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Abstract 
In this study, I developed operational versions of Hirsch’s H index that can be applied to each 

researcher’s curriculum vitae (CV) to allow cross-disciplinary comparisons. The revised indices 

account for anomalies that potentially arise from tactical or opportunistic citation and publication 

behaviours by authors and editors, and can be calculated from readily available information. I split 

the original H index into nested indices to isolate networking activity, distinguish scientific 

production and productivity, and used nested Gini indices to identify intentional and successful 

inter-topical and inter-disciplinary research. I applied the most popular normalisations (i.e., per 

author and per year) using simple methodologies (i.e., least-squares linear and cubic interpolation 

fitting, whole-career vs. sub-periods, two-dimensional graphs) to solve empirical problems (e.g., 

sensitivity to citations, the “fashion” effect, attribution to disciplines, life cycle of articles) as well 

as open questions (e.g., the attribution of an article to a given discipline) associated with the original 

H index. I provided three numerical examples based on a representative heterodox, a representative 

orthodox multi-disciplinary, and a representative orthodox uni-disciplinary CV: the first CV 

includes 17 Scopus publications, and shows a highly heterodox (i.e., 5.8%), but no interdisciplinary 

research career, with a tiny networking component (i.e., 0.9%); the second CV includes 24 Scopus 

publications, and shows a slightly heterodox (i.e., 0.3%), but highly interdisciplinary (i.e., 53.9%) 

research career, with a small networking component (i.e., 14.3%); the third CV includes 16 Scopus 

publications, and shows slightly heterodox (i.e., 0.1%) and no interdisciplinary research career, with 

no networking component. 
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1. Introduction 

All theoretical definitions of scientific activity depend on social institutions, which change in time 

and space. For example, astrology used to be a science, but is no longer, whereas sociology was not 

considered to be a science, but now is. However, regardless of a discipline’s classification, 

researchers in a discipline and their managers seek ways to evaluate research activity, and this is 

most commonly done based on a researcher’s publication record (hereafter, their curriculum vitae 

[CV]). As a result, many theoretical and numerical methods (ranging from simple counts of the total 

number of publications to complex indices) have been proposed to make the evaluation process 

more objective and more effective. Unfortunately, there are significant problems with each of these 

methods, some of which relate to a lack of practical simplicity, and some of which relate to how 

researchers can “game the system” and artificially improve their rating. 

In the present paper, my goal was to review and improve these methods for scientific researchers. 

To do so, I will first constrain my context by proposing the following operational definition of 

scientific activity: disseminating original scientific knowledge. In this definition, disseminating 

refers to publication of research results in a form that is available to the research community, with 

the goal of directly or indirectly benefiting society, despite the many examples of misuse of 

scientific knowledge; original is (necessarily) based on direct assessments by experts, although peer 

review might be affected by subjective evaluations, conflicts of interest, and biases against 

innovative (heterodox) scientific ideas and approaches; and scientific rests on publications 

worldwide considered as scientific, with reference, but without loss of generality, to the Scopus 

dataset (https://www.scopus.com), although other databases could instead be used in such an 

analysis. In particular, I will refer to the following publication features: 

 I will focus on English, to emphasize international dissemination. Note that citing publications 

in languages other than English are also included in this analysis. 

 I will focus on full-length peer-reviewed articles to rely on a prior scrutiny of their originality 

by peer reviewers. 

 I will focus on net citations, after eliminating self-citations and cross-citations by all co-authors 

and colleagues, by deleting records in which the same author appears in both the citing 

publication and the cited article (although this will exclude some legitimate self-citations, it 

also mitigates the problem of excessive citation of one’s own papers) as well as records in 

which the same affiliation appears in the citing publication and cited article (although this will 

exclude some legitimate citations of the work of colleagues that provide important context, it 

also mitigates the problem of excessive cross-citation). Here, I define cross-citations as 

situations in which co-authors reciprocally cite each other’s work. This will mitigate “apostle” 

effects (i.e., inflating citations by relying on temporal linkages) and network effects (i.e., 

boosting citations by relying on personal linkages). Note that co-authors refer to any kind of 

publication (e.g., books, symposium proceedings, research notes) and colleagues refer to all 

researchers affiliated at any time with the author whose CV is being studied. 

This first step will be to differentiate networking from scientific activity (Cainelli et al., 2012, 2015; 

Schubert, 2012) by highlighting anomalies in a CV that potentially arise from the questionable 

practice of unjustified cross-citations by authors. Indeed, networking might be beneficial if it 

increases the cultural exchanges between organizations (De Stefano & Zacccarin, 2016), but it is 

detrimental if it affects researchers’ attitudes towards scientific interests and publishing (McCarty & 

Jawitz, 2013). In other words, each organization should be in a position to transparently evaluate the 

networking activity of each researcher. 

Note that deleting cross-citations could discriminate against heterodox scientists, who are typically 

few, familiar to each other, and likely to be co-authors (e.g., post-Keynesian or Marxist 

economists). However, I will deal with this issue by characterizing the CV in terms of publication 

inequality: here, the Gini index is applied to measure dispersions of publications across different 

journals and different disciplines. Moreover, instead of “purifying” or “cleaning” the individual 

https://www.scopus.com/
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scientific activity by estimating the individual researcher’s network from the database of all 

scientists (e.g., De Stefano et al., 2013; Petersen, 2015), I deleted cross-citations from the dataset in 

order to keep calculations simple for each researcher. Finally, to be conservative, I will retain 

records in which the citing and cited authors are, or have been, members of the same editorial 

board, the same family, the same PhD course, the same workshop, or similar relationships. In other 

words, consistently with the Scopus dataset, I will consider citations from indirect co-authors and 

colleagues (i.e., the co-authors of co-authors who are not themselves the researcher’s co-authors; 

similarly, the colleagues of colleagues who are not themselves the researcher’s colleagues). 

However, authors working on a given topic within the same organization are likely to be co-authors, 

at least occasionally. The focus on full-length articles in peer-reviewed journals (as opposed to 

notes, comments, or letters) will minimize the probability of considering spontaneous or induced 

citations due to casual errors (i.e., mistakes) or deliberate errors (i.e., conscious deception) by 

identifying citations used in new (i.e., not yet published) research and distinguishing them from the 

existing literature. 

Second, the literature on the evaluation of researchers’ activity consists of many theoretical papers 

(e.g., Bouyssou & Marchant, 2016a). Instead, I will develop a practical index (e.g., Abramo et al., 

2013a). Alternatively, one could rely on expert panels (e.g., Engels et al., 2013), despite their 

subjectivity, or on factor analysis (e.g., Schreiber et al., 2011), despite its methodological issues. 

Many alternative operational bibliometric indices have been suggested in the literature, but very 

often without significant positive correlations between the metrics (Wainer & Vieira, 2013). For 

example, indices discussed in recent papers include the c index (Yan et al., 2013), z index (Petersen 

& Succi, 2013), g index (Adachi & Kongo, 2015; Bartolucci, 2015; Bertoli-Barsotti, 2016; De 

Visscher, 2011; Prathap, 2014; Rousseau, 2015; Schreiber, 2013a,b), and generalized Hirsch (H) 

index (Gagolewski & Mesiar, 2012). Here, I will refer to the most popular H index (Bornmann et 

al., 2011; Bertoli-Barsotti & Lando, 2015). In particular, I will calculate alternative nested (as 

clarified in Section 2) versions of the H index based on common information available in the 

Scopus dataset, by referring to insights suggested by the authors of other indices and by attempting 

to solve the empirical shortcomings (e.g., sensitivity to citations, the “fashion” effect, attribution to 

disciplines, life cycle of articles; Dienes, 2015) as well as the open questions (e.g., the attribution of 

an article to a given discipline; Gagolewski, 2013) of the original H index. Note that the focus on 

articles reduces the dependence of my results on the dataset used because most databases include all 

full-length journal articles by an author. 

This second step will let me characterize each researcher’s CV in terms of the publication inequality 

in percentages (i.e., the actual dispersion of publications in different journals and disciplines with 

respect to the potential distribution of publications in all distinguished journals and disciplines) as a 

result of heterodoxy (i.e., research that challenges the prevailing dogma) vs. orthodoxy (i.e., 

research that confirms the prevailing dogma). This will also account for the intra- vs. inter-

disciplinary nature of the publication without requiring complicated statistical analyses of 

bibliometric datasets. To do so, the proposed approach reveals the following potentially 

questionable practices: 

 Publication of low-quality manuscripts, because of an author’s intra-discipline reputation, with 

the ex ante aim of a journal’s editors (often unachieved, due to a lack of ex post citations) of 

increasing the journal’s impact factor. 

 Many publications of low-quality manuscripts in the same journal as a result of personal 

relationships between an editor and an author. 

 Many citations of papers published by the same journal as a pre-requisite for acceptance of a 

manuscript for publication, in order to improve the impact factor of the journal. 

In addition, an inter-disciplinary CV requires longer to become familiar to a well-known part of the 

literature, so that fewer articles are published, whereas a heterodox CV is likely to be cited only 

within the same journals (i.e., not by orthodox journals), resulting in fewer citations. In other words, 

each organization should be in a position to transparently favour or deprecate inter-disciplinary or 

heterodox articles or CVs. Note that I will not consider the importance of citations based on 
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algorithms for ranking Web pages such as PageRank (Senanayake et al., 2015; Yates & Dixon, 

2015). Moreover, I will not use the impact factors of the cited journals (Abbas, 2012; Moskovkin et 

al., 2014), because (among other reasons) these continuously changing figures are not included in 

individual datasets such as Scopus. Finally, I will not compare alternative datasets in terms of their 

reliability and stability (e.g., Harzing & Alakangas, 2016; Wildgaard, 2015). 

Third, many normalizations have been suggested for use in cross-disciplinary comparisons of 

individual scientific activity (Bornmann & Marx, 2015; Harzing & Alakangas, 2016; Harzing et al., 

2014): 

 Number of articles per author 

 Number of citations per author or per year for the cited article 

 Numbers of citations in the citing article 

 Average numbers of citations or publications in each discipline 

 Weighted numbers of citations or publications according to an author’s position in the list of 

authors for an article 

Here, I will apply the two most popular normalizations (i.e., numbers of citations per author and per 

year in the cited article). These choices are popular because they are supported by easily available 

data that requires little or no transformation. 

This third step will let me distinguish scientific production and productivity (as defined in Section 

2) by applying different indices for these different goals. Note that I will not use the average 

numbers of citations in each discipline (Radicchi & Castellano, 2012), since this continuously 

changing figure is not provided by the available bibliometric datasets. Moreover, I will not apply 

the number of citations in the citing publication (Bouyssou & Marchant, 2016b), since it has been 

empirically shown to be ineffective in cross-disciplinary comparisons (Radicchi & Castellano, 

2012). Finally, I will not use the weighted number of citations or publications according to an 

author’s position in the list of authors for an article (Abramo et al., 2013b; Liu & Fang, 2012), since 

different practices prevail in different universities, disciplines and countries. 

In summary, the purpose of this paper is to identify simple (i.e., based on information readily 

available in Scopus or other datasets) nested versions of the H index that use feasible 

normalizations to avoid discipline discrimination. To do so, the index consistently combines 

insights suggested in the literature, disentangles scientific production and productivity from 

networking activity, and solves the empirical shortcomings and open questions for other indices. As 

a result, it characterizes each researcher’s CV (i.e., heterodox vs. orthodox and intra- vs. inter-

disciplinary research) to avoid curriculum discrimination by highlighting possibly questionable 

tactical or opportunistic behaviours in publication and citation by authors and journal editors 
1
. To 

illustrate this approach, the methodology will be applied to three representative CVs. 

Note that I will disregard individual characteristics that change over time, such as the researcher’s 

age or position (Cainelli et al., 2012, 2015; Morichika & Shibayama, 2015), and individual 

characteristics that are fixed in time, such as gender or race (Abatemarco & Dell’Anno, 2013; 

Hopkins et al., 2013; Sotudeh & Khoshian, 2014). In this paper, my interest is in indices for, rather 

than determinants of, scientific activity (Penner et al., 2013). Moreover, I will omit papers that use 

indices to compare countries (e.g., Sangwal, 2013), institutions (e.g., Abramo et al., 2013c), or 

journals (e.g., Ko & Park, 2013; Tsai, 2014). Finally, I will disregard indices that are unsuitable for 

cross-disciplinary comparisons, such as the P top 10% of Bornmann et al. (2012) and the P100 of 

Prathap (2012) and Schreiber (2014a,b,c). 

Specifically, the present work provides two main contributions to the existing literature. First 

(Section 4), it provides a simple methodology (i.e., least-squares linear and cubic interpolation 

fitting, whole career vs. sub-periods, normalisations per author and per year) that allows each 

researcher to calculate a more suitable version of their H index (i.e., with production distinguished 

from productivity) and that can be used for both senior and junior researchers. This approach also 

                                                 
1
 It’s important to note that although this approach can identify potentially questionable behaviour, human judgment is 

still required to determine whether the behaviour is, in fact, legitimate. 
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solves the abovementioned key empirical issues and open questions associated with the original H 

index and reveals some potentially questionable practices in citations by authors and journal editors. 

Second (Section 5), it uses a simple methodology (i.e., two-dimensional graphs) that lets each 

researcher visually characterize the diversity of their CV. This approach also tackles issues of 

discrimination against heterodox and inter-disciplinary CVs (i.e., a smaller number of citations and 

of publications, respectively), and highlights CV anomalies that may arise from questionable 

publication and citation practices by editors, and in publication decisions by authors and editors. 

2. Methodology 

In this section, I will clarify the meaning of nested versions of the H index to estimate individual 

scientific production and productivity. 

In this context, I treat the production of articles up to a given point in time as a total (stock) 

variable, analogous to the total GWh of hydropower produced since the beginning of this year. In 

contrast, I treat productivity as a marginal (flow) variable that can be used to measure the sensitivity 

(or dynamics) of the total production to a changed or potentially changing factor, analogous to the 

GWh of power produced last month by each turbine or the potential (marginal) change in GWh due 

to addition of a new turbine. The integral (summation) of a series of marginal variables (i.e., 

productivity) results in the total value of that variable (i.e., production); conversely, the derivative 

of the total variable with respect to a factor (e.g., with respect to time) of a total variable (i.e., 

production) amounts to the marginal variable (i.e., productivity). In particular, I will use production 

to estimate the total scientific activity, but will use productivity to evaluate changes over time in 

scientific activity, where the sum of productivities for each part of the overall period sum up to 

production during the whole period. Indeed, production and productivity refer to different goals: the 

decision to recruit a junior researcher as an Assistant or Associate Professor based on scientific 

productivity is different from the assessment of a senior researcher for promotion to an endowed 

chair or from the awarding of ad honorem degrees based on scientific production. 

Therefore, I will use the normalization “per author” to assess production over the total career of a 

researcher (i.e., based on the number of years from the first publication to the present), but will use 

the normalization “per author per year” (i.e., based on the number of years since publication for 

each article) to evaluate productivity in specific sub-periods. In particular, I will refer to the last 22 

years to obtain a reliable dataset on production (as suggested by the Scopus Web site, many 

inconsistencies might arise for publications and citations before 1995). In contrast, I will refer to the 

last 10 years to reduce the impacts on productivity of recent changes in editorial strategies (such as 

increased availability of articles online) that have led to more publications and citations. Indeed, 

shorter periods are more likely to miss the citation cycle of articles in some disciplines, since the 

length of the cycle often increases with increasing originality of an article; for example, the most 

innovative articles might be ignored for some time after publication, but then cited for a long time. 

See Liu & Yang (2014) for an application of the H index to show a scientist’s dynamic research 

trajectory and scientific performance during different periods. 

Note that I will rely on the numbers of citations per author and per year in the cited articles, 

although these normalizations have only been supported by statistical analyses of small samples 

(Harzing & Alakangas, 2016; Ryan, 2016). 

In the context of nested indices, the Hirsch index (H), which is based on the number of publications 

and citations in different journals and disciplines, can be coupled with the Gini index (G), which 

accounts for differences between journals and disciplines (i.e., dispersion of articles among journals 

and disciplines). I will define both indices analytically in Section 5. In the Scopus dataset, each 

publication is attached to a source (i.e., a journal or review) and classified into one or more subject, 

discipline, and topic areas (i.e., 4 subjects, 27 disciplines within those subjects, and 306 topics 

within those disciplines). Consistently with the Scopus dataset, I will assume that each article is 

linked to the most representative discipline for its source. In future analyses, a more complex 

classification (i.e., topics) might be possible that associates a publication with two or more different 
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groups of topics, although this would unreasonably enlarge the interdisciplinary features of CVs. Of 

course, the opposite problem applies for a less complex classification (i.e., subjects); this level 

artificially decreases the degree of interdisciplinarity. In other words, I will assume that a journal 

cannot be attached to two different disciplines. In future analyses, a multi-discipline classification 

for journals such as Ecological Economics that clearly span two or more disciplines should be 

considered, although this will require formal definition of the distance between disciplines so that a 

standard that is objective (quantifiable) as possible (i.e., there is some subjectivity involved) can be 

applied to the vectors (i.e., 27 relative weights for the 27 disciplines) that characterise each journal. 

After all, there are few journals in which all published articles are attributed to a single discipline 

(i.e., 100% uni-disciplinary), even though most journals can be said to be mainly focused on a given 

discipline (i.e., its prevailing discipline). Next, I will assume that each journal represents a single 

topic within a discipline; in other words, I will assume that a journal cannot be attached to two 

different topics. Although this assumption is an obvious simplification, some combinations of fields 

and methodologies are only accepted by a few journals. Consistently with the Scopus dataset, each 

article could be linked to the most representative topic for its source. In future analyses, a multi-

topic classification for journals should be considered, although this will require formal definition of 

the distance between topics so that a standard that is objective (quantifiable) as possible (i.e., there 

is some subjectivity involved) can be applied to the vectors (i.e., 306 relative weights for the 306 

topics) that characterise each journal. 

Therefore, to characterize CVs, I will apply a differential approach. This is similar to the approach 

used by Blagus et al. (2015), who applied it to alternative versions of the H index. In the present 

approach, both levels and differences are meaningful for both the Hirsch and Gini indices, for 

deleting records at each step, and for constructing a system of nested indicators. This is true even 

though G indices are based on the topic and discipline of each publication, whereas H indices are 

based on the total number of citations (i.e., gross citations) and the number of citations after 

deleting records based on the abovementioned criteria (i.e., net citations), together with the topic 

and discipline of a given publication. 

Note that I will use similar inequality constraints for both indices: G indices for disciplines are less 

than or equal to G indices for journals, and H indices for disciplines are less than or equal to H 

indices for journals. Moreover, I will present Gini indices as percentages, but Hirsch indices as 

levels. Indeed, there is a maximum level of inequality that can be used to normalize the G indices: 

(N–1)/N, with N being the total number of publications by an author. In contrast, there is no 

maximum level for H indices. Finally, I will develop the analysis by building on the most popular 

bibliometric index (i.e., the H index for total scientific production). Table A1 summarizes the 

indices applied in this analysis. Section 4 describes calculations of alternative H indices to estimate 

scientific production and productivity (e.g., horizontal analysis), whereas Section 5 characterizes 

alternative CVs based on both G and H indices (e.g., vertical analysis). 

3. Data 

The Scopus data set includes the following variables for both cited and citing articles: 

 Year; 

 Author; 

 Affiliation: institute/university, city, country; 

 Source: journal/review title; 

 Subjects: health, life, physical, social sciences; 

 Disciplines: 5 in health sciences (medicine, veterinary, nursing, dentistry, health professions), 5 

in life sciences (pharmacology & toxicology, biological, neurology, agricultural, immunology), 

9 in physical sciences (chemistry, physics & astronomy, mathematics, Earth & planetary, 

energy, environmental, materials, engineering, computing & information), and 8 in social 

sciences (psychology, economics & econometrics & finance, arts & humanities, business & 

management & accounting, decision, politics, architecture, sociology). 
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Note that in this study, I used all information included in the Scopus dataset, together with the 

provided calculations of alternative H indices that exclude cross-citations and select different time 

periods. In particular, the Scopus dataset includes 17,325,760 and 13,238,483 authors in 1996-2015 

and 2006-2015, respectively; 23,953,840 and 14,905,298 are the total number of English articles 

published in 1996-2015 and 2006-2015, respectively, with the following percentages for the 4 

subjects: health 23, life 24, physical 43, and social 10 in 1996-2015 and health 24, life 22, physical 

43, and social 11 in 2006-2015; means/standard deviations of H indices that include cross-citations 

in 1996-2015 and 2006-2015 are 2.70/4.89 and 2.41/3.93, respectively; means/standard deviations 

of H indices that exclude cross-citations in 1996-2015 and 2006-2015 are 2.45/4.37 and 2.16/3.42, 

respectively. 

4. Scientific production and productivity 

In this section, I will apply least-squares linear and cubic interpolation fitting for the relationship 

between the net citations and the number of publications to calculate both scientific production and 

productivity (see Table A2, A3 and A4 in the Appendix for the three analysed CVs). Note that a 

quadratic interpolation would be inappropriate because it would produce an increasing curve for the 

less frequently cited articles. In particular, linear interpolation will emphasize net citations above 

the minimum required by the original H index (i.e., the linear index values are likely to be larger 

than the original H index values), whereas cubic interpolation will de-emphasize them. See 

Martinez et al. (2014) for an application of the H index to highly cited papers. For this reason, I will 

name the four cases that I study total production (i.e., a linear interpolation applied to production), 

total core production (i.e., a cubic interpolation applied to production), average productivity (i.e., a 

linear interpolation applied to productivity), and average core productivity (i.e., a cubic 

interpolation applied to productivity). See Glanzel (2012) for the notion of core documents. Thus, 

once focused on articles in English and normalised for the number of authors, the H index for total 

production (Hltn22, where l = linear, t = total, n = net citations, and 22 = the time from the start of the 

Scopus dataset to the present) will be calculated by applying the following formula: 

x such that y = a0 – a1 x = x 

with positive parameters a0 and a1 coming from a linear regression of the total number of net 

citations y over the total number of publications x in the last 22 years. The H index for total core 

production (Hctn22, where c = cubic, t = total, n = net, and 22 = the time from the start of the Scopus 

dataset to the present) will be calculated as follows: 

x such that y = a0 – a1 x + a2 x
2
 – a3 x

3
 = x 

with positive parameters a0, a1, a2 and a3 arising from a cubic regression of the total number of net 

citations y over the total number of publications x in the last 22 years. Note that an interpolation 

based on x such that y = 1/(a0 – a1 x) = x (i.e., two parameters) would produce similar results, but it 

is not implemented by the most popular software. The H index for average productivity (Hlyn10, 

where l = linear, y = citations divided by number of years since publication, n = net citations, and 

10 = the past 10 years in the Scopus dataset) will be calculated by applying the following formula: 

x such that y = a0 – a1 x = x 

with positive parameters a0 and a1 coming from a linear regression of the number net citations per 

year y over the number of publications per year x in the last 10 years. The H index for average core 

productivity (Hcyn10, where c = cubic, y = citations divided by number of years since publication, n 

= net citations, and 10 = the past 10 years in the Scopus dataset) will be calculated as follows: 

x such that y = a0 – a1 x + a2 x
2
 – a3 x

3
 = x 

with positive parameters a0, a1, a2 and a3 arising from a cubic regression of the number net citations 

per year y over the number of publications per year x in the last 10 years. Note that the obtained H 

indices are continuous and do not change abruptly when the number of citations of a single article 

changes (i.e., they solve the problem of the discontinuity that could potentially be created by an 

additional citation received by the marginal article) (Thelwall & Wilson, 2014), because they 

account for the citations received by the entire set of published articles (Anania & Caruso, 2013). 
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Figure 1. Least-squares linear interpolation fitting for the H index per author (i.e., scientific production): Hltn22 = 

6.29 (R
2
 = 0.66). The increasing linear line represents y = x; l = linear interpolation, t = total number of 

publications and citations, n = net citations, and 22 = 22 years. 

 
 

Figure 2. Least-squares cubic interpolation fitting for the H index per author (i.e., scientific core production): 

Hctn22= 5.28 (R
2
 = 0.95). The increasing linear line represents y = x; c = cubic interpolation, t = total number of 

publications and citations, n = net citations, and 22 = 22 years. 

 
 

Figure 3. Least-squares linear interpolation fitting for the H index per author per year (i.e., scientific 

productivity): Hlyn10 = 2.56 (R
2
 = 0.76). The increasing linear line represents y = x; l = linear interpolation, y = 

publications and citations per year, n = net citations, and 10 = 10 years. 
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Figure 4. Least-squares cubic interpolation fitting for the H index per author per year (i.e., scientific core 

productivity): Hcyn10 = 2.57 (R
2
 = 0.97). The increasing linear line represents y = x; c = cubic interpolation, y = 

publications and citations per year, n = net citations, and 10 = 10 years. 

 
 

Figures 1 and 2 show the H indices for the total and core scientific production based on linear and 

cubic interpolation, respectively (i.e., interceptions between the 45° lines and the linear and cubic 

interpolations, respectively). Note that the cubic interpolation de-emphasizes the most frequently 

cited articles. Figures 3 and 4 show the H indices for the average and core scientific productivity 

based on linear and cubic interpolation, respectively (i.e., interceptions between the 45° lines and 

the linear and cubic interpolations, respectively). Note that the cubic interpolation emphasizes the 

most persistently successful articles. Table 1 summarizes the values of the H indices for the second 

analysed CV. Note that the application of relative weights (e.g., the harmonic mean in Yang et al., 

2013) to emphasize the author who serves as the author for correspondence or the order of author 

names (i.e., larger weights to authors listed first) would not significantly change these results: 

indeed, the vast majority of articles have a single author for all three analysed CVs.  

Table 1. The estimated values of the H indices per author for the second analysed CV. All values are for the net 

production or productivity (i.e., after removal of cross-citations): c = cubic interpolation; l = linear interpolation; 

n = net number of citations; t = total articles; y = citations are divided by the number of years since publication; 

22 = author’s whole career; 10 = the last 10 years. 

H 10 years (2007-2016) H 22 years (1995-2016) 

Hltn10 6.02 Hltn22 6.29 (Figure 1) 

Hctn10 4.93 Hctn22 5.28 (Figure 2) 

Hlyn10 2.56 (Figure 3) Hlyn22 2.43 

Hcyn10 2.57 (Figure 4) Hcyn22 2.60 

 

However, a linear interpolation gives too much weight to fashionable articles (i.e., articles with 

many citations in a few years), whereas a cubic interpolation disregards them by giving more 

weight to articles with few citations in many years. Consequently, a linear interpolation (i.e., Hltn22 

or Hlyn22) seems to be most meaningful for total scientific production, whereas a cubic interpolation 

(i.e., Hctn10 or Hcyn10) seems to be most representative for the average core scientific productivity. 

Note that summary statistics of the Scopus dataset let me calculate both parameters (i.e., α and λ) 

that characterize the gamma distributions for the H indices. Here, the gamma distribution was 

chosen because, within non-negative distributions (i.e., H indices show non-negative values) and 

asymmetric distributions (i.e., scientists are more likely to achieve tiny or small than large or huge 

H indices), it can account for qualitatively different frequencies that depend on alternative values of 

its two parameters. For example, the second analysed CV turns out to be within the best 0.53% of 

scientists over the whole career (based on Hltn22 = 6.29), by normalising for an average of 4 authors 

per article, and within the 0.0008% best scientists in the last 10 years (based on Hcyn10 = 2.57), by 

normalising for an average publication period of 5 years. In addition, similar calculations for the 

first and third analysed CVs suggest that H indexes per year should be used to compare careers of 

5 10 15
Articles per author

5

10

15

Net citations per year
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senior researchers. Indeed, Hltn22 for the first CV is slightly larger than Hltn22 for the third CV (i.e., 

10.00 > 8.34), whereas Hlyn22 for the first CV is considerably smaller than Hlyn22 for the third CV 

(i.e., 1.52 < 4.17). 

These results are internally consistent, since the indexes achieved by the second analysed author are 

smaller for 22 years than for the last 10 years, when the majority of articles have been published 

(i.e., 18.6 and 15.3 English articles per author in the last 22 and 10 years, respectively), with Hlyn22 

= 2.43 being smaller than Hcyn10 = 2.57. These results are also externally consistent. For example, 

calculations for the third CV (chosen for the reasons explained in Section 6) show 11.2 English 

articles per author and Hlyn22 = 4.17, with his likely best index being 7.5 times better than the index 

achieved by the second analysed author, once normalised for publication years. Moreover, the 

present results are clearly better than those calculated using previous versions of the H index. The 

traditional H index for the second representative author for 22 years is 6, versus 11 for the third CV 

for 96 years, which is only 1.83 times the achieved index. Finally, these results can be easily 

interpreted. Indeed, if 2.57 articles are cited 2.57 times per year per author, there is the following 

implications: for four authors, the same H index could be achieved only if 10.3 articles were cited 

10.3 times per year, which, over a period of 10 years, means that the 10.3 articles would each be 

cited 103 times. These results can also be simply justified. Indeed, it is difficult to support the belief 

that citation of one article with 10 authors only one time will directly or indirectly benefit science or 

society to the same extent as 10 articles with a single author, each cited 10 times. 

5. CV characterization 

To extend this analysis, I will now apply nested Gini (G) and Hirsch (H) indices for CV 

characterization, with the G indices based on the number of publications and the H indices based on 

both gross and net citations. First, I will disentangle networking from scientific activities. Then, I 

will apply the G and H indices to distinguish heterodox from orthodox CVs (Sutter, 2012) and 

multiple-topic and multiple-discipline CVs from single-topic and single-discipline CVs (De-Moya-

Anegon et al., 2014). Finally, I will identify unintentional and unsuccessful (i.e., overall cited less 

than the expected or desired number of citations) inter-topical and inter-disciplinary CVs. Note that 

I will refer to the author’s whole research career (i.e., total scientific production) in this analysis, 

although similar reasoning could be applied to shorter periods (i.e., scientific productivity). In 

particular, by applying linear interpolation to the gross number of citations (i.e., citations of English 

articles, including cross-citations) to calculate the linear total gross H index (i.e., Hltg22), and by 

calculating the percentage difference between Hltg22 and Hltn22 (i.e., [Hltg22 – Hltn22]/Hltg22), this 

approach provides a measure of the relative importance of networking activity in a CV. 

In the numerical example based on the first analysed CV (see Table A2 in the Appendix), Hltg22 = 

10.00 versus a value of 7 for the traditional gross H index calculated by Scopus and Hlatg22 = 10.00 

with the linear interpolation applied to the Scopus gross data. This compares with Hltn22 = 9.91, 

versus 7 for the traditional net H index calculated by Scopus and Hlatn22 = 10.00 using the linear 

interpolation applied to the Scopus net data. On this basis, networking activity is very small. 

In the numerical example based on the second analysed CV (see Table A3 in the Appendix), Hltg22 = 

7.34 versus a value of 6 for the traditional gross H index calculated by Scopus and Hlatg22 = 8.42 

with the linear interpolation applied to the Scopus gross data. This compares with Hltn22 = 6.29, 

versus 6 for the traditional net H index calculated by Scopus and Hlatn22 = 7.62 using the linear 

interpolation applied to the Scopus net data. On this basis, networking activity is small (i.e., 8.6%). 

Indeed, its estimation calculated by comparing the gross and net H-indexes based on the Scopus 

dataset is 9.1% and 10.5% in 1996-2015 and 2006-2015, respectively. 

In the numerical example based on the third analysed CV (see Table A4 in the Appendix), Hltg22 = 

8.34 versus a value of 11 for the traditional gross H index calculated by Scopus and Hlatg22 = 11.52 

with the linear interpolation applied to the Scopus gross data. This compares with Hltn22 = 8.34, 

versus 11 for the traditional net H index calculated by Scopus and Hlatn22 = 11.52 using the linear 

interpolation applied to the Scopus net data. On this basis, networking activity is null. 
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Second, I calculated Hljn22 as a linear interpolation of points where citations are in journals other 

than the journal that published the cited article (i.e., a multi-topical measure), I computed Hldn22 as a 

linear interpolation of points where citations are in disciplines other than the discipline of the cited 

article (i.e., a multi-disciplinary measure), and calculated the G indices for journals (Gj) and 

disciplines (Gd) by applying the following formulas: 

 

Gj = [1 / (2 × 0.5 N
2
) Σi Σk |ji – jk|]/[(N–1)/N] 

Gd = [1 / (2 × 0.5 N
2
) Σi Σk |di – dk||]/[(N–1)/N] 

 

Where N is the total number of articles in the author’s career, and (N–1)/N is the maximum value 

for both Gd (i.e., an inter-disciplinary measure) and Gj (i.e., an inter-topical measure); j represents 

the journal title; ji – jk = 0 if articles i and k appear in the same journal and ji – jk = 1 otherwise; d 

represents the discipline name; and di – dk = 0 if articles i and k belong to the same discipline and di 

– dk = 1 otherwise. See Egghe (2013a) for an analysis of H indices based on citations by different 

citers. 

Note that this classification cannot be criticised as ambiguous (i.e., either the journal is the same or 

is different), although it could be disapproved because it overestimates a CV differentiation (e.g., an 

heterodox Post-Keynesian economist publishes in very few journals such as Cambridge Journal of 

Economics or Journal of Post Keynesian Economics or Review of Political Economy, but not in a 

single journal). However, heterogeneity of CVs will be estimated by comparing percentages. 

Figures 5, 6 and 7 are based on all H values calculated for the first, second and third analysed CV, 

respectively, using the indices developed in this paper. Moreover, I define a CV as (intra-

disciplinary and intra-topical) heterodox (e.g., Figure 5) if Gd is 0 (i.e., the author publishes in a 

single discipline), Gj is small (i.e., the author publishes in few journals), and Hljn22 and Hldn22 are 

equal and small (i.e., the vast majority of citations are in the same journals). In contrast, I define a 

CV as (intra-disciplinary and inter-topical) orthodox (e.g., Figure 7) if Gd is small (i.e., the author 

publishes in few disciplines), Gj is large (i.e., the author publishes in many journals), Hljn22 is 

considerably larger than Hldn22, and Hldn22 is small (i.e., the vast majority of citations are in the same 

discipline). Finally, I define a CV as (inter-disciplinary and inter-topical) orthodox (e.g., Figure 6) if 

Gd is large (i.e., the author publishes in many disciplines), Gj is large (i.e., the author publishes in 

many journals), Hljn22 is slightly larger than Hldn22, and Hldn22 is large (i.e., the vast majority of 

citations are in different disciplines). In other words, an orthodox CV can be either intra- or inter-

disciplinary. 

Figure 5. Characterisation of a representative intra-disciplinary and intra-topical heterodox CV. Black area 

(0.9%) = networking; red area (5.8%) = heterodox; yellow area (30.1%) = intra-disciplinary orthodox; blue area 

(0%) = inter-disciplinary orthodox. Gd = 0, Gj = 0.33, Hldn22 = 2.11, Hljn22 = 9.04, Hltn22 = 9.91, Hltg22 = 10.00. 
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Figure 6. Characterisation of a representative inter-disciplinary and inter-topical orthodox CV. Black area 

(8.6%) = networking; red area (0.3%) = heterodox; yellow area (3.3%) = intra-disciplinary orthodox; blue area 

(48.9%) = inter-disciplinary orthodox. Gd = 0.72, Gj = 0.97, Hldn22 = 4.71, Hljn22 = 5.74, Hltn22 = 6.29, Hltg22 = 7.34. 

 
 

Figure 7. Characterisation of a representative intra-disciplinary and inter-topical orthodox CV. Black area (0%) 

= networking; red area (0.1%) = heterodox; yellow area (81.9%) = intra-disciplinary orthodox; blue area (0%) = 

inter-disciplinary orthodox. Gd = 0, Gj = 0.82, Hldn22 = 8.19, Hljn22 = 8.33, Hltn22 = 8.34, Hltg22 = 8.34. 

 
 

Note that in Figures 5 and 7, Hldn22 is greater than 0. Indeed, in a heterodox CV, Hljn22 = 0 only if 

each article is cited by an article in the same journal, whereas a more likely citation by an article in 

a different journal from a small group of journals is excluded. Similarly, in an intra-disciplinary 

orthodox CV, Hldn22 = 0 only if each article is cited by an article in the same discipline, whereas a 

less likely citation by an article in a different discipline is excluded. 

Third, I define a CV as unintentional inter-disciplinary or inter-topical CV if the author publishes in 

few disciplines or journals, but is nonetheless cited by many different disciplines or journals. This is 

represented by a decrease in Gd and Gj for a given Hldn22 and Hljn22 (i.e., a decrease in the inequality 

of publications for a given number of citations). Moreover, I define a CV as an unsuccessful intra-

disciplinary and intra-topical CV if the author publishes in few journals, and is also cited by few 

different journals. I define a CV as an unsuccessful intra-disciplinary and inter-topical CV, if the 

author publishes in many journals, but is nonetheless cited by few different journals. This is 

represented by a decrease of Hldn22 and Hljn22 for a given Gd and Gj (i.e., a decrease in the number of 

citations at a given inequality of publications). This case could depict an intra-discipline reputation 

if Gj is large while Hljn22 is small; that is, the author publishes in many journals possibly because 
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editors expect many citations of papers in their journal and consequently an increase in its impact 

factor, but this does not happen because papers are published without suitable scrutiny to ensure 

their quality. Similarly, I define an unsuccessful inter-disciplinary and inter-topical CV, if the author 

publishes in many disciplines, but it is cited by journals in a few different disciplines. This is 

represented by a reduction of Hldn22 and Hljn22 for a given Gd and Gj (i.e., a decrease in the number 

of citations at a given inequality of publications). This case could depict an intra-topical reputation 

if Gd is large while Hldn22 is small (i.e., the author publishes in a few journals possibly because the 

author knows the editors). Finally, I calculated the areas as percentages using the following 

equations: 

 

Black area (networking) = [(Hltg22 – Hltn22)] / (Hltg22) 

Red area (intra-disciplinary intra-topical heterodoxy) = [(Hltn22 – Hljn22) × (1- Gj)] / (Hltn22) 

Yellow area (intra-disciplinary inter-topical orthodoxy) = [(Hljn22 – Hldn22) × (Gj - Gd)] / (Hltn22) 

Blue area (inter-disciplinary inter-topical orthodoxy) = [Hldn22 × Gd] / (Hltn22) 

 

Where the percentages do not sum to 100%, this is because the analysis only considered intentional 

and successful inter-topical and inter-disciplinary features. 

In the numerical example based on the first analysed CV (Table A2 in the Appendix), Gj = 0.33 and 

Gd = 0, Hljn22 = 9.04 (i.e., 91% of the overall Hltn22), Hldn22 = 2.11 (i.e., 21% of the overall Hltn22), 

and the blue area is 0%, the yellow area is 23.0%, the red area is 5.8%, and the black area is 0.9%. 

These figures show that the first analysed CV is uni-disciplinary (large Gd), heterodox (small Gj), 

and intra-disciplinary (small Hldn22), and intra-topical (Hldn22 is distant from Hljn22). 

In the numerical example based on the second analysed CV (Table A3 in the Appendix), Gj = 0.97 

and Gd = 0.72, Hljn22 = 5.74 (i.e., 91% of the overall Hltn22), Hldn22 = 4.71 (i.e., 75% of the overall 

Hltn22), and the blue area is 53.9%, the yellow area is 4.1%, the red area is 0.3%, and the black area 

is 14.3%. These figures show that the second analysed CV is multi-disciplinary (large Gd), multi-

topical (large Gj), and inter-disciplinary (large Hldn22), but not inter-topical (Hldn22 is close to Hljn22). 

Its inter-topical characteristic is accounted for by its inter-disciplinary characteristic. It is also non-

heterodox (Hljn22 is close to Hltn22). 

In the numerical example based on the third analysed CV (Table A4 in the Appendix), Gj = 0.82 

and Gd = 0, Hljn22 = 8.33 (i.e., 99% of the overall Hltn22), Hldn22 = 8.19 (i.e., 98% of the overall 

Hltn22), and the blue area is 0%, the yellow area is 81.9%, the red area is 0%, and the black area is 

0%. These figures show that the third analysed CV is uni-disciplinary (Gd at 0), multi-topical (large 

Gj), but not inter-topical (Hldn22 is close to Hljn22). It is also non-heterodox (Hljn22 is close to Hltn22). 

In other words, although one could rank researchers according to Hltn22 or Hcyn10, as suggested in the 

previous section, one should also characterise each CV by comparing the areas of the four colours 

or calculating the ratios based on the areas of the four colours. In particular, if an organization is 

interested in encouraging its authors to develop an inter-disciplinary CV, it should look for CVs 

with large blue areas, whereas if it is more interested in heterodox CVs, it should look for CVs with 

large red areas. This could reduce the risk of discrimination against heterodox or inter-disciplinary 

CVs, for which smaller values of Hltn22 are likely to be observed, by introducing some form of 

compensation (e.g., a smaller Hltn22 with large red or blue areas could be preferred to a larger Hltn22 

with small red or blue areas). This is why only intentional and successful inter-disciplinary and 

heterodoxy criteria are considered in this study. 

6. Discussion 

Although comparisons across disciplines are crucial for rewarding the successful careers of senior 

researchers, they might be irrelevant for the recruitment of junior researchers, since these authors 

are more likely to compete for a position within a given discipline. That is, if the goal is to recruit a 

good scientist in a given discipline, you do not need to compare them with scientists in other 

disciplines, because (for example) only economists will apply for a position in economics. 
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However, senior and junior researchers should be ranked according to their scientific production 

and productivity (i.e., Hltn22 and Hcyn10), respectively, which requires disentangling of networking 

from research activity (i.e., Hltg22 vs. Hltn22) so that these activities can be separately and positively 

evaluated. The research activity should then be evaluated by potentially favouring or contrasting 

CVs according to basic intentional characteristics such as heterodox vs. orthodox publications and 

intra- vs. inter-discipline publications (as proportions), and these should be distinguished from 

unsuccessful or unintentional characteristics. 

Section 4 suggested the use of alternative nested H indices based on linear and cubic interpolation 

of normalized numbers of publications and citations, whereas Section 5 presented two-dimensional 

graphs based on alternative nested H and G indices. This would reduce incentives to engage in 

tactical or opportunistic behaviours in publication and citation by authors and journal editors, and 

should reduce discrimination against heterodox and inter-disciplinary CVs that would be 

characterized by few citations and few publications. Table 2 summarizes suggested warning 

indicators that could be used to identify potentially questionable practices by editors and authors 
2
 . 

In other words, the suggested methodology provides support for organizations that are interested in 

supporting networking and favouring orthodox and intra-disciplinary researchers. Indeed, 

departments are usually ranked according to publications of its members in few and specialized 

journals. 

Table 2. Summary of potentially questionable practices by editors and authors: sources, behaviour types, 

observations, and warning indicators. 

 Single author Many authors 

Single editor 

Intra-journal personal relationship 

Opportunistic behaviour by the editor and the author 

Many publications in the same journal 

(Tall but not wide red area) 

Bargaining power of the editor 

Tactical behaviour by the editor 

Many citations in the same journal 

(Large red area, but orthodox topics) 

Many editors 

Inter-disciplinary reputation of the author 

Tactical behaviour by editors 

Many publications in many journals 

(Tall but not wide yellow area) 

 

Single author 

Personal relationship 

Opportunistic behaviour by authors 

Many citations in many journals 

(Large black area) 

 

 

The main strengths of the new approach are that: 

 All main proposals for modifying the original H index have been included (Dienes, 2015), 

including the elimination of self- and cross-citations, an increased weighting to highly cited 

articles, a focus on peer-reviewed scientific journals, the use of fractional citations to account 

for the number of authors (i.e., awarding authors a fraction of a point instead of a full point for 

multi-author articles), an increased sensitivity to variability of the overall citation profile, and 

the consideration of the life cycle of an article. 

 Discrimination against inter-disciplinary and heterodox CVs can be reduced by mitigating the 

bias created by conventional rankings, without relying on the application of advanced 

methodologies to complex datasets, as in the case of applying empirically based scaling factors 

to different disciplines (Ruocco & Daraio, 2013), comparisons with the performance of other 

researchers in the same field (Nair, 2015), or comparison with the average number of citations 

per paper in a given discipline (Radicchi & Castellano, 2012) 

 All main questions left open by the original description of the H index have been tackled 

(Gagolewski, 2013), including the attribution of an article to a given discipline, since this is 

                                                 
2
 It’s important to note that if an indicator suggests the possibility of questionable behaviour, this does not indicate the 

certainty of such behaviour. Instead, the actual publications and citations should be carefully examined; there are many 

legitimate reasons for publishing many papers in the same journal (e.g., because it has the most suitable audience for a 

research result), for citing a colleague’s work (e.g., because that work is more relevant to the author’s paper), and so on. 



15 

 

done by the author. This is done while retaining the practicality and simplicity that made the 

original H metric so appealing to a large audience. 

 Indicators are distinguished according to the goals being pursued by amending well-established 

procedures such as years from publication rather than academic age (i.e., the duration of a 

researcher’s career at the time of the analysis; Egghe, 2013b), and they can be applied at 

different levels of aggregation (e.g., at department or university levels). 

 Indicators are based on information that is available at an individual level, including citations 

that would be disregarded by the original H index (Anania & Caruso, 2013), and they can be 

easily computed. 

 Rankings can also be obtained when the publication period is prior to the citation period under 

consideration (e.g., neglecting citations older than 22 years rather than articles published more 

than 22 years ago). Indeed, Albert Einstein was chosen as a reference third CV to show how 

this feature of the proposed model works, though also because his scientific career is among the 

most remarkable of the last century (i.e., it represents an absolute maximum) (Simkin and 

Roychowdhury, 2013), and consistent with the information set required for the application of 

this new ranking approach (i.e., published articles and recorded citations). 

The main weaknesses of this approach are that: 

 Results depend on the dataset used, and many alternatives could be applied (Harzing & 

Alakangas, 2016). However, the Scopus dataset for the last 22 years is both authoritative and 

comprehensive, and the same criticism can be raised for other datasets. 

 The focus is on past (retrospective) real performance rather than on future expected 

(prospective) performance (Carrasco & Ruiz-Castillo, 2014; Chang et al., 2011), and it does not 

account for the life cycles of articles. However, using impact factors would require a reliance 

on debatable information, such as the 2-year vs. 5-year impact factors described by Sangwal 

(2013), from a dispersed and always in-progress dataset, as in the case of the temporal 

evolution of impact factors that is discussed by Finardi (2013). In addition, there are potentially 

opposite interpretations. For example, the presence of few citations in journals with a high 

impact factor could be a negative feature, because it would represent the lack of ability to 

exploit an important audience. 

 Insights are not based on axiomatization, in which many alternatives could be suggested 

(Kongo, 2014). However, the formulas are easy to implement and straightforward to interpret. 

 Characterization of CVs depended on the simplifying assumption that a journal could not 

belong to two or more disciplines (Radicchi & Castellano, 2012). Although factor analysis 

could be used to univocally sort journals into single hypothetical disciplines in terms of 

estimated correlations, this is unrealistic in practice because researchers may be unable to 

perform this analysis without support from suitable software. However, accounting for 

multidisciplinary journals remains a challenge for future research  

7. Conclusions 

To allow cross-disciplinary comparisons, traditional bibliometric indices of a researcher’s 

publication history must be modified. In the present study, I modified one of these indices (Hirsch’s 

H) by accounting for the feasible normalizations that have been suggested in the literature. To 

allocate public funds among researchers, scientific activity must be prioritized, and potentially 

questionable behaviours by authors and journal editors must be identified so that it can be 

accounted for in researcher evaluations. In the present analysis, I purified the traditional H index by 

eliminating information other than scientific activity. To be widely used, bibliometric indices must 

be easily calculated and highly relevant to the goals of the organization that is using them to 

evaluate researchers. The present study used information that is common to any bibliometric dataset 

to solve problems that have affected many previous bibliometric indices. Because ongoing updates 

would be required as new papers by an author are published as well as new citations of published 

articles are recorded, software should be developed to help authors and their managers rapidly 
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recalculate the revised indices described in this paper, as was noted by Bornmann & Ozimek 

(2012). In other words, this study provides a simple methodology based on insights from the 

literature that allows researchers and their managers to easily characterize a researcher’s CV. I do 

not use the adjective fair to describe this methodology (unlike Gagolewski, 2013), since that 

implies a value scale, but would instead describe it as a way to define the suitability for a given 

goal, which is a more objective criterion. 

Needless to say, the findings presented in this paper require further investigation. In particular, an 

econometric analysis based on a sufficiently large sample seems to be essential, both in terms of 

time (i.e., at least 10 years to consider the life cycle of articles) and in terms of authors (i.e., at least 

10 000 CVs from all 27 disciplines to adequately represent the 10 000 000 scientists who have 

published at least one English article in the last 10 years that were included in Scopus). This would 

let us test whether the proposed methodology solves or mitigates the problems that I have 

highlighted with previous bibliometric indices. I am currently working with colleagues to design 

and perform such a test. In contrast, a statistical analysis based on a similarly large sample could be 

used to characterise the average author, but this seems unnecessary; the micro-scale approach 

adopted in this study does not need to be scaled up. 
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Appendix 

Table A1. Summary of the H indices used in this study, and the associated calculated values for the second 

analysed CV. 

All authors 

(24 articles) 
 

Production per author 

(18.6 articles) 
 

Productivity per author per year 

(18.6 articles) 

Hlatg22 = 8.42 → Hltg22 = 7.34   

Hcatg22 = 6.84 → Hctg22 = 5.75   

↓  ↓   

Hlatn22 = 7.62 → Hltn22 = 6.29, Hltn10 = 6.02 → Hlyn22 = 2.43, Hlyn10 = 2.56 

Hcatn22 = 6.67 → Hctn22 = 5.28, Hctn10 = 4.93 → Hcyn22 = 2.60, Hcyn10 = 2.57 

  ↓   

  Hljn22 = 5.74   

  Hcjn22 = 4.97   

  ↓   

  Hldn22 = 4.71   

  Hcdn22 = 4.31   

Notation: a = all authors; c = cubic interpolation; d = citations are in disciplines other than the discipline that published 

the cited article; g = gross number of citations; j = citations are in journals other than the journal that published the cited 

article; l = linear interpolation; n = net number of citations; t = total articles; y = citations are divided by the number of 

years since publication; 22 = author’s whole career (based on the consistent duration from 1995 to the present defined 

for the Scopus dataset); 10 = the last 10 years. Both the gross and the net citation H indices calculated based on data 

from www.scopus.com equalled 6. 
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Table A2. Descriptive statistics and Scopus categories for the first analysed CV. 

 Year Disc A.N Number of citations 

    Gross Net 

    Tot Tot By ≠ journals By ≠ disciplines 

Cambridge Journal of Economics 2012 Eco 1 7 7 5 0 

Cambridge Journal of Economics 2012 Eco 1 7 7 5 0 

Cambridge Journal of Economics 2005 Eco 1 36 36 29 1 

Journal of Post-Keynesian Economics 2001 Eco 1 6 6 4 0 

Cambridge Journal of Economics 1994 Eco 1 1 1 1 0 

Structural Change and Economic Dynamics 1990 Eco 1 2 2 1 0 

Cambridge Journal of Economics 1989 Eco 1 19 19 8 2 

Cambridge Journal of Economics 1989 Eco 1 0 0 0 0 

Cambridge Journal of Economics 1988 Eco 1 38 35 33 5 

Cambridge Journal of Economics 1988 Eco 1 12 11 7 3 

Cambridge Journal of Economics 1986 Eco 1 0 0 0 0 

Cambridge Journal of Economics 1983 Eco 1 9 9 6 1 

Review of Economic Studies 1981 Eco 1 1 1 1 0 

Cambridge Journal of Economics 1977 Eco 1 11 11 8 0 

Quarterly Journal of Economics 1966 Eco 1 45 43 35 1 

Review of Economic Studies 1964 Eco 1 0 0 0 0 

Oxford Economic Papers 1960 Eco 1 7 7 5 0 

 Total   201 195 148 13 

Notation: Disc = Discipline; A.N = Number of authors; Eco = Economics. 
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Table A3. Descriptive statistics and Scopus categories for the second analysed CV. 

 Year Disc A.N Number of citations 

    Gross Net 

 
   Tot Tot 

By ≠ 

journals 

By ≠ 

disciplines 

Applied Mathematical Modelling 2016 Mat 1 0 0 0 0 

Applied Soft Computing Journal 2016 Com 1 3 1 0 0 

Environmental & Resource Economics 2016 Eco 1 0 0 0 0 

Science of the Total Environment 2016 Env 1 6 4 1 1 

Sustainability (Switzerland) 2016 Env 1 1 1 0 0 

Sustainability (Switzerland) 2016 Env 17 2 2 1 0 

Sustainability (Switzerland) 2016 Env 21 0 0 0 0 

Journal of Happiness Studies 2015 Hum 1 0 0 0 0 

Sustainability (Switzerland) 2015 Env 16 4 4 2 1 

Sustainability Science 2015 Env 1 1 0 0 0 

Coastal Engineering 2014 Eng 8 27 16 8 4 

Journal of Hydrology 2014 Env 2 0 0 0 0 

Environmental Modelling and Assessment 2013 Env 1 0 0 0 0 

Environmental Modelling and Software 2013 Com 2 11 11 6 6 

Natural Hazards 2013 Env 1 2 2 2 2 

Environmental Management 2011 Env 1 4 3 3 3 

Journal of Happiness Studies 2011 Hum 1 3 2 2 2 

Water Resources Management 2010 Env 1 15 15 13 11 

International Journal of Hospitality Management 2009 Man 1 16 16 14 12 

Journal of Environmental Management 2008 Env 1 8 7 6 6 

Papers in Regional Science 2003 Eco 3 2 1 1 1 

Environment and Development Economics 1998 Eco 1 1 1 1 1 

Journal of Environmental Economics and 

Management 
1998 Eco 1 15 15 14 2 

Economic Journal 1995 Eco 1 1 1 1 1 

 Total   122 102 75 53 

Notation: Disc = Discipline; A.N = Number of authors; Com = Computer Sciences; Eco = Economics, Econometrics 

and Finance; Eng = Engineering; Env = Environmental Sciences; Hum = Arts & Humanities; Man = Business, 

Management & Accounting; Mat = Mathematics. Boldfaced values represent the most recent 10 years. Disciplines in 

italics are in the social sciences subject, whereas other disciplines are in the physical sciences subject. 

 

Table A4. Descriptive statistics and Scopus categories for the third analysed CV. 

 Year Disc A.N Number of citations 

    Gross Net 

    Tot Tot By ≠ journals By ≠ disciplines 

Physical Review 1953 Phy 1 7 7 7 2 

Science 1951 Phy 1 4 4 4 1 

Science 1949 Phy 8 1 1 1 0 

Reviews of Modern Physics 1948 Phy 1 56 56 56 13 

Reviews of Modern Physics 1946 Phy 2 85 85 84 12 

Reviews of Modern Physics 1945 Phy 2 249 249 244 75 

Science 1940 Phy 1 27 27 27 17 

Journal of the Franklin Institute 1937 Phy 2 254 251 246 76 

Science 1936 Phy 1 305 305 299 92 

Journal of the Franklin Institute 1936 Phy 1 101 101 99 31 

Physical Review 1936 Phy 2 29 29 28 9 

Physical Review 1935 Phy 3 6806 6805 6663 2058 

Physical Review 1935 Phy 2 319 318 311 96 

Physical Review 1931 Phy 3 28 28 26 6 

Nature 1923 Phy 1 10 10 10 3 

Nature 1921 Phy 1 10 10 10 3 

 Total   8291 8286 8115 2495 

Notation: Disc = Discipline; A.N = Number of authors; Phy = Physics. 

https://www.scopus.com/search/submit/ctocitedbywhen.uri?origin=cto&rowId=2-s2.0-27744522208&columnId=total&citationCount=7&stateKey=CTOF_679012928
https://www.scopus.com/search/submit/ctocitedbywhen.uri?origin=cto&rowId=2-s2.0-28844439924&columnId=total&citationCount=3&stateKey=CTOF_679012928
https://www.scopus.com/search/submit/ctocitedbywhen.uri?origin=cto&rowId=2-s2.0-2342584345&columnId=total&citationCount=1&stateKey=CTOF_679012928
https://www.scopus.com/search/submit/ctocitedbywhen.uri?origin=cto&rowId=2-s2.0-4243074995&columnId=total&citationCount=49&stateKey=CTOF_679012928
https://www.scopus.com/search/submit/ctocitedbywhen.uri?origin=cto&rowId=2-s2.0-36149024121&columnId=total&citationCount=78&stateKey=CTOF_679012928
https://www.scopus.com/search/submit/ctocitedbywhen.uri?origin=cto&rowId=2-s2.0-0001369445&columnId=total&citationCount=235&stateKey=CTOF_679012928
https://www.scopus.com/search/submit/ctocitedbywhen.uri?origin=cto&rowId=2-s2.0-34250827263&columnId=total&citationCount=25&stateKey=CTOF_679012928
https://www.scopus.com/search/submit/ctocitedbywhen.uri?origin=cto&rowId=2-s2.0-0001999703&columnId=total&citationCount=236&stateKey=CTOF_679012928
https://www.scopus.com/search/submit/ctocitedbywhen.uri?origin=cto&rowId=2-s2.0-0000960690&columnId=total&citationCount=280&stateKey=CTOF_679012928
https://www.scopus.com/search/submit/ctocitedbywhen.uri?origin=cto&rowId=2-s2.0-50249200211&columnId=total&citationCount=91&stateKey=CTOF_679012928
https://www.scopus.com/search/submit/ctocitedbywhen.uri?origin=cto&rowId=2-s2.0-0009081432&columnId=total&citationCount=24&stateKey=CTOF_679012928
https://www.scopus.com/search/submit/ctocitedbywhen.uri?origin=cto&rowId=2-s2.0-33947385649&columnId=total&citationCount=6461&stateKey=CTOF_679012928
https://www.scopus.com/search/submit/ctocitedbywhen.uri?origin=cto&rowId=2-s2.0-0001846906&columnId=total&citationCount=286&stateKey=CTOF_679012928
https://www.scopus.com/search/submit/ctocitedbywhen.uri?origin=cto&rowId=2-s2.0-0007107257&columnId=total&citationCount=25&stateKey=CTOF_679012928
https://www.scopus.com/search/submit/ctocitedbywhen.uri?origin=cto&rowId=2-s2.0-51149165139&columnId=total&citationCount=8&stateKey=CTOF_679012928
https://www.scopus.com/search/submit/ctocitedbywhen.uri?origin=cto&rowId=2-s2.0-37049205599&columnId=total&citationCount=1&stateKey=CTOF_679012928
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