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Abstract

In this paper we discuss general identification results for Structural Vector Autoregres-

sions (SVARs) with external instruments, considering the case in which r valid instruments

are used to identify g ≥ 1 structural shocks, where r ≥ g. We endow the SVAR with an

auxiliary statistical model for the external instruments which is a system of reduced form

equations. The SVAR and the auxiliary model for the external instruments jointly form a

‘larger’ SVAR characterized by a particularly restricted parametric structure, and are con-

nected by the covariance matrix of their disturbances which incorporates the ‘relevance’ and

‘exogeneity’ conditions. We discuss identification results and likelihood-based estimation

methods both in the ‘multiple shocks’ approach, where all structural shocks are of interest,

and in the ‘partial shock’ approach, where only a subset of the structural shocks is of inter-

est. Overidentified SVARs with external instruments can be easily tested in our setup. The

suggested method is applied to investigate empirically whether commonly employed mea-

sures of macroeconomic and financial uncertainty respond on-impact, other than with lags,

to business cycle fluctuations in the U.S. in the period after the Global Financial Crisis. To

do so, we employ two external instruments to identify the real economic activity shock in a

partial shock approach.
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Non-technical Summary

This paper deals with Structural Vector Autoregressions (SVARs). SVARs are largely used

in applied macroeconomics to capture stylized empirical facts, shock transmission mechanisms

and dynamic causal e¤ects. In order to identify the shocks, it is necessary to place restrictions

(typically, but not necessarily, zero restrictions) on the �matrix of structural parameters�which

is the matrix which maps the structural shocks onto the reduced form VAR disturbances. One

of the most interesting approaches developed recently to identify structural shocks by possibly

avoiding recursive structures or direct implausible restrictions on the matrix of structural para-

meters is the so-called �external instruments�or �proxy-SVAR�approach of Stock and Watson

(2008, 2012, 2018) and Mertens and Ravn (2013, 2014). This method takes advantage of in-

formation developed from �outside�the VAR in the form of variables which are correlated with

the latent structural shocks of interest and are uncorrelated with the other structural shocks of

the system. The external instruments provide additional moment conditions which can be used

along with the standard covariance restrictions implied by SVARs to identify the shocks.

The emerging literature on proxy-SVARs is mainly focused on the use of one external instru-

ment to identify a single structural shock of interest in isolation from all the other shocks of the

system. For example, Stock and Watson (2012) identify six shocks (the oil shock, the monetary

policy shock, the productivity shock, the uncertainty shock, the liquidity/�nancial risk shock

and the �scal policy shock) by exploit many external instruments, but use then one at the time;

see also Ramey (2016). In general, there exists no general result in the literature which provides

a guidance for practitioners to address the following question: given g � 1 structural shocks

of interest and r � g external instruments for these shocks, how many restrictions do we need
for the model to be identi�ed, and where do these restrictions need to be placed? The paper

provides such a general framework and complements the analysis of proxy-SVARs with novel

likelihood-based estimation methods.

The suggested approach takes a stand on the process which generates the external instru-

ments. This is an auxiliary model which is speci�ed as a dynamic reduced form whose distur-

bances incorporate the �relevance�condition, i.e. the correlation with the structural shocks of

interest, and the �exogeneity� condition, i.e. the absence of correlation with the other struc-

tural shocks of the system. The SVAR and the speci�ed auxiliary model for the instruments

form a �larger� SVAR which is called AC-SVAR model, where �AC� stands for �augmented-

constrained�. The AC-SVAR is �augmented� because it is obtained by adding the auxiliary

statistical model for the instruments to the SVAR. The AC-SVAR is �constrained�because it

is characterized by a particular triangular structure in the autoregressive coe¢ cients and a par-

ticular constrained structure in the matrix which maps the reduced form disturbances to the
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structural shocks.

The AC-SVAR model allows to generalize the analysis of proxy-SVARs to the setup r � g �
1. Two cases are considered: the �multiple shocks�approach, where all structural shocks are of

interest (including the non-instrumented ones), and the �partial shock�approach, where only the

g instrumented structural shocks are of interest. Novel identi�cation results and likelihood-based

estimation methods are discussed for these two cases.

The AC-SVAR methodology is applied to U.S. monthly data by considering a small-scale

system which includes measures of macroeconomic and �nancial uncertainty taken from Jurado

et al. (2015) and Ludvigson et al. (2018), respectively, and a measure of real economic activity,

say the industrial production growth. The objective is to investigate whether the selected

measures of macroeconomic and �nancial uncertainty respond on-impact (instantaneously) to

an identi�ed real economic activity shock on the �Great Recession+Slow Recovery�period 2008-

2015. In order to identify the real economic activity shock, two external instruments are jointly

employed by using the results discussed in the paper. Estimation results suggest that both

macroeconomic and �nancial uncertainty respond signi�cantly to the identi�ed real economic

activity shock one month after the shock, but not on-impact. This evidence enriches an ongoing

debate on the role of uncertainty in the business cycle (see Ludvigson et al., 2018).
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1 Introduction

Structural Vector Autoregressions (SVARs) provide stylized and parsimonious characterizations

of shock transmission mechanisms and allow to track dynamic causality effects. However, the

identification of SVARs requires parameter restrictions on the matrix which maps the VAR

disturbances to structural shocks, henceforth denoted with B, that are often implausible. The

parameters in the matrix B capture the on-impact (instantaneous) effect of the structural shocks

on the variables, and are also a crucial ingredients of the Impulse Response Functions (IRFs).

One of the most interesting approaches developed in the recent literature to identify structural

shocks by possibly avoiding recursive structures or direct implausible assumptions on the el-

ements of B is the so-called ‘external instruments’ or ‘proxy-SVAR’ approach, see Stock and

Watson (2008, 2012, 2018), Mertens and Ravn (2013, 2014); see also Stock (2008). This method

takes advantage of information developed from ‘outside’ the VAR in the form of variables which

are correlated with the latent structural shocks of interest, and are uncorrelated with the other

structural shocks of the system. Throughout the paper we use the terms ‘SVARs with external

instruments’ and ‘proxy-SVARs’ interchangeably.

This paper provides a novel contribution on SVARs with external instruments. The emerging

literature on proxy-SVARs is mainly focused on the use of one external instrument to identify

a single structural shock of interest in isolation from all the other shocks of the system. For

example, Stock and Watson (2012) identify six shocks (the oil shock, the monetary policy shock,

the productivity shock, the uncertainty shock, the liquidity/financial risk shock and the fiscal

policy shock) by exploit many external instruments, but use then one at the time; see also Ramey

(2016). In general, there exists no general result in the literature which provides a guidance for

practitioners to address the following question: given a g ≥ 1 structural shocks of interest and

r ≥ g external instruments available for these shocks, how many restrictions do we need for the

model to be identified, and where do these restrictions need to be placed? We provide such

a general framework and complement the analysis of proxy-SVARs with novel likelihood-based

estimation methods.

Our approach takes a stand on the process which generates the external instruments. This is

an auxiliary model which is specified as a dynamic reduced form whose disturbances incorporate

the ‘relevance’ condition, i.e. the correlation with the structural shocks of interest, and the

‘exogeneity’ condition, i.e. the absence of correlation with the other structural shocks of the

system. We augment the SVAR with the specified auxiliary model for the instruments obtaining

a ‘larger’ SVAR which is called AC-SVAR model, where ‘AC’ stands for ‘augmented-constrained’.

The AC-SVAR is ‘augmented’ because it is obtained by adding the auxiliary statistical model

for the instruments to the original SVAR equations. The AC-SVAR is ‘constrained’ because
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it is characterized by a particular triangular structure in the autoregressive coefficients and a

particular constrained structure in the matrix which maps the reduced form disturbances to the

structural shocks.

The AC-SVAR model allows to generalize the analysis of proxy-SVARs to the setup r ≥ g ≥
1. We focus on two cases: the ‘multiple shocks’ approach and the ‘partial shock’ approach. In the

former, r external instruments are used for g instrumented structural shocks, but it is possible to

infer the dynamic causal effects of all structural shocks of the system, i.e. also the ones of the non-

instrumented structural shocks. This implies that all columns of the matrix B can be identified

- without imposing direct restrictions on its elements - and IRFs can be computed accordingly.

We show that in this case the identification and estimation of the AC-SVAR amounts to the

practice of identifying and estimating ‘conventional’ SVARs by ‘internal’ restrictions. More

precisely, we study the conditions under which the AC-SVAR model is identified, and show

that identified models can be estimated by suitably adapting ‘standard’ maximum likelihood

methods.1 The inference on the IRFs of interest can be performed by existing methods, reviewed

e.g. in Lütkepohl and Kilian (2017).

In the partial shock approach, r external instruments are used for g instrumented shocks,

but now the interest is solely focused on the dynamic causal effects of these g structural shocks

regardless of the other structural shocks of the system. This implies that only a subset of g

columns of B, collected in B1, need to be identified in order to compute the IRFs of interest.

When r = g = 1, B1 is a column of B (typically the first column) and the parameter which

captures the correlation between the external instrument and the shock of interest is a scalar, say

φ. We relax this condition and derive identification and estimation results for the general case r ≥
g ≥ 1, so that φ = Φ becomes a matrix with r rows and g columns containing a set of ‘relevance’

parameters. We show that when in this context the necessary and sufficient rank condition

for identification is satisfied, estimation can be carried out by a classical minimum distance

(CMD) approach which minimizes the distance between a set of ‘reduced form’ parameters,

which can be easily estimated by Gaussian maximum likelihood from the AC-SVAR model, and

a set of parameters which include the non-zero elements of B1 and Φ, respectively. Also in this

framework, the inference on the IRFs can be performed by standard methods, see e.g. Lütkepohl

and Kilian (2017).

To show the empirical usefulness of our approach, we focus on the U.S. economy after the

Global Financial Crisis and apply the suggested AC-SVAR methodology to a small-scale monthly

system which includes measures of macroeconomic and financial uncertainty taken from Jurado

1In principle, any existing econometric package which features the estimation of SVARs can potentially be

adapted along the lines discussed in the paper, Section 4.
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et al (2015) and Ludvigson et al. (2018), respectively, and a measure of real economic activity,

say the industrial production growth. Results in e.g. Bloom (2009), Stock and Watson (2012),

Jurado et al (2015), Leduc and Liu (2016), Nakata (2017), Caggiano et al. (2017), inter alia,

obtained with a variety of identification methods, show that uncertainty explains a sizeable

fraction of the decline in real economic activity, especially after 2008. Our objective, however,

is different. We focus on the other direction of causality, i.e. on whether the selected measures

of macroeconomic and financial uncertainty respond on-impact (i.e. instantaneously) to a real

economic activity shock on the ‘Great Recession+Slow Recovery’ period 2008-2015. Ludvigson

et al. (2018) argue that if uncertainty measures responds on-impact to ‘first-moment’ shocks,

then uncertainty can not be considered an exogenous driver of the decline of economic activity,

but rather an endogenous response to it. This investigation represents a crucial step towards

the understanding of the channels through which uncertainty affects the economy, and allows

to discriminate empirically among two classes of models which treat uncertainty either as an

exogenous driver of the business cycle, or as an endogenous response to economic fluctuations

(Ludvigson et al. 2018). Interestingly, addressing this empirical objective requires the estimation

of non-recursive SVARs, i.e. models where the matrix B is non-recursive (non-triangular), which

makes the suggested proxy-SVAR approach attractive.

We follow a partial shock approach in which the shock of interest for which we employ valid

external instruments is the real economic activity shock and analyze whether macroeconomic

and financial uncertainty measures respond on-impact (other than with lags) to the identified

real economic activity shock. We regress the variations in hours worked and capacity utiliza-

tion on the ‘price of gold’ proxy of uncertainty employed by Piffer and Podstawski (2018), and

model the residuals obtained from this regression as two valid external instruments for the real

economic activity shock in an AC-SVAR system. These instruments are correlated with the real

economic activity shock (relevance), and are expected to be uncorrelated with macroeconomic

and financial uncertainty shocks (exogeneity) under the conditions discussed in Piffer and Pod-

stawski (2018). We obtain an overidentified proxy-SVAR which is estimated and not rejected

by the data on Great Recession+Slow Recovery’ period 2008-2015. Formal tests and IRFs sup-

port the hypothesis that macroeconomic and uncertainty measures respond significantly to the

identified real economic activity shock one month after the shock, but not on-impact.

This paper is naturally connected with the increasing strand of the macroeconometric liter-

ature which develops and estimation and inferential methods for SVARs with external instru-

ments, and apply these methods to various research fields. In addition to the key works cited

above, frequentist inferential methods for proxy-VARs are discussed in e.g. Lunsford (2015),

Jentsch and Lunsford (2016) and Olea et al. (2016), while Bayesian inferential methods and
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implementations may be found in Caldara and Herbst (2018) and Arias et al. (2018). Important

applied developments include e.g. Gertler and Karadi (2015), Carriero et al. (2015) and Caldara

and Kamps (2017); see also Hamilton (2003) and Kilian (2008) for early applications. More-

over, the proxy-SVAR approach is often combined with other identification methods as shown

in Ludvigson et al. (2017, 2018), Piffer and Podstawski (2018), Braum and Brüggemann (2017)

and Plagborg-Møller and Wolf (2018). Compared to this literature, our paper provides a gen-

eral framework to study the identification of proxy-SVARs and offers, as a by-product, a novel

likelihood-based estimation approach. Only a few of papers make explicit use of auxiliary models

for the external instruments to identify and make inference in proxy-SVARs. Plagborg-Møller

and Wolf (2018) is a remarkable example in the frequentist setup. In the Bayesian framework,

Caldara and Herbst (2018) refer to a Bayesian proxy-SVAR (BP-SVAR) which incorporates the

external instrument in the system’s likelihood and makes efficient use of the information con-

tained in the proxy. However, these authors limit their attention to the case of an instrument

and a single structural shock of interest; see also Arias et al. (2018). Another distinguishing

feature of our approach is the focus on the overidentification restrictions which arise in the

AC-SVAR framework from the interaction between the r external instruments and the g instru-

mented shocks. Overidentified proxy-SVARs can be easily tested in our setup. We show that

the rejection of the overidentification restrictions may be also due to the non exogeneity of the

external instruments (which are assumed relevant). Thus, our methodology provides analogs of

‘Sargan’s specification test’ in the instrumental variable framework, or Hansen’s J-test in the

generalized method of moments framework, i.e. specification tests for the overall validity of

the estimated proxy-SVAR. This appears a novelty in the literature on SVARs with external

instruments.

As concerns the empirical illustration, the papers closest to our are Ludvigson et al. (2018),

Angelini et al. (2017) and Carriero et al. (2018), who also apply small-scale non-recursive

SVARs to analyze the exogeneity/endogeneity of uncertainty and report mixed evidence. Lud-

vigson et al. (2018) use a three-equations SVARs and the same monthly variables we consider,

although their analysis is based on the longer period 1960-2015. They combine the use of ex-

ternal instruments with a particular set-identification approach, where properly selected ‘event

constraints’ are directly imposed on the shocks to achieve identification. Conversely, we confine

our main attention to the identification of the real economic activity shock and its impact on

macroeconomic and financial uncertainty. Carriero et al. (2018) identify the shocks also in a

SVAR framework using a stochastic volatility approach by using measures of macroeconomic

and financial uncertainty one at a time, not jointly.

The rest of the paper is organized as follows. Section 2 introduces the reference SVAR with
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external instruments and presents the background and the main assumptions. Section 3 discusses

the AC-SVAR model. Section 4 deals with the multiple shocks approach; Section 4.1 focuses

on identification issues and Section 4.2 on the estimation procedure. Section 5 deals with the

partial shock approach; Section 5.1 focuses on identification issues and Section 5.2 on estimation.

Section 6 presents the empirical illustration. Section 7 contains some conclusions. Additional

technical details and Monte Carlo experiments are confined in a Technical Supplement.2

Throughout the paper we use the following notation, matrices and conventions, most of

which are taken from Magnus and Neudecker (1999). Let M be any n × g matrix. We use

rank(·) to denote the rank of a matrix. Kng is the ng × ng commutation matrix, i.e. the

matrix such that Kngvec(M) = vec (M ′). When n = g, we use Kn for Knn. Assume now M is

n× n. Dn is the duplication matrix, i.e. the n2 × 1
2n(n+ 1) full-column rank matrix such that

Dnvech(M) = vec(M), where vech(M) is the column obtained from vec(M) by eliminating all

supra-diagonal elements. Given Kn and Dn, Nn:=1
2 (In2 +Kn) is a n2 × n2 matrix such that

rank(Nn) = 1
2n(n + 1) and D+

n :=(D′nDn)−1D′n is the Moore-Penrose inverse of Dn. We also

use the notation M = M(θ) to indicate that the elements of the matrix M depends on the

parameters in the vector θ. Given θ = θ0, we call ‘regular’ a matrix such that rank(M(θ)) = n

in a neighborhood of θ0.

2 Model and background

We start from the SVAR system

Yt = ΠXt + ΥyDy,t + ut , ut = Bεt , t = 1, ..., T (1)

where Yt is the n × 1 vector of endogenous variables, Xt:=(Y ′t−1, ..., Y
′
t−k, )

′ is nk × 1, Π :=

(Π1 : ... : Πk) is the is n × nk matrix containing the autoregressive (slope) parameters, Dy,t is

an dy-dimensional vector containing deterministic components (constant, dummies, etc.) with

associated parameters contained in the n×dy matrix Υy; finally, ut is the n×1 vector of reduced-

form disturbances with positive definite covariance matrix Σu := E(utu
′
t). The initial conditions

Y0, ..., Y1−k are treated as fixed. The system of equations ut = Bεt in eq. (1) maps the n × 1

vector of structural shocks εt to the reduced form disturbances through the n × n matrix B.

The structural shocks εt are assumed White Noise and may have either normalized covariance

matrix E(εtε
′
t) := Σε := In, or diagonal covariance matrix Σε := diag(σ2

1, ..., σ
2
n). In the second

case, the link between reduced form disturbances and structural shocks can be expressed in the

form ut = B∗Σ
1/2
ε ε∗t , where ε∗t := Σ

−1/2
ε εt and B∗ has exactly the same structure as B in eq. (1)

2Available online at http://www.rimini.unibo.it/fanelli/TS AngeliniFanelli ProxySVAR.pdf
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except that the elements on the main diagonal are normalized to 1. Throughout the paper we

follow the parametrization based on ut = Bεt with Σε = In, except where indicated.

We call the elements in (Π,Υy,Σu) reduced-form parameters and the elements in B structural

parameters. Moreover, we use the terms ‘identification of B’, ‘identification of the SVAR’ and

‘identification of the shocks’ interchangeably. Let

Ay :=

 Π1 · · · Πk

In(k−1) 0n(k−1)×n

 (2)

be the VAR companion matrix. The responses of the variables in Yt+h to one standard deviation

structural shock εjt is captured by the IRFs:

IRFj(h):=(J ′n (Ay)
h Jn)bj , h = 0, 1, 2, .... (3)

where bj is the j-th column of B, j = 1, ..., n and Jn := (In : 0n×n(k−1)) is a selection matrix

such that JnJ
′
n = In. Standard local and global identification results for the SVAR in eq. (1) are

reviewed in the Technical Supplement. These conditions require imposing a set of restrictions

on the elements of B which need not be imposed in the proxy-SVAR methodology, see below.

Let Ft be the econometrician’s information set at time t, which will be defined below. Our

first assumption postulates the correct specification of the SVAR and the nonsingularity of the

matrix of structural parameters B, which is the only requirement we place on this matrix.

Assumption 1 (DGP) The DGP belongs to the class of models in eq. (1) which satisfy the

following conditions:

(i) E(ut | Ft−1) = 0n×1, E(utu
′
t | Ft−1) = Σu <∞;

(ii) the companion matrix Ay in eq. (2) is stable, i.e. all of its eigenvalues lie inside the unit

disk;

(iii) the matrix B is nonsingular.

We now consider, without loss of generality, the following partition of the vector of structural

shocks:

εt :=

(
ε1,t

ε2,t

)
g × 1

(n− g)× 1
(4)

where ε1,t is the g×1 subvector of structural shocks henceforth denoted ‘instrumented structural

shocks’, and ε2,t is the (n−g)×1 subvector of other structural shocks, denoted ‘non-instrumented

shocks’. The instrumented structural shocks are ordered first for notational convenience only:

the ordering of variables is irrelevant in this setup. We come back on these shocks below. Given

the corresponding partition of reduced form VAR disturbances, ut := (u′1,t, u
′
2,t), where u1,t and
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u2,t have the same dimensions as ε1,t and ε2,t, we partition the matrix of structural parameters

B compatible with eq. (4), i.e.

B :=

(
B1
n×g

... B2
n×(n−g)

)
:=

(
B11 B12

B21 B22

)
g × g g × (n− g)

(n− g)× g (n− g)× (n− g)
(5)

where dimensions of submatrices are reported below and alongside blocks. In eq. (5), B1 is the

n×g submatrix containing the structural parameters (on-impact coefficients) associated with the

instrumented shocks ε1,t and B2 is the n×(n−g) submatrix containing the structural parameters

associated with the non-instrumented shocks ε2,t; rank(B1) = g and rank(B2) = n− g because

of Assumption 1(iii).

The external instruments approach postulates that given the partitions in eq.s (4)-(5), there

are available r ≥ g ‘external’ (to the SVAR) variables called instruments, and collected in the

r×1 vector Zt, which can be used to identify the dynamic causal effect of ε1,t on Yt+h, h = 0, 1, ...,

without the need to restrict the elements in B. Thus, the instrumented structural shocks in ε1,t

are the shocks of primarily interest of the analysis but, as it will be shown below, under certain

conditions also the ‘other’ structural shocks in ε2,t can be indirectly identified by the instruments

in Zt. The key properties of Zt are formalized in the next assumption.

Assumption 2 (External instruments: relevance and validity) Given the SVAR in eq.

(1) and Assumption 1, it exists a r × 1 vector of observable variables Zt such that r ≥ g, and:

(i)

Cov(Zt, εt) = E(Ztε
′
t) =

(
E(Ztε

′
1,t)

r×g

... E(Ztε
′
2,t)

r(n−g)

)
:= HΦ :=

(
Φ : 0r×(n−g)

)
(6)

where the matrix Φ is r × g and is such that it has full column-rank when evaluated at its true

value Φ0;

(ii) Cov(Zt−i, εt) = 0r×n, i = 1, 2, ...

(iii) Zt − E(Zt) is covariance stationary.

Assumption 2(i) is standard in the literature on identification of SVARs through exter-

nal instruments but is typically presented under the constraint r = g, see e.g. Stock and

Watson (2008, 2012, 2018), Mertens and Ravn (2013, 2014). The conditions E(Ztε
′
1,t) = Φ

and E(Ztε
′
2,t) = 0r×(n−g) in eq. (6) mirror the ‘relevance’ and ‘exogeneity’ hypotheses that

characterize instrumental variable methods (Bowden and Turkington, 1984).3 The matrix

3Note that the relevance condition here involves the link between observed instruments and unobserved shocks,

not observed endogeneous regressors and, moreover, the instruments do not serve to remove the correlation

between endogenous regressors and disturbance terms but rather they provide additional moment conditions

which allow to identify the shocks.
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HΦ :=
(
Φ : 0r×(n−g)

)
collects these conditions. We call the matrix Φ the ‘relevance matrix’ (or

‘matrix of relevance parameters’) throughout the paper. The condition rank(Φ0) = g ensures

that each column of Φ carries independent - not redundant - information on the instrumented

structural shocks. The case mainly treated in the literature obtains for r = g = 1 (i.e. one

instrument is used to identify a single structural shock of interest), and implies that Φ = φ

(=ϕ) is a scalar and HΦ := φ
(
1 : 01×(n−g)

)
is a row. By considering the general case r ≥ g, we

mimick the situation that occurs in the instrumental variable regressions when the number of

instruments is allowed to be larger than the number of estimated parameters.

In general, the matrix Φ in eq. (6) needs not be ‘full’, meaning that it might contain zeros

elements. To account for this situation, we collect the non zero elements of Φ in the c× 1 vector

ϕ, and use the following parameterization of restrictions (in explicit form):

φ := vec(Φ) = SΦϕ (7)

where SΦ is an rg × c full column-rank selection matrix, c ≤ rg.

Assumption 2(ii) imposes an orthogonality restrictions between lagged values of Zt and the

structural shocks, and is consistent with the MDS property E(εt | Ft−1) = 0n×1 implied by

Assumption 1(i). It is intended that the econometrician’s information set contains both the Yts

and the external instruments Zt, i.e. σ(Yt, Zt, ..., Y1, Z1) ⊆ Ft. Observe that Assumption 2(ii)

does not imply that Zt must be uncorrelated with past structural shocks, i.e. in our setup it

may hold the condition Cov(Zt, εt−i) = E(Ztε
′
t−i) 6= 0r×n, i = 1, 2, ... Finally, Assumption 2(iii)

is a stability condition consistent with the stationarity of the SVAR.

Under Assumption 2, the external instruments Zt provide ‘additional’ moment conditions

which complement the standard covariance restrictions Σu = BB′ delivered by the SVAR, and

can be exploited in estimation by avoiding to impose direct restrictions on B. More specifically,

from eq.s (4)-(5) and eq. (6) it follows that

ΣZ,u := Cov(Zt, ut) = E(Ztε
′
t)B
′

= HΦB
′ =

(
Φ : 0r×(n−g)

)( B′1

B′2

)
= ΦB′1 = (ΦB′11 : ΦB′12) (8)

where eq. (8) can be also written in the form

Σu1,Z = B11Φ′

Σu2,Z = B12Φ′

g × r
(n− g)× r

(9)

and ΣZ,u = (ΣZ,u1 : ΣZ,u2), Σu1,Z = Σ′Z,u1 , Σu2,Z = Σ′Z,u2 . The proxy-SVAR methodologies

developed independently by Stock and Watson (2012) and Mertens and Ravn (2013) are es-

sentially based on the relationship in eq. (8) (or, equivalently, in eq. (9)) and the restriction
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r = g.4 When r = g, the moment conditions in eq. (8) ((9)) can be used to estimate B1 either

without incorporating the standard covariance restrictions provided by the SVAR model, or by

adding the covariance restrictions to eq. (8) and then using (generalized) method of moments

techniques.

In this paper we focus on the case r ≥ g and cast the identification analysis and estimation

of proxy-SVARs within a likelihood-based setup. In the next sections we present the general

framework, identification issues and estimation methods.

3 The augmented-constrained SVAR

We complement the properties of the external instruments stated in Assumption 2 with a sta-

tistical auxiliary model for Zt. The idea is to build a ‘larger’ system which incorporates the

SVAR and the specified auxiliary model for the instruments and forms the basis of approach to

proxy-SVARs.

The next assumption formalizes the features of the auxiliary model for the instruments.

Assumption 3 (External instruments: auxiliary model) Given the SVAR in eq. (1) and

Assumption 1, an r × 1 vector of external instruments Zt which satisfies Assumption 2, it is

further assumed that the dynamics of Zt is generated by the system

Zt = Θ(L)Zt−1 + Γ(L)Yt−1 + ΥzDz,t + Υz,yDy,t + vZ,t (10)

vZ,t = HΦεt + ωt = Φε1,t + ωt (11)

where Θ(L) := Θ1− ...−ΘpL
p−1 is a matrix polynomial in the lag operator L whose coefficients

are in the r × r matrices Θi, i = 1, ..., p; Γ(L) := Γ1 − Γ2L... − ΓqL
q−1 is a matrix polynomial

in the lag operator L whose coefficients are in the r × n matrices Γj, j = 1, ..., q; Dz,t is an

dz-dimensional vector containing deterministic components (constant, dummies, etc.) specific

to Zt and not already included in Dy,t in eq. (1); Υz and Υz,y are the r × dz and r × dy

matrices of coefficients associated with Dz,t and Dy,t, respectively; vZ,t := Zt − E(Zt | Ft−1)

is an r × 1 disturbance term with positive definite covariance matrix Σv, ωt is a White Noise

measurement error term uncorrelated with εt (E(εtω
′
t) = 0n×g) with positive definite covariance

matrix E(ωtω
′
t) := Σω <∞.

Assumption 3(i)-(ii) is key to our approach. The auxiliary statistical model for the external

instruments is a general reduced form in which the dynamics of Zt depends on its own lags

4Mertens and Ravn (2013) have further noticed that the restrictions in eq.s (8)-(9) admit an IV interpretation

along the lines indicated by Hausman and Taylor (1983) for simultaneous systems of equations.
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Zt−1, ...,Zt−p, the predetermined ‘control’ variables Yt−1, ..., Yt−k, and a set of (non overlapping)

deterministic components in Dz,t and Dy,t, respectively. The disturbance term vZ,t := Zt−E(Zt |
Ft−1) in eq. (10) reads as the vector of ‘filtered external instruments’, and eq. (11) links vZ,t

to the structural shocks through the matrix HΦ given in eq. (6). The additive measurement

error ωt captures the idea that the external instruments are imperfectly correlated with the

instrumented structural shocks.5

Under Assumption 3, the covariance restrictions in eq. (6) can be reinterpreted as follows:6

ΣZ,u := Cov(Zt, ut) = E(Ztu
′
t) = E(vZtu

′
t) =: Σv,u

Interestingly, under Assumptions 1-3, the SVAR in eq.s (1) and the auxiliary model for the

instruments in eq.s (10)-(11) give rise to the ‘larger’ system:(
Yt

Zt

)
=
∑̀
j=1

(
Πj 0n×r

Γj Θj

)(
Yt−j

Zt−j

)
+

(
Υy 0n×dz

Υz,y Υz

)(
Dy,t

Dz,t

)
+

(
ut

vZ,t

)
(12)

(
ut

vZ,t

)
=

(
B

HΦ

0n×r

P$

)(
εt

ω◦t

)
(13)

where ` := max {k, p, q}, P$ is the Cholesky factor of Σω (Σω = P$P
′
$) and ω◦t := P−1

$ ωt is a

normalized measurement error term. System (12) reads as an m-dimensional VAR, m := n+ r,

of lag order `, which incorporates a constrained (triangular) structure in the slope coefficients,

in the sense that lags of Zt and the deterministic variables in Dz,t are not allowed to enter the

Yt-equations. Observe that the matrices Γj and Θj , j = 1, ..., ` may be restricted to zero in eq.

(12). System (13) maps, under certain conditions, ξt := (ε′t, ω
◦′
t )′ onto ηt := (u′t, v

′
Z,t)
′.

We call the joint system given by eq.s (12)-(13) the ‘augmented-constrained’ SVAR (AC-

SVAR) and for future reference we compact it in the expression

Wt = Ψ̃Ft + Υ̃Dt + ηt , ηt = G̃ξt (14)

where Wt := (Y ′t , Z
′
t)
′ and ηt := (u′t, v

′
Z,t)
′ are m × 1, ηt has covariance matrix Ση := E(ηtη

′
t),

Ft := (W ′t−1, ...,W
′
t−`)

′ is f × 1 (f = m`), Dt := (D′y,t, D
′
z,t)
′ is d× 1 (d := dy + dz) and, finally,

ξt := (ε′t, ω
◦′
t )′ is m×1. We use the symbol ‘∼’ over the matrices Ψ and Υ and G to remark that

5As it stands, system (10)-(11) does not take into explicity account the possibility of censoring on the external

instruments. However, censoring can be introduced by amending system (10) in many ways. For instance, as

in Mertens and Ravn (2013), censoring is modelled by using dummy variables. More sophisticated censoring

processes might in principle be adapted to system (11)-(10) depending on the specific problem at hand.
6To see that the equality holds, it is sufficient to post-multiply both sides of system (10) by u′t, take expectations

and use the orthogonality condition E(Xtu
′
t) = 0nk×n guaranteed by Assumption 1(i) and the ortogonality

condition E((Z′t−1, ..., Z
′
t−p)′u′t) = 0rp×n guaranteed by Assumption 2(ii).
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these incorporate particular sets of zero restrictions. The structure of the matrix G̃ deserves

special attention:

G̃ :=

(
B 0n×r

HΦ P$

)
=

(
B1 B2

Φ 0r×(n−g)

0n×r

P$

)
(15)

so that it is seen that it contains the structural parameters in β := vec(B), the relevance

parameters in ϕ and the parameters in $ := vech(P$). The covariance restrictions Ση = G̃G̃′

implied by the AC-SVAR are therefore given by

Σu = BB′ SVAR symmetry (16)

Σv,u = ΦB′1 External instruments (17)

Σv = ΦΦ′ + Σω External instruments (18)

and map the parameters β, ϕ and $ into Σu, Σv,u and Σv.

We use the AC-SVAR model and the mapping in eq.s (16)-(18) to address two cases of inter-

est. Consider the partitions in eq.s (4)-(5). One case of interest is the multiple shocks approach,

where given the r ≥ g valid external instruments for ε1,t, the objective is the identification of the

dynamic causal effects of all n structural shocks in εt, including the non-instrumented structural

shocks in ε2,t. This amounts to identify all columns of the matrix B and to compute the IRFs in

eq. (3) for j = 1, ..., n. Identification and estimation issues in this case are analyzed in Section

4. The second case is the partial shock approach, where the objective of the analysis is the

identification of the dynamic causal effects of the g instrumented shocks in ε1,t alone, ignoring

ε2,t. This requires the identification of B1 alone, and the computation of the IRFs in eq. (3) for

j = 1, ..., g, g < n. Identification and estimation issues in this case are analyzed in Section 5.

Before moving to identification and estimation issues, it is worth framing the AC-SVAR

framework in the current literature on proxy-SVARs. In the ‘frequentist’ literature, only Plagborg-

Møller and Wolf (2018) make explicit use of an auxiliary model for external instruments to make

inference on forecast variance decompositions. They refer to a specification which resembles the

one in system (10)-(11) where the dynamics is based on infinite lags.7 In the Bayesian frame-

work, Caldara and Herbst (2018) use a specification similar to the one in eq.s (12)-(13) based

on r = g = 1 (hence Zt and ε1,t are scalars), where the parameters Γjs and Θjs are set to

zero.8 Caldara and Herbst (2018) observe that the likelihood described by the joint system for

7Olea et al. (2016) observe in their footnote 4 that a simple example of a statistical model for the instruments

is given by the measurement error model:

Zt = f(ε1,t) + a1Yt−1 + ...+ apYt−p + vt

where the measurement error vt is a stationary process independent of εt. However, they do not exploit explicitly

this model.
8Actually, their SVAR parameterization is such that the matrix B−1 pre-multiplies both sides of system (1).
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Wt := (Y ′t , Z
′
t)
′ offers a coherent modeling of all sources of uncertainty and hence, allows the

proxy to inform the estimation of both reduced-form and structural parameters; see also Arias

et al. (2018).

Finally, it is worth remarking that the AC-SVAR model is substantially different from the

‘VAR-X approach’ to proxy-SVARs put forth in Paul (2017). In Paul (2017), the instrument(s)

Zt enter directly the SVAR model for Yt in the form of ‘exogenous’ (X) variable(s), and the

coefficients associated with these variables capture directly the impact of the shocks of interest

on the variables. In our setup, the Yt-equations of the AC-SVAR model are not affected at all by

the external instrument(s) and are connected to Zt solely through the covariance matrix Σu,v;

conversely, the dynamics of the external instruments may depend on Yt−1, ...,Yt−p.

4 Multiple shocks approach

In this case, we use the instruments Zt for ε1,t to identify the dynamic responses of Yt+h to all

structural shocks in εt, including also the ones in ε2,t. It is therefore necessary to estimate the

whole matrix B in order to compute the IFRs in eq. (3) for j = 1, ..., n. Section 4.1 deals with

identification issues and Section 4.2 with the estimation.

4.1 Identification

Since the matrix B is contained in G̃ in eq. (15), the identification of the system can be based

on the AC-SVAR model in eq. (14) and ‘standard’ methods. For instance, as the matrix G̃ in

eq. (15) features homogeneous restrictions, separable across columns, one can check whether the

model satisfies the sufficient conditions for global identification in Rubio-Ramirez et al. (2011)

on a case-by-case basis.9 General necessary and sufficient conditions for identification can also

be provided, as shown next.

Let G be the unrestricted version of the matrix G̃ in eq. (15) (i.e. before any restriction is

imposed). Then, G̃ is the counterpart of G which satisfies the constraints (in explicit form)

vec(G) = SG̃θ (19)

where θ := (β′, ϕ′, $′)′ = (vec(B1)′, vec(B2)′, ϕ′, $′)′ and SG is an m2 × aG̃ full column-rank

selection matrix. The next proposition provides the necessary and sufficient rank conditions for

(local) identification and the necessary order conditions.

Proposition 1 Given the SVAR in eq. (1), an r × 1 vector Zt of external instruments and

Assumptions 1-3, consider the identification of the shocks in εt, i.e. the IRFs in eq. (3)

9A concrete example is reported in the Technical Supplement.
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for j = 1, ..., n. Let θ0 be the true value of θ := (β′, ϕ′, $′)′, where θ has dimension aG̃×1,

aG̃ := n2 + c+ 1
2r(r + 1). Then:

(i) necessary and sufficient condition for identification is:

rank
{
D+
m(G̃0 ⊗ Im)SG̃

}
= aG̃ (20)

where G̃0 is the matrix in eq. (15) evaluated in a neighbourhood of θ0 and is ‘regular’, SG

is the m2 × aG̃ full column-rank selection matrix given in eq. (19);

(ii) necessary order condition for identification is aG̃ ≤
1
2m(m+1) or, equivalently n2 +c ≤

1
2n(n+ 1) + nr.

Proof: Technical Supplement.

Two remarks are in order. First, in the common empirical case in which a single instrument

is used to identify a single structural shock, r = g = 1, Φ = φ = ϕ is a scalar, c = 1, B1 := b1 is

an n×1 column and B2 is an n×(n−1) sub-matrix obtained from B by deleting its first column.

In this case, the necessary order condition in Proposition 1 (1.ii) suggests that the identification

of the n columns of the matrix B := (b1 : B2) is at most possible for bi-variate SVARs (n = 2)

because the inequality n2 + 1 ≤ 1
2n(n + 1) + n does not hold for n ≥ 3. The interpretation is

that a single external instrument is not generally sufficient to identify more than two shocks.

Second, according to Proposition 1, when the AC-SVAR is overidentified, the system features

l := 1
2m(m+ 1)− aG̃ testable restrictions which can be interpreted as a specification test for the

SVAR with external instruments, see the next section.

4.2 Estimation

The estimation of the AC-SVAR model in eq. (14) with G̃ restricted as in eq. (15) follows, under

the conditions of Proposition 1, ‘standard’ methods. To do so it is however necessary to impose

the zero restrictions which characterize the matrices Ψ̃ and Υ̃ in estimation. The specification

the reduced form system behind the AC-SVAR model can be based on the following strategy:

Step-1 Given Zt, estimate an m-dimensional VAR system for Wt := (Y ′t , Z
′
t)
′, and use standard

methods to determine the VAR lag order ` := `op, where `op ≥ k;

Step-2 Determined ` := `op in the previous step, re-estimate the VAR for Wt := (Y ′t , Z
′
t)
′ with

`op lags, by imposing the set of zero restrictions (triangular structures) that characterize

Ψ̃ and Υ̃. This can be done, under the auxiliary assumption of Gaussian disturbances, by

constrained maximum likelihood.10

10Which is asymptotically equivalent to an iterated version of a (Feasible) GLS estimator, see Lutkepol (1993).

In other words, OLS are not efficient in this setup as OLS require unrestricted Ψ and Υ.
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Defined σ+
η := vech(Ση), the (concentrated) log-likelihood of the reduced form system can

be written in the form

LT (σ+
η ) :=

−Tm
2

log(2π)− T

2
log(det(Ση))−

T

2
tr(Σ−1

η Σ̂η) (21)

where Σ̂η := (1/T )
∑T

t=1 η̂tη̂
′
t, η̂t := (Wt − ̂̃ΨFt − ̂̃ΥDt), t = 1, ..., T , and ̂̃Ψ and ̂̃Υ are the

Gaussian maximum likelihood estimates of Ψ̃ and Υ̃, respectively. Note that the log-likelihood

in eq. (21) is concentrated with respect to the constrained parameters in (Ψ̃,Υ̃). Assuming that

the rank condition in eq. (20) of Proposition 1 holds, the log-likelihood of the AC-SVAR is

obtained form eq. (21) by imposing the restriction Ση := Ση(θ)=G̃(θ)G̃(θ)′ and reads:

LsT (θ) := LT (σ+
η (θ)) :=

−Tm
2

log(2π)− T

2
log(det(Ση(θ)))−

T

2
tr(Σ−1

η (θ)Σ̂η). (22)

The maximization of LsT (θ) can be performed by standard methods discussed e.g. in Amisano

and Giannini (1997).11 Under Assumptions 1-3, the estimator θ̂T := maxθ L
s
T (θ) is consistent

and asymptotically Gaussian.

When the AC-SVAR model satisfies the rank condition of Proposition 1 (or the sufficient

global identification conditions in Rubio-Ramirez et al. (2011)) and is overidentified, it is possible

to compute the LR test:

LRT := −2(LsT (θ̂T )− LT (σ̂+
η )) (23)

which is distributed asymptotically as a χ2(l) variable with l := 1
2m(m + 1)− aG̃ degrees of

freedom. In the (G)IV (GMM) framework, when the number of instruments (moment condi-

tions) is larger than the number of estimated parameters, it is possible to compute Sargan’s

specification test (Hansen’s J-test), which is typically interpreted as a specification test for the

estimated model. In this framework, the LR test in eq. (23) can be interpreted similarly, i.e. as

a specification test for the empirical validity of the estimated proxy-SVAR. The (2,2) block of

the matrix G̃ in the right-hand side of eq. (15) incorporates r(n − g) zero restrictions implied

by the exogeneity condition assumed for the external instruments (i.e. the matrix HΦ is part of

the matrix G̃). When the exogeneity condition is violated in the data generating process, the

LRT test in eq. (23) rejects the overidentification restrictions. We investigate the finite sample

performance of the LRT test when the exogeneity of the instruments is wrongly assumed in a

set of Monte Carlo experiments reported in the Technical Supplement to save space.

In case of exact identification, or if the overidentification restrictions are not rejected by the

LR test, the IRFs are estimated from eq. (3) by replacing Ay with the maximum likelihood

11In practice, estimation can be carried out by adpating any existing econometric package which features SVARs.

To do so, however, it is necessary to suitably restrict the estimation of the coefficients (Ψ̃,Υ̃) as implied by the

structure of the AC-SVAR model.
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estimate Ây derived from the AC-SVAR model, and bj with the corresponding elements taken

from the j-th column of ̂̃G = G̃(θ̂T ), for j = 1, ..., n. Asymptotic and/or bootstrap confidence

intervals for the IRFs can be computed along the lines discussed in e.g. Lütkepohl and Kilian

(2017, Ch. 14).

5 Partial shock approach

In this case, we use Zt for ε1,t to identify the dynamic responses of Yt+h to the structural shocks

in ε1,t alone, i.e. there is a perfect match between the instrumented shocks and the structural

shocks of interest. It is therefore necessary to estimate B1 in order to compute the IFRs in eq.

(3) for j = 1, ..., g < n. Section 5.1 deals with identification issues and Section 5.2 with the

estimation.

5.1 Identification

The analysis is based on the mapping in eq.s (16)-(17). The difficulty with the moment conditions

in eq. (16) is that the covariance restrictions Σu = BB′ = B1B
′
1 + B2B

′
2 involve also the

parameters in B2 which are not of interest, and need to be marginalized out. To get rid of B2,

we use the invertibility of Σu = BB′ (Assumption 1) and the transformation:

ΣZ,uΣ−1
u Σu,Z = ΦB′1(BB′)−1B1Φ′ = ΦB′1(B′)−1B−1B1Φ′

= ΦB′1(B′)−1B−1B1Φ′ = ΦΦ′, (24)

where eq. (24) has been derived by using the fact that the condition B−1B = In = (B−1B1 :

B−1B2) implies

B−1B1 =

(
Ig

0(n−g)×g

)
, B−1B2 =

(
0g×(n−g)

I(n−g)

)
. (25)

Eq. (24) is re-written as

Ξ = ΦΦ′ (26)

where Ξ = Σv,uΣ−1
u Σu,v is an r × r symmetric positive semi-definite matrix, and forms, along

with eq. (17) which is here reported for convenience:

Σv,u = ΦB′1, (27)

a set of moment conditions which allow to identify B1 and Φ.

Let ζ := (vech(Ξ)′, vec(Σv,u)′)′ be the a × 1 vector of coefficients which appear in the left-

hand-side of eq.s (26)-(27), a := 1/2r(r+ 1) +nr. It is seen that ζ is a nonlinear function of the
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reduced form parameters in σ+
η := vech(Ση). Let ϑ := (α′, ϕ′)′ be the (e+c)×1 vector containing

the ‘free’ (unconstrained) parameters which enter the matrices B1 and Φ in eq.s (26)-(27). Even

if in principle we want to estimate B1 unrestrictedly, we allow for the possibility of constraints on

its elements, covering cases which might be of economic interest, see the empirical illustration in

Section 6. Thus, we collect the e unrestricted (non-zero) elements of β1 := vec(B1) in the vector

α (e ≤ ng) and model these constraints by using the explicit form β1 = SB1α, where SB1 is an

ng × e full-column rank selection matrix. Obviously, when all elements of β1 are unrestricted,

SB1 = Ing and e = ng. As is already known, the c non-zero elements contained in the relevance

matrix Φ are collected in the vector ϕ (c ≤ rg), see eq. (7). In light of these definitions, the

moment conditions in eq.s (26)-(27) can be simplified in the expression

ζ = g(ϑ) (28)

where g(ϑ) := (vech(ΦΦ′)′, vec(ΦB′1)′)′ is a nonlinear differentiable vector function. Eq. (28)

defines a distance between ζ and ϑ. By applying standard matrix derivatives rules, the associated

Jacobian matrix zϑ := ∂ζ/∂ϑ′ is a× (e+ c) and has the following structure:

zϑ :=

(
01/2r(r+1)×ng D+

r (Φ⊗ Ir)
(In ⊗ Φ)Kng (B1 ⊗ Ir)

)(
SB1 0ng×c

0rg×e SΦ

)
. (29)

We have proved the proposition that follows.12

Proposition 2 Given the SVAR in eq. (1) and Assumptions 1-3, consider the identification

of the shocks in ε1,t, i.e. the IRFs in eq. (3) for j = 1, ..., g < n. Let B1 be the n × g
submatrix of B := (B1 : B2), and assume that β1 := vec(B1) satisfies the restrictions

β1 = SB1α, where α is the e × 1 vector (e ≤ ng) of unrestricted elements and SB1 is an

ng × e selection matrix of full column-rank. Let ϑ0 be the true value of ϑ := (α′, ϕ′)′,

where ϑ has dimension (e+ c)× 1. Then:

(i) necessary and sufficient condition for identification is

rank(zϑ0) = e+ c

where zϑ0 is the matrix zϑ in eq. (29) evaluated in a neighbourhood of ϑ0, and is ‘regular’;

(ii) necessary order condition for identification is c+ e ≤ 1/2r(r + 1) + nr.

12As it happens for the necessary and sufficient rank condition in Proposition 1, which is valid up to sign

changes in the columns of the matrix G̃, also in this case, the parameters in Φ and B1 are identified up to sign

normalization, in the sense that if a given matrix Φ̃ satisfies Ξ = Φ̃Φ̃′, also the matrix Φ̃∗ 6= Φ̃, obtained from Φ̃

by simply changing the sign of one of its columns, will satisfy Ξ = Φ̃∗Φ̃∗′. The moment conditions involving the

matrix Σv (the covariance matrix of the filtered external instruments) are not necessary to derive the result in

Proposition 2. It is sufficient to observe that given Σv and Φ, the covariance matrix of measurement errors Σω is

automatically determined.
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According to Proposition 2, the proxy-SVAR is identified (and hence is testable) when e+c <
1
2r(r+1)+nr. In the typical case treated in the literature based on one external instrument and

and one structural shock of interest, r = g = 1, Φ = φ = ϕ is a scalar (c = 1, SΦ := 1), D+
r = 1,

Kn1 = In, and assuming that there are no restrictions on B1 = β1 (SB1 := In) the proxy SVAR

is exactly identified. The Jacobian zϑ in eq. (29) collapses to the (n+ 1)× (n+ 1)

zϑ :=

(
0 0 · · · 0 φ

φIn β1

)

which shows that the condition φ0 6= 0 (Assumption 2(ii)) is necessary and sufficient for the

proxy-SVAR to be identified.13

5.2 Estimation

Provided the necessary and sufficient conditions in Proposition 2 are satisfied, the estimation

of ϑ := (α′, ϕ′)′ can based on the minimization of the ‘distance’ in eq. (28), given a consistent

estimate of ζ, where it is seen that ζ is a function of the reduced form parameters in σ+
η :=

vech(Ση). Thus, in order to obtain ζ, it is necessary to preliminarily estimate the reduced form

model associated with the AC-SVAR system. The the specification steps 1-2 discussed in Section

4.2 are still useful to this purpose.

In Appendix B, we show that under Assumptions 1-3, the (indirect) maximum likelihood

estimator of ζ, ζ̂T = h(σ̂+
η ), is such that

T 1/2(ζ̂T − ζ0)→d N(0a×1, Ωζ) , Ωζ := zλΩλz′λ (30)

where ζ0 := h(σ+
η,0) is the true value of ζ, h(·) is a differentiable vector function and the Jacobian

matrix zλ and the covariance matrix Ωλ depend on the covariance parameters in σ+
η , and can

be estimated consistently given σ̂+
η,T := vech(Σ̂η).

Starting from the result in eq. (30) and given the distance in eq. (28), it seems ‘natural’ to

estimate ϑ by the CMD problem:

min
ϑ

(ζ̂T − g(ϑ))′Ω̂−1
ζ (ζ̂T − g(ϑ)) (31)

where Q(ϑ) := (ζ̂T −g(ϑ))′Ω̂−1
ζ (ζ̂T −g(ϑ)) is a ‘weighted’ distance function. Under Assumptions

1-3, the optimization problem in eq. (31) delivers a consistent asymptotically Gaussian estimator

13The structure of this Jacobian matrix shows clearly that if the relevance parameter, evaluated at its true

value, satisfies the local-to-zero embedding: φ0 := T 1/2%, where % 6= 0 is a constant, the proxy-SVAR is not

identified asymptotically. See Olea et al. (2016) and Lunsford (2015) for robust inferential procedures in these

cases.
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of ϑ, i.e.

T 1/2(ϑ̂T − ϑ0)→d N(0(e+c)×1, Ωϑ) , Ωϑ :=
(
zϑ Ω−1

ζ z′ϑ
)−1

(32)

where the Jacobian matrix zϑ is given in eq. (29) and can be estimated consistently by replacing

B1(α) and Φ (ϕ) with the estimates taken from ϑ̂T := (α̂′T , ϕ̂
′
T )′.

When according to Proposition 2 the model is overidentified, the estimation of ϑ from eq. (31)

delivers automatically a test of overidentifying restrictions because, under the null hypothesis

ζ0 = g(ϑ0), the quantity TQ(ϑ̂T ) converges asymptotically to a χ2(l) random variable with

l := 1/2r(r + 1) + nr − (e + c) degree of freedoms. Our Monte Carlo experiments (reported in

the Technical Supplement to save space) confirm that also in this case the test TQ(ϑ̂T ) rejects

the overidentification restrictions when the external instruments are erroneously assumed valid.

In case of exact identification, or when the overidentification restrictions are not rejected

by the test, the IRFs of interest in eq. (3) can be estimated by replacing Ay with Ây derived

from the AC-SVAR model, and bj with the j-th column of B̂1, for j = 1, .., g, where B̂1 is

reconstructed from β̂1,T :=SB1α̂T . Also in this case, (asymptotic and/or bootstrap) confidence

intervals for the IRFs can be computed by using standard methods, see e.g. Lütkepohl and

Kilian (2017, Ch. 14).

6 The response of uncertainty to real economic activity shocks

In this section, we apply our identification and likelihood-based approach to proxy-SVARs to

analyze empirically whether measures of macroeconomic and financial uncertainty, taken from

Jurado et al. (2015) and Ludvigson et al. (2018), respectively, respond on-impact (other than

with lags) to real economic activity shocks. This analysis finds its root in a recent debate on

the role of uncertainty in the business cycle which attends to establish whether uncertainty is

better approximated as an exogenous source of decline in real economic activity, or rather as

an endogenous response to first-moment shocks; see Ludvigson et al. (2018) for an excellent

review.14 Following the characterization in Ludvigson et al. (2018), uncertainty is considered

‘exogenous’ if it does not respond on-impact (instantaneously) to first-moment shocks (it might

respond, however, with lags), and is considered ‘endogenous’ otherwise. This issue has been

14An established view is that uncertainty is recessionary in presence of real options effects (Bloom, 2009),

precautionary saving and/or financial frictions (e.g. Christiano, Motto and Rostagno, 2014), and that its effects

can be amplified in extreme conditions like high financial stress (e.g. Alfaro et al., 2016; Arellano et al., 2012;

Gilchrist et al., 2014), or the zero lower bound (Basu and Bundick, 2017). Nevertheless, uncertainty appears also

to endogenously increase during recessions, as lower economic growth induces greater dispersion at the micro level

and higher aggregate volatility, and this induces one to consider uncertainty ‘endogenous’, i.e. a consequence, not

a cause, of declining economic activity.
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investigated by small-scale non-recursive SVARs in Ludvigson et al. (2018), Angelini et al.

(2017) and Carriero et al. (2018), using different methods to identify the shocks. These authors

report robust empirical evidence on the exogeneity of financial uncertainty, but mixed empirical

evidence on the exogeneity of macroeconomic uncertainty.

We consider a SVAR for Yt:=(at, UM,t, UF,t)
′, including real economic activity, at, proxied

by the growth rate of the log of the industrial production index, at := ∆ipt, (source Fred), a

measure of macroeconomic uncertainty, UM,t, and a measure of financial uncertainty UF,t. In

particular, UMt is a measure of 1-month ahead macroeconomic uncertainty taken from Jurado

et al. (2015), and UFt is a measure of 1-month ahead financial uncertainty and is taken from

Ludvigson et al. (2018).15 The estimation sample covers the period 2008M1-2015M4 (T = 88

monthly observations) that we term the ‘Great Recession + Slow Recovery’ period.16 This

period is particularly informative to infer whether uncertainty measures respond on-impact to

real economic activity shock. Indeed, the Great Recession + Slow Recovery period broadly

coincides with the zero lower bound constraint on the short-term nominal interest rate. The

argument contends that the zero lower bound and the implied restricted the ability of the

central bank to stabilize the economy by ‘standard’ interventions are possible mechanisms of

‘endogenous’ uncertainty. In particular, given the difficulty by the central bank to offset negative

shocks during the zero lower bound, economic agents expect large dispersion in future economic

growth, see Plante et al. (2018) and Basu and Bundick (2015). According to this view, UMt and

UFt are expected to respond on-impact, not only with lags, to a real economic activity shock.

The specified reduced form VAR for Yt:=(at, UM,t, UF,t)
′ includes a constant and k = 4 lags.

The SVAR is based on ut = Bεt, where ut:=(ua,t, uM,t, uF,t)
′ is the vector of VAR reduced

form disturbances and εt := (εa,t, εM,t, εF,t)
′ is the vector of structural shocks, where εa,t is the

real economic activity shock we are interested in and for which we employ external instruments

(hence g = 1). Thus, we have in mind the partitions εt := (ε1,t, ε2,t)
′, where ε1,t := (εa,t) and

ε2,t := (εM,t, εF,t), and B := (B1 : B2), where B1 is 3×1 (β1 := vec(B1) = B1) and B2 is 3×2. We

are primarily concerned with the identification of the parameters in β1 := (b1,a, b2,a, b3,a)
′ which

capture the instantaneous effects of εa,t on Yt and, more in general, allow to track the dynamic

causal response of Yt+h to εa,t. Our objective is also testing the hypothesis b21 = 0, b31 = 0 of

no instantaneous (on-impact) response of UM,t and UF,t to εa,t.

15These uncertainty measures are estimated as the average of the time-varying volatility, as produced by stochas-

tic volatility models, of the forecast error of each series in a large panel of macroeconomic (UMt) and financial

variables (UFt), conditional on information available.
16We do not consider the entire period 1960-2015 as it is done in e.g. Ludvigson et al. (2018), because the

empirical evidence reported in Angelini et al. (2017) suggests that the unconditional VAR covariance matrix of

Yt:=(at, UM,t, UF,t)
′, Σu, is subject to at least two structural breaks during the period 1960-2015.
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Imagine for the moment that one valid external instrument Zt is used for εa,t , i.e. r =

g = c = 1 and Φ = φ = ϕ. According to Proposition 1, no other shock other than εa,t

can be identified as it is not satisfy the necessary identification order condition. According to

Proposition 2, ϑ := (β′1, ϕ)′ = (b1,a, b2,a, b3,a, ϕ)′, and conditional on the validity of the rank

condition, we have an exactly identified proxy-SVAR (c+ e = 1 + 3 = 1/2r(r+ 1) +nr = 1 + 3).

Furthermore, adding the restrictions b2,a = 0, b3,a = 0 implies 2 testable over-identification

restrictions (c+ e = 1 + 1 < 1/2r(r + 1) + nr = 1 + 3). Observe that in this case, the matrix G̃

in eq. (15) takes the form

G̃ :=

(
B1 B2

Φ 0r×(n−g)

0n×r

P$

)
=


b1,a

b2,a

b3,a

ϕ

b1,M b1,F

b2,M b2,F

b3,M b3,F

0 0

0

0

0

σ$


where σ2

$ ≡ Σ$, so that it is clearly seen that there is not enough information to identify B2

other than B1. Consider now the case in which r = 2 > g valid instruments are used for εa,t, so

that the matrix G̃ in eq. (15) now reads

G̃ :=

(
B1 B2

Φ 0r×(n−g)

0n×r

P$

)
=



b1,a

b2,a

b3,a

ϕ1

ϕ2

b1,M b1,F

b2,M b2,F

b3,M b3,F

0 0

0 0

0 0

0 0

0 0

p$1,1 0

p$2,1 p$2,2


(33)

and ϕ1 := E(vZ1,tεa,t) and ϕ2 := E(vZ2,tεa,t) are the relevance parameters, and the p$i,j are

the elements of the Cholesky factor of Σ$. It is seen that also in this case the necessary

order condition of Proposition 1 fails and there is not enough information to identify B2 other

than B1.17 According to Proposition 2, conditional on the validity of the rank condition, the

proxy-SVAR is overidentified with 1/2r(r + 1) + nr − (c + e) = 3 + 6 − (2 + 3) = 4 testable

overidentification restrictions even when β1 is left unrestricted. Imposing the further restrictions

b2,a = 0, b3,a = 0 (c = 2, e = 1) leads to 6 overidentification restrictions.

Based on these considerations, we decided to exploit two valid external instruments to iden-

tify the shock εa,t (r = 2 > g) in the AC-SVAR model, which amounts to identify the first

17In the Technical Supplement we show that adding e.g. a further instrument in the system, say Z3t, which

is correlated with the macroeconomic uncertainty shock εM,t and is uncorrelated with the financial uncertainty

shocks εF,t and the real economic activity shock εa,t, leads to an AC-SVAR model for which the necessary and

sufficient identification conditions of Proposition 1 are satisfied and hence it is possible to identify also the effects

of the macroeconomic and uncertainty shocks in a multiple shocks approach.
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column of G̃ in eq. (33). The two external instruments are constructed as follows. Let hourst

be the log of hours worked and capt the log of the index of total capacity utilization (source

FRED database). We then consider the linear regression model

Z∗t = δ0 + δ1Goldt +Rt , t = 1, ..., T (34)

where Z∗t := (∆hourst,∆capt)
′ and Goldt is the ‘price of gold’ variable build in Piffer and

Podstawski (2018) as a proxy of uncertainty shocks. In this regression, δ0 is an r × 1 constant,

δ1 is an r × 1 vector of slope parameters and Rt is the vector of disturbances. We estimate

the regression model in eq. (34) by OLS on the period 2008M1-2015M4 and take the residuals

R̂t as external instruments for the real economic activity shock, i.e. Zt = R̂t = (Z1,t, Z2,t)
′,

t = 1, ..., T. These two variables are by construction expected to be correlated with the real

economic activity shock, and are expected to be ‘orthogonal’ to Goldt and therefore, following

the arguments in Piffer and Podstawski (2018), they should not reflect any significant correlations

with the uncertainty shocks confined in ε2,t := (εM,t, εF,t)
′.

Given these two instruments, and following the specification steps 1-2 in Section 4.2, we

estimate an m-dimensional (m := n + r = 5) reduced form system for Wt := (Y ′t , Zt)
′ :=

(at, UM,t, UF,t, Z1,t, Z2,t)
′, including a constant. This provides the reduced form of our AC-

SVAR model. The specification analysis lead to a system based on ` := `op = 4 lags, where

in particular the Yt-equations do not depend on Zt as they correspond to those of the original

SVAR model (as implied by the structure of system (14)), while the two Zt-equations of the

system depend on two lags of Zt (p = 2) and four lags of Yt.

The upper panel of Table 1 summarizes the maximum likelihood estimates of the reduced

form covariance matrix Ση, with associated standard errors (main diagonal and upper triangle)

and the implied correlations (lower triangle). (We do not report the estimated autoregressive

coefficients in Ψ̃ and those in Υ̃ to save space). The correlations which are significant at the 5%

level of significance are denoted with asterisks. Table 1 also summarizes the value of the maxi-

mized log-likelihood function, see eq. (21), and some residuals diagnostic tests. The diagnostic

tests show that the disturbances of the estimated model are uncorrelated and non-Gaussian and,

notably, are not affected by ARCH-type components.

The correlations estimated in Table 1 provide some indirect prima facie reduced form evi-

dence about the relevance and the exogeneity of the selected instruments: it can be noticed that

the instrument Z1t (∆hourst ‘purged’ from Goldt) is significantly correlated with the disturbance

ûa,t (0.41) and is not significantly correlated with the disturbances ûM,t and ûF,t (0.09 and 0.06,

respectively); likewise, the instrument Z2t (∆capt ‘purged’ from Goldt) is significantly correlated

with the disturbance ûa,t (0.76) and is not significantly correlated with the disturbances ûM,t

and ûF,t (-0.05 and 0.12, respectively).
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The lower panel of Table 1, left side, reports the CMD estimates of the parameters ϑ :=

(α′, ϕ)′ obtained by the partial shock approach discussed in Section 5.2, see eq. (31). In this case

the elements of β1 are left unrestricted, hence β1 = vec(B1) = α (SB1 := I3). The estimated

ϑ̂T := (b̂1,a,T , b̂2,a,T , b̂3,a,T , ϕ̂
′
T )′ is reported in the table with associated standard errors. It

is seen that while the estimated relevance parameters ϕ1 and ϕ2 are strongly significant, the

estimated coefficients b2,a and b3,a, which capture the on-impact effect of the real economic

activity shock on macroeconomic and financial uncertainty have negative sign (as expected)

but are not significant at the 5% nominal level of significance. From the estimates of ϕ1 and

ϕ2, we derive the following correlations related to the relevance condition: Ĉorr(Z1t, εa,t) =

0.156/(0.13)1/2 = 0.43∗ and Ĉorr(Z2t, εa,t) = 0.422/(0.29)1/2 = 0.78∗. The test statistic TQ(ϑ̂T )

for the 4 overidentification restrictions, reported in Table 1 below estimated parameters, is equal

to 2.39 and has an (asymptotic) p-value of 0.81 which lends ample support to the estimated

proxy-SVAR.

Next, we move to the right side of the lower panel of Table 1. In this case, the parameters in β1

are estimated by imposing the restrictions b2,a = 0, b3,a = 0 of no response of macroeconomic and

financial uncertainty to the identified real economic activity shock. In practice, β1 is restricted

as β1 = SB1α, where S′B1
:= (1, 0, 0) and the parameter α := b1,a captures the on-impact effect

of one-standard deviation real economic activity shock on industrial production growth; we use

the notation ϑ̂cT := (α̂′TS
′
B1
, ϕ̂′T )′ to indicate the estimates obtained in this case from the CMD

problem in eq. (31). The restrictions b2,a = 0, b3,a = 0 are tested by computing a LR-type

test statistic constructed as TQ(ϑ̂cT ) − TQ(ϑ̂T ), where TQ(ϑ̂T ) refers to the model estimated

with β1 unrestricted (left-bottom side of Table 1) and TQ(ϑ̂cT ) refers to the model estimated

with b2,a = 0, b3,a = 0 imposed (right-bottom side of Table 1). The test statistic is equal to

2.14 and has an (asymptotic) p-value of 0.34 which permits to accept the hypothesis that the

chosen measures of macroeconomic and financial uncertainty do not respond on-impact to the

real economic activity shock.

The IRFs are are plotted in Figure 1. These are estimated under the null b2,a = 0, b3,a = 0,

therefore they are obtained from eq. (3) by replacing Ay with the maximum likelihood estimate

Ây derived from the AC-SVAR model, and B1 = β1 = b1 with β̂c1,T := SB1α̂T . The graphs track

the dynamic responses of UM,t+h and UF,t+h to one-standard deviation real economic activity

shock for h = 0, 1, 2, ..., hmax = 60 months (5 years). Considering the results in Brüggemann et

al. (2016) and the absence of ARCH-type components in the reduced form disturbances detected

in the upper panel of Table 1, the 90% bootstrap confidence intervals for the IRFs reported in

Figure 1 are computed through an iid nonparametric bootstrap procedure.

Figure 1 shows that given a one-standard deviation real economic activity shock, (i) macroe-
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conomic and financial uncertainty do not respond significantly on-impact (as already seen from

Table 1); (ii) macroeconomic and financial uncertainty decline significantly one month after the

shock; (3) the effect of the real economic activity shock is absorbed within two periods (months),

in the sense that the responses of macroeconomic and financial uncertainties are not significant

for h = 2, 3....

Overall, the results discussed in this empirical illustration rule out the hypothesis that

macroeconomic and financial uncertainty respond on-impact to a real economic activity shock on

the Great Recession+Slow Recovery period. This evidence confirms the results in Angelini et al.

(2017), who identify the structural shocks by using the identification-through-heteroskedasticity

approach developed in Bacchiocchi and Fanelli (2015) and Bacchiocchi et al. (2018). It also lines

up with Carriero et al. (2018), who identify the structural shocks by using a stochastic volatility

approach (using both monthly and quarterly variables) but using measures of macroeconomic

and financial uncertainty one at a time. Carriero et al. (2018) report mild evidence for the

endogeneity of uncertainty, and this evidence is limited to financial uncertainty and, mainly, to

monthly variables. Finally, our empirical results are partially consistent with Ludvigson et al.

(2018), who report that sharply higher uncertainty about real economic activity in recessions is

an endogenous response to other shocks, while uncertainty about financial markets is a likely

source of the fluctuations. Ludvigson et al. (2018) focus on the period 1960-2015 and identify

the structural shocks through a set-identification approach where direct constraints are imposed

on the magnitude of the structural shocks in correspondence of some extraordinary events such

as e.g. the ‘Black Monday’ of October 1987, or the 2007-2009 financial crisis.

7 Concluding remarks

We have provided general identification results for proxy-SVARs for the case in which r external

instruments are used for g ≥ 1 structural shocks of interest. In the multiple shocks approach,

the identification and maximum likelihood estimation of proxy-SVARs can be analyzed by using

standard methods with minor adaptations. In the partial shock approach, the identification

analysis and estimation of proxy-SVARs can be framed in a classical minimum distance approach,

where maximum likelihood estimation is used to obtain consistent estimates of a set of reduced

form coefficients. In both approaches, overidentified proxy-SVARs can be easily tested against

the data.

The usefulness of the suggested approach has been illustrated empirically by analyzing

whether commonly employed measures of macroeconomic and financial uncertainty respond

on-impact to real economic activity shocks in the U.S. after the Global Financial Crisis. In
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particular, we have used two external instruments to identify the real economic activity shock

and tested the empirical validity of the so-obtained overidentified proxy-SVAR. Empirical re-

sults suggest that both macroeconomic and financial uncertainty respond significantly to the

identified real economic activity shock one month after the shock, not on-impact. This evidence

enriches an ongoing empirical debate on the role of uncertainty in the business cycle.

Appendix A: proof of Proposition 1

Part 1.(i) The proof follows from a straightforward application of the reults in eq.s (TS.2)-(TS.3)

of the Technical Supplement to the the matrix

G̃ :=

(
B 0n×g

HΦ P$

)
=

(
B1 B2

Φ 0r×(n−g)

0n×r

P$

)
.

In particular, define them2×1 vector γ := (vec(B1)′, vec(B2)′, vec(Φ)′, vec(0r×(n−g))
′, vec(0n×r)

′, vec(P$)′)′

which contains the same information as vec(G̃) but in a different order. It is seen that the linear

relationship between γ and θ := (β′, ϕ′, $′)′ ≡ (β′1, β
′
2, ϕ
′, $′)′ is given by

γ =



Ing 0ng×n(n−g) 0ng×c 0ng× 1
2
r(r+1)

0n(n−g)×ng In(n−g) 0n(n−g)×c 0n(n−g)× 1
2
r(r+1)

0r2×ng 0r2×n(n−g) SΦ 0r2× 1
2
r(r+1)

0r(n−g)×ng 0r(n−g)×n(n−g) 0gr(n−g)×c 0r(n−g)× 1
2
r(r+1)

0rg×ng 0nr×n(n−g) 0nr×c 0nr× 1
2
r(r+1)

0r2×ng 0r2×n(n−g) 0r2×c Dr


θ (35)

which we simply in the expression γ = Ωθ. Then, introduce the m2 ×m2 permutation matrix

P such that:

vec(G̃) = Pγ

where it is seen that the matrix P applied to γ returns vec(G̃). By pre-multiplying both sides

of eq. (35) by P yields the linear restrictions

vec(G̃) = Pγ = PΩθ = SG̃θ

where the selection matrix SG̃ is expressed as SG̃ := PΩ (note that sG̃ = 0m2×1 in this setup).

The result is thus obtained.

Part 1.(ii). The necessary order condition follows from the fact that the matrix D+
m(G̃0 ⊗

Im)SG̃ is 1
2m(m+ 1)× aG̃, where aG̃ := dim(θ) = n2 + c+ 1

2r(r + 1). �
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Appendix B: the asymptotic distribution of ζ̂T

In this Appendix we discuss in detail the result used in eq. (30) of the paper. The starting

point is the asymptotic normality of the maximum likelihood estimator of the reduced form

parameters of the AC-SVAR model under Assumption 1-3. More precisely, let σ+
η,0 be the true

value of σ+
η := vech(Ση); then, from the (Gaussian) maximum likelihood estimation of the

reduced form of the AC-SVAR model, and for T →∞,

T 1/2(σ̂+
η,T − σ

+
η,0)→d N(01/2m(m+1)×1, Ωη) , Ωη := 2D+

m(Ση ⊗ Ση)(D
+
m)′. (36)

where σ̂+
η,T is derived either from the maximization of the log-likelihood in eq. (21). The asymp-

totic covariance matrix Ωη can be estimated consistently by Ω̂η,T := 2D+
m(Σ̂η,T ⊗ Σ̂η,T )(D+

m)′.

Now define now the 1/2m(m + 1) × 1 vector λ := (vech(Σu)′, vec(Σv,u)′, vech(Σv)
′)′, which

contains the same elements as σ+
η disposed in different order, so that λ = Pσσ+

η , where Pσ is a

permutation matrix. Given eq. (36) and Assumptions 1-3:

T 1/2(λ̂T − λ0)→d N(01/2m(m+1)×1, Ωλ) , Ωλ := PσΩηP ′σ (37)

where λ̂T :=Pσσ̂+
η,T , λ0 := Pσσ+

η,0 and Ωλ can be estimated consistently by Ω̂λ,T := PσΩ̂η,TP ′σ.

The a × 1 vector ζ := (vech(Ξ)′, vec(Σv,u))′ in eq. (28) depends on λ, i.e. ζ = h(λ), where

h(·) is a differentiable vector function. Thus, ζ̂T = h(λ̂T ), ζ0 = h(λ0) and from eq. (37) and

the delta-method, ζ̂T is a maximum likelihood estimator and is asymptotically Gaussian with

covariance matrix Ωζ := zλΩλz′λ, where the a × 1/2m(m + 1) Jacobian matrix zλ := ∂ζ/∂λ′

is given by:

zλ :=

(
D+
r (Σv,uΣ−1

u ⊗ Σv,uΣ−1
u )D+

n
′ D+

r (Σv,uΣ−1
u ⊗ Ir)

0nr×1/2n(n+1) Inr

01/2r(r+1)×1/2r(r+1)

0nr×1/2r(r+1)

)
.
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Brüggemann, R., Jentsch, C. and Trenkler, C. (2016), Inference in VARs with conditional

volatility of unknown form, Journal of Econometrics 191, 69-85.

Caggiano, G., E. Castelnuovo, and G. Pellegrino, (2017), Estimating the real effects of uncer-

tainty shocks at the Zero Lower Bound, European Economic Review 100, 257-272.

Caldara, D. and Herbst, E. (2018), Monetary policy, real activity, and credit spreads: evidence

from Bayesian proxy SVARs, American Economic Journal: Macroeconomics, forthcoming.

Caldara, D. and Kamps, C. (2017), The analytics of SVARs: A unified framework to measure

fiscal multipliers, Review of Economic Studies 84, 1015-1040.

29



Carriero, A., Mumatz, H., Theodoritis, K. and Theophilopoulou, A. (2015), The impact of

uncertainty shocks under measurement error: A proxy SVAR approach, Journal of Money,

Credit, and Banking 47, 1223-1238.

Carriero, A., Clark, T. E. and Marcellino, M. (2018), Endogenous uncertainty?, Federal Reserve

Bank of Cleveland, Working Paper No. 18-05.

Carsten, J. and Lunsford, K.G. (2016), Proxy SVARs: Asymptotic theory, bootstrap infer-

ence, and the effects of income tax changes in the United States, Federal Reserve Bank of

Cleveland Working Paper, No. 16-19.

Christriano, J.C., Motto, R. and Rostagno, M. (2014), Risk shocks, American Economic Review

104, 27–65.

Hamilton, J. D. (2003), What is an oil shock?, Journal of Econometrics, 113, 363–98.

Gertler, M. and Karadi, P. (2015), Monetary policy surprises, credit costs, and economic ac-

tivity, American Economic Journal: Macroeconomics 7, 44-76.

Hausman, J.A. and Taylor, W.E. (1983), Identification in linear simultaneous equations models

with covariance restrictions: an instrumental variables interpretation, Econometrica 51,

1527-1549.

Jentsch, C. and Lunsford, K.C. (2016), Proxy VARs: Asymptotic theory, bootstrap inference

and the effects of income tax changes in the united states, Federal Reserve Bank of Cleve-

land, Working Paper No. 16-19.

Jurado, K., Ludvigson, S.C. and Ng, S. (2015), Measuring uncertainty, American Economic

Review 105(3), 1177-1216.

Kilian, L. (2008), The economic effects of energy price shocks, Journal of Economic Literature

46, 871–909.

Leduc, S. and Liu, Z. (2016), Uncertainty shocks are aggregate demand shocks, Journal of

Monetary Economics 82, 20-35.

Ludvigson, S.C., Ma, S. and Ng, S. (2017), Shock restricted Structural Vector-Autoregressions,

Working Paper, version March 1, 2017.

Ludvigson, S.C., Ma, S. and Ng, S. (2018), Uncertainty and business cycles: exogenous impulse

or endogenous response? Working Paper, draft dated February 15, 2018.

30



Lunsford, K. G. (2015), Identifying Structural VARs with a proxy variable and a test for a

weak proxy, Federal Reserve Bank of Cleveland, Working Paper No. 15-28.

Lütkepohl, H. (1993), Introduction to Multiple Time Series Analysis, Second edition, Springer-

Verlag.

Lütkepohl, H. and Kilian, L. (2017), Structural Vector Autoregressive Analysis, Cambridge

University Press.

Magnus, J.R. and Neudecker, H. (1999), Matrix differential calculus with applications in Statis-

tics and Econometrics, Wiley & Sons, Mertens, K. and Ravn, M. (2013), 2nd edition.

Mertens, K. and Ravn, M. (2012), Empirical evidence on the aggregate effects of anticipated

and unanticipated U.S. Tax Policy Shocks, American Economic Journal: Economic Policy

3, 145-181.

Mertens, K. and Ravn, M. (2013), The dynamic effects of personal and corporate income tax

changes in the United States, American Economic Review 103, 1212-1247.

Mertens, K. and Ravn, M. (2014), A reconciliation of SVAR and narrative estimates of tax

multipliers, Journal of Monetary Economics 68, S1-S19.

Nakata, T. (2017), Uncertainty at the zero lower bound, American Economic Journal: Macroe-

conomics 9, 186–221.

Olea, J.L.M., Stock, J.H. and Watson, M.W. (2016), Inference in SVARs identified with an

external instrument, Working Paper.

Paul, P. (2018), The time-varying effect of monetary policy on asset prices, Federal Reserve

Bank of San Francisco, Working Paper No. 2017-09.

Piffer, M. and M. Podstawski (2018), Identifying uncertainty shocks using the price of gold,

The Economic Journal 121, forthcoming.

Plante, M., Richter, W.A. and Throckmorton, N.A. (2018), The Zero Lower Bound and en-

dogenous uncertainty, The Economic Journal, forthcoming.

Ramey, V. (2016), Macroeconomic shocks and their propagation, Handbook of Macroeconomics

Vol. 2, 71-162

Rubio-Ramı́rez, J. F., Waggoner, D.F. and Zha, T. (2010), Structural Vector Autoregressions

and algorithms for inference, Review of Economic Studies 77, 665-696.

31



Stock, J.H (2008), What’s new in Econometrics: Time Series, Lecture 7, NBER Summer Insti-

tute, available at http://www.nber.org/minicourse 2008.html

Stock, J.H and Watson, M.W. (2012), Disentangling the channels of the 2007-2009 recession,

Brooking Panel of Economic Activity, Conference Paper March 22-23.

Stock, J.H. and Watson, M.W. (2018), Identification and estimation of dynamic causal effects

in macroeconomics using external instruments, Economic Journal, forthcoming.

32



Table 1. Estimated AC-SVAR

Estimation period: 2008M1-2015M4

Reduced form

Σ̂η/Ĉorr :=



0.3781
0.0403

−0.0012
0.0004

−0.0012
0.0010

−0.2142∗ 0.0001
0.0000

0.0001
0.0000

−0.0898 0.3985∗ 0.0005
0.0000

0.0912
0.0181

0.2513
0.0313

0.0003
0.0003

−0.0003
0.0004

0.0005
0.0006

0.0014
0.0009

0.4111∗ 0.0932 0.0631

0.7606∗ −0.0532 0.1178

0.1301
0.0139

0.1001
0.0164

0.5165∗ 0.2887
0.0308


Log-Likelihood = 379.7575

Equation at: AR3 = 1.7110[0.6345], NDH = 52.3638[0.0000], ARCH3 = 7.7625[0.0512]

Equation UM,t: AR3 = 0.3521[0.9500], NDH = 0.6118[0.7365], ARCH3 = 1.2837[0.7330]

Equation UF,t: AR3 = 1.1343[0.7688], NDH = 2.2063[0.3318], ARCH3 = 0.7309[0.8659]

System: AR3 = 113.5929[0.7587], NDH = 63.5439[0.0000]

Structural form

b2,a = b3,a = 0

ϑ̂T :=



b̂1,a,T

b̂2,a,T

b̂3,a,T

ϕ̂1,T

ϕ̂2,T


=



0.5959
0.0468

−0.0006
0.0098

−0.0032
0.0148

0.1559
0.0447

0.4219
0.0667


ϑ̂cT :=



b̂c1,a,T

0

0

ϕ̂1,T

ϕ̂2,T


=



0.6031
0.0445

0

0

0.1597
0.0406

0.4021
0.0672


TQ(ϑ̂T ) = 2.3884[0.8142] TQ(ϑ̂cT ) − TQ(ϑ̂T ) = 2.1426[0.3426]

NOTES: Upper panel: Maximum Likelihood estimates of Ση with associated standard errors

and some diagnostic tests (the numbers in italics are the correlations and asterisks ‘∗’ denote

the statistically significance at 5% level). ‘AR3’ is an LM-type test for the absence of residual

autocorrelation against the alternative of autocorrelated VAR disturbances up to 3 lags; ‘NHD’

is the Doornik-Hansen multivariate (univariate) test for Gaussian disturbances; ‘ARCH3’ is the

Engle’s ARCH-type test for the absence of conditional heteroskedasticity up to 3 lags. Numbers

in brackets are p-values. ‘Log-Likelihood’ is the value of the loglikelihood function in eq. (21).

Lower panel: estimates of ϑ := (β′1, ϕ)′ with associated standard errors. ‘TQ(ϑ̂T )’ is the test

statistic for the over-identification restriction and ‘TQ(ϑ̂cT ) − TQ(ϑ̂T )’ is the test statistic for

b2,a = 0 and b3,a = 0, where Q(ϑ̂T ) is in eq. (31).
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