochastic accident would cause the experiential player to

increase emissions. The observational player would interpret it as a unilateral deviation,

which triggers a punishment. This can ignite a spiral of emissions that unravels coop-

eration. Similarly, with delayed damages, an observational type may underestimate the

reaction of others to a deviation from a cooperation agreement because the experiential

type acts later in response to damages. These reasoning may provide an explanation for

the increasing time trend of emissions shown in the Delay treatment, the consequence of

unfortunate realizations of spiraling reactions. The Stochastic treatment, instead, does

not exhibit a time trend. In this treatment, the risk of spiraling reactions is in fact

lower because the reaction of experiential types to a deviation by an observational type

is smooth at the group level due to the asymmetries of the individual accidents. We thus

expect that a situation with global common shocks would be more prone to spiraling

reactions.

As a second set of results, we find that, overall, the presence of delayed and stochastic

damages did not impair cooperation among decision-makers at an aggregate level. Delay

and stochastic damages not only induce some decision makers to act on personally experi-

enced damages. They are also relevant for other dimensions, with some of them improving

the level of cooperation. In particular, risk and loss aversion could lead to lower emis-

sion with random or delayed damages (the latter because of the uncertain termination

date). In light of the higher emissions in groups with several experiential decision-makers,
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the aggregate emissions containment under stochastic and delayed damages may be the

consequence of lower emissions in groups with most observational decision-makers.

With the usual caveats on the limits of external validity of experimental investigations,

we believe these findings are relevant for policy design because they call for a careful

consideration of how international cooperation emerges and is enforced. In particular,

the different attitude towards realized damages of national decision-makers (and their

public opinion) may prove a key factor for cooperation. For example, considering different

pollutants that display their negative consequences at different times after emission, policy

makers may be less concerned by the pollutant with more delayed damages when observing

lower emissions as we did in the first rounds. This may well turn out to be a missed

opportunity, if not a mistake, when many decision-makers rely on observed damages

reacting with higher and higher emissions, as we also observed.
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Appendix

A Additional Figures and Tables

Table A.9: Total Number of Participants over Rounds by Treatment.

Round Control Delay Stochastic

1 220 180 180
2 180 180 180
3 180 140 180
4 160 140 180
5 140 140 160
6 120 120 140
7 100 120 120
8 100 120 100
9 80 120 100
10 80 120 100
11 80 100 80
12 40 100 60
13 40 100 60
14 40 100 60
15 20 100 60
16 20 100 60
17 20 100 60
18 20 100 40
19 20 80 40
20 20 80 40
21 20 60 40
22 20 60 40
23 20 60 40
24 20 40 40
25 20 40 40
26 20 40 40
27 20 40 40
28 20 40 40
29 20 20 40
30 20 20 40
31 20 20 40
32 20 20 40
33 20 20
34 20 20
35 20 20
36 20 20
37 20 20
38 20 20
39 20 20
40 20 20
41 20 20
42 20 20
43 20 20
44 20
45 20
46 20
47 20
48 20
49 20
50 20
51 20
52 20
53 20
54 20
55 20
Total 2380 3020 2480

Notes: The unit of observation is one participant in a round.
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Figure A.5: Average Emissions across Sequences.
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Notes: The unit of observation is a group in a sequence. We consider the average emission over all
rounds.
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A.1 Regressions without Choices under Limited Liability

Table A.10: Treatment Effects on the Average Emission (No limited liability).

Control vs. Delay Control vs. Stochastic

Dependent variable (1) (2) (3) (4)
Average emission in a group First round All rounds First round All rounds

Treatment dummies

Delay –1.336** –1.284*
(0.564) (0.660)

Stochastic 0.124 –0.619
(0.687) (0.604)

Length of past sequence –0.151*** –0.131** –0.086* –0.065*
(0.048) (0.057) (0.044) (0.039)

Sequence dummies

Sequence 2 0.740 –0.010 1.183 1.245*
(0.680) (0.745) (0.781) (0.708)

Sequence 3 1.156 –0.028 1.438* 1.029
(0.717) (0.786) (0.825) (0.725)

Sequence 4 –0.069 0.468
(0.883) (0.964)

Length of current sequence 0.063*** 0.043*
(0.023) (0.022)

Constant 9.035*** 9.686*** 8.180*** 8.674***
(0.739) (0.899) (0.760) (0.733)

Observations 100 100 90 90

Notes: See notes to Table 2.
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Table A.11: Regressions of Individual Emission (No limited liability).

Dependent variable: (1) (2) (3)
Individual emission in the current round Control Delay Stochastic

Time trend within a sequence (round) –0.006 0.094** 0.019
(0.035) (0.038) (0.030)

Sequence dummies

Sequence 2 –2.424 –0.235 1.833**
(1.615) (1.151) (0.750)

Sequence 3 –0.096 –0.834 –0.002
(1.408) (1.063) (0.810)

Sequence 4 –0.675 1.270
(1.533) (1.632)

Length of past sequence –0.134 –0.120 –0.129***
(0.134) (0.087) (0.034)

Rich participant (dummy) 0.740 –0.717* –0.987
(0.626) (0.420) (0.730)

Mistakes in the quiz 0.189 0.258 0.697*
(0.372) (0.278) (0.360)

Risk averse in the gain domain –0.020
(0.464)

Risk seeking in the gain domain 0.714
(0.621)

Risk averse in the loss domain –0.400
(0.423)

Risk seeking in the loss domain 1.192**
(0.541)

Constant 11.272*** 8.614*** 8.367***
(1.829) (1.311) (0.881)

Observations 2185 2946 2373
R2 0.0310 0.1347 0.0651
Adjusted R2 0.0279 0.1326 0.0612

Notes: See notes to Table 3.
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A.2 Strategies of the Representative Participant

Figure A.6: Example of Average (Others) Action Based Strategies Coding.
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