
The Formal System λΥP

Ferruccio Guidi
∗

Abstract. We propose to extend the Edinburgh Logical Framework with Automath’s unified abstraction.

1 Foreword

Given that the Edinburgh Logical Framework LF [5], also known as λP [1], pursues the encoding of logic following the propositions
as objects methodology, it does not surprise that the encoding of hhω into LF outlined in [2] according to the propositions as
types paradigm is unsatisfactory since it misses the conjunction connective, whose kind ⋆ → ⋆ → ⋆ is not in the framework.

As a way out, we propose here to extend LF with a binder denoted by the symbol Υ, inspired by the unified abstraction of
the Automath tradition [9] in the variant of λ∞ [11], i.e., without η-conversion. We shall term the resulting system: λΥP.

Since a Υ-family does not belong to the kind ⋆, and a Υ-object does not belong to a Π-family, the Υ binder provides for a
restricted form of higher-order universal quantification that does not lead to the impredicativity of System F [1].

We stress that a Υ-term is β-reduced by the application of the λP-fragment of our system, and its applicability condition is
taken from λP rather than from λ∞. Yet, contrary to the Automath tradition, Υ differs syntactically from the binders λ and Π.

Our system extends LF with five constructions (Section 2), two conversion rules (Section 3), seven validity rules (Section 4).
As of now, the proposed framework closer to λΥP seems to be AUT-QE [12]. For this reason we tested our system by

mechanically translating the formalized Grundlagen der Analysis [10] into a context of λΥP extended with typed abbreviations.
Moreover, we validated this context with the help of a computer-assisted verifier for λΥP that we implemented in λProlog [4].

From a philosophical standpoint the innovative feature of λΥP with respect to AUT-QE is the possibility to Π-quantify the
Υ-terms. By so doing, the Υ-items of a kind or family are not constrained in the designated position of schematic quantifiers,
i.e., in the initial segment of the spine before the items of the λP-fragment, but they can freely appear along the whole spine.

Interestingly, our system needs this feature to validate many constants of the Grundlagen, the first of which is t5"l-some".
Notice that AUT-QE features first-order Υ-items to be used instead of the Π items quantifying the Υ-terms in λΥP.
Yet, Υ-objects are not first-class citizens of λΥP in that they cannot be arguments of functions. This limitation, that we

introduced intentionally, aims at keeping the system as simple as possible and agrees with the design principles of AUT-QE.
We plan to explore the properties of λΥP and its connections with AUT-QE and the type systems related to it [7, 6].
Among the properties of interest we highlight the strong normalization of valid kinds, of typed families and of typed objects.
The outlined work aims at improving the design of λδ-3 [3], the author’s proposed framework of which λΥP is a subsystem.

2 Syntax of λΥP

Our system keeps the syntax of simplified LF with three levels of constructions for terms (kinds, families and objects) and three
constructions for contexts. The presentation in front of the reader follows the Automath tradition in adopting the so-called
item notation [8]. In particular the items are: ⋆ (atomic kind), u (family variable), n (object variable), αX (applied function
argument X), λxX (functional abstraction on the variable x of type X), ΠxX (first order quantification on the variable x of type
X), ΥxX (unified binding on the variable x of type X , i.e., restricted higher-order quantification and functional abstraction for
it), ◦ (empty context), ΛxX (assumption on the variable x of type X). Here the symbols x, y and X , Y are meta-variables.

For the reader’s convenience, the constructions allowing different quantification schemes according to [1] are marked with
different colors: (⋆, ⋆) , (⋆,�) , restricted (�,�) , restricted (�, ⋆) . Their respective rules are marked accordingly. The binder

Υ has a unified character in that the construction ΥuH.T serves as the restricted quantification of the fragment (�, ⋆) and, at

the same time, as the functional abstraction of the fragment (�,�) . This feature is distinctive of Automath’s binding policy.

Kind: H , K ::= ⋆ | ΠnU.K | ΥuH.K

Family: T , U ::= u | ΠnU.T | αN.T | λnU.T | αU.T | ΥuH.T

Object: M , N ::= n | αN.M | λnU.M | αU.M | ΥuH.M

Context: L ::= ◦ | L.ΛnU | L.ΛuH

∗Department of Computer Science and Engineering, University of Bologna, Bologna, Italy. Contact: <ferruccio.guidi@unibo.it>.

1

3 Conversion in λΥP

The conversion relation, that we denote with L ⊢ X1 =β X2, is the reflexive, symmetric, transitive and contextual closure of the
next β-reductions. Moreover, the notation [Y/y].X denotes the term X with the term Y in place of the variable occurrences y.

Notice that the context L is significant just in case we allow δ-expandable abbreviations in it.
Here and in the next section we are assuming Barendregt’s convention on variable names [1].

L ⊢ αN.λnU.T =β [N/n].T L ⊢ αN.λnU.M =β [N/n].M L ⊢ αU.ΥuH.M =β [U/u].M L ⊢ αU.ΥuH.T =β [U/u].T

4 Validity in λΥP

Four judgments are available: ⊢ L ! (the context L is valid), L ⊢ K ! (the kind K is valid in L), L ⊢ T : K (the family T is of
kind K in L), L ⊢ M : T (the object M belongs to the family T in L). We give the inference figures for these judgments next.

In rules 2, 12, 16, 17: n is not declared in L. In rules 3, 11, 13, 18: u is not declared in L. In rule 25: n is not free in H , K.
We stress that following the systems of the λδ family [3] contrary to LF, L ⊢ ⋆ ! does not imply ⊢ L ! in λΥP. Requiring

this invariant may be sensible but yields an unnecessary mutual dependence between the judgments ⊢ L ! and L ⊢ K ! .
Notice that λΥP allows the Π-quantification of Υ-terms highlighted in Section 1 with rule 7 (for kinds) and 25 (for families).

⊢ ◦ !
1

L ⊢ ⋆ !
6

L ⊢ H !

L.ΛuH ⊢ u : H
11

L ⊢ U : ⋆

L.ΛnU ⊢ n : U
16

L ⊢ T : K1 L ⊢ K1 =β K2 L ⊢ K2 !

L ⊢ T : K2

21

⊢ L ! L ⊢ U : ⋆

⊢ L.ΛnU !
2

L ⊢ U : ⋆ L.ΛnU ⊢ K !

L ⊢ ΠnU.K !
7

L ⊢ T : K

L.ΛnU ⊢ T : K
12

L ⊢ M : T

L.ΛnU ⊢ M : T
17

L ⊢ M : T1 L ⊢ T1 =β T2 L ⊢ T2 : ⋆

L ⊢ M : T2

22

⊢ L ! L ⊢ H !

⊢ L.ΛuH !
3

L ⊢ H ! L.ΛuH ⊢ K !

L ⊢ ΥuH.K !
8

L ⊢ T : K

L.ΛuH ⊢ T : K
13

L ⊢ M : T

L.ΛuH ⊢ M : T
18

L ⊢ M : T1 L ⊢ T1 =β T2 L ⊢ T2 : ΥuH.K

L ⊢ M : T2

23

L ⊢ N : U L ⊢ T : ΠnU.K

L ⊢ αN.T : [N/n].K
4

L ⊢ U : H L ⊢ T : ΥuH.K

L ⊢ αU.T : [U/u].K
9

L ⊢ N : U L ⊢ M : ΠnU.T

L ⊢ αN.M : [N/n].T
14

L ⊢ U : H L ⊢ M : ΥuH.T

L ⊢ αU.M : [U/u].T
19

L ⊢ U : ⋆ L.ΛnU ⊢ T : ⋆

L ⊢ ΠnU.T : ⋆
24

L ⊢ U : ⋆ L.ΛnU ⊢ T : K

L ⊢ λnU.T : ΠnU.K
5

L ⊢ H ! L.ΛuH ⊢ T : K

L ⊢ ΥuH.T : ΥuH.K
10

L ⊢ U : ⋆ L.ΛnU ⊢ M : T

L ⊢ λnU.M : ΠnU.T
15

L ⊢ H ! L.ΛuH ⊢ M : T

L ⊢ ΥuH.M : ΥuH.T
20

L ⊢ U : ⋆ L.ΛnU ⊢ T : ΥuH.K

L ⊢ ΠnU.T : ΥuH.K
25

References

[1] H. Barendregt. Lambda Calculi with Types. Osborne Handbooks of Logic in Computer Science, 2:117–309, 1993.

[2] A. P. Felty and D. Miller. Encoding a Dependent-Type Lambda-Calculus in a Logic Programming Language. In Proceedings
of the 10th International Conference on Automated Deduction, pages 221–235, London, UK, 1990. Springer-Verlag.

[3] F. Guidi. Verified Representations of Landau’s “Grundlagen” in the λδ Family and in the Calculus of Constructions. Journal
of Formalized Reasoning, 8(1):93–116, December 2015.

[4] F. Guidi, C. Sacerdoti Coen, and E. Tassi. Implementing Type Theory in Higher Order Constraint Logic Programming. In
D. Baelde, A. Felty, G. Nadathur, and A. Saurin, editors, Event Celebrating Professor Dale Miller’s 60th Birthday (FDM
2016), pages 8:1–8:21, Paris, France, December 2016. Université Paris-VII.

[5] R. Harper, F. Honsell, and G. Plotkin. A Framework for Defining Logics. J. ACM, 40(1):143–184, January 1993.

[6] F. Kamareddine. Typed λ-calculi with one binder. J. Funct. Program., 15(5):771–796, 2005.

[7] F. Kamareddine, T. Laan, and R. Nederpelt. De Bruijn’s Automath and Pure Type Systems. In F. Kamareddine, editor,
Thirty Five Years of Automating Mathematics, volume 28 of Kluwer Applied Logic series, pages 71–123. Kluwer Academic
Publishers, Hingham, MA, USA, November 2003.

[8] F. Kamareddine and R. Nederpelt. A useful λ-notation. Theoretical Computer Science, 155(1):85–109, 1996.

[9] R. Nederpelt, J. Geuvers, and R. de Vrijer, editors. Selected Papers on Automath, volume 133 of Studies in Logic and the
Foundations of Mathematics, Amsterdam, The Netherlands, 1994. North-Holland Pub. Co.

[10] L. van Benthem Jutting. Checking Landau’s “Grundlagen” in the Automath system, volume 83 of Mathematical Centre
Tracts. Mathematisch Centrum, Amsterdam, The Netherlands, 1979.

[11] L. van Benthem Jutting. The language theory of λ∞, a typed λ-calculus where terms are types. In Selected Papers on
Automath [9], pages 655–683. North-Holland Pub. Co., Amsterdam, The Netherlands, 1994.

[12] D. van Daalen. The language theory of Automath. In Selected Papers on Automath [9], pages 163–200,303–312,493–653.
North-Holland Pub. Co., Amsterdam, The Netherlands, 1994.

2

