
Quality of Service in the Congestible Internet:
a Differential Game with Capacity Investments

Luca Colombo

University of Bologna, Department of Economics

Strada Maggiore 45, I-40125 Bologna, Italy

email: colombo@spbo.unibo.it; fax: +39-51-2092664

September 09, 2003

Abstract

We take a differential game approach to study the dynamic market interaction

between two Internet Service Providers (ISP) offering services characterized by

different quality levels. Web congestion is accounted for, consisting in the fact

that for a given network capacity, i.e. for given amount of resources to be shared,

the quality of services decreases with the number of customers. ISP firms, by

accumulating capital, may invest in order to increase their own network capacity.

In contrast with the acquired wisdom, we prove that there exists an admissible in-

tertemporal parameters subset wherein the low quality firm performs better than

the high quality firm in terms of equilibrium profits. Furthermore, we establish

conditions under which the low quality firm becomes a natural monopolist. Fi-

nally, we prove that consumers may be better off under cooperative rather than

under non cooperative play.

JEL Classification: D43, D62, L13.

Key Words: differential games, Internet, quality of service, network externali-

ties, congestion.

Aknowledgments: I wish to thank Luca Lambertini for insightful comments and sug-

gestions. The financial support by the University of Bologna and the Italian Ministry

of Education within the 60% scheme, year 2003, is also aknowledged. The usual dis-

claimer applies.

1



1. Introduction

Many network goods, among which communication and information network goods, feature

two characteristics: (i) there are positive network externalities, consisting in the fact that the

utility an user can draw from the purchaise of such goods is increasing in the total number

of others doing likewise; (ii) there is any intrinsic utility that can be justified by itself

consumption, since being connected to the network when none can be reached is completely

unuseful. Furthermore, some of them may suffer from congestion phenomena, to the extent

to which users share a common technology. In this respect, think about phones, faxes and

telegraphs. These are circuit-switched communication services, which means that a fixed

percentage of network resources is reserved for the call, and no other call can use those

resources until the original connection is closed. But emails, Internet telephony, Internet fax

and video conferencing, to name a few, make use of the Internet, which is a shared-media

technology. As a consequence, these are services subject to web congestion: for a given

network capacity, i.e. for given amount of resources to be shared, the quality of service

(QoS) decreases as the traffic flow increases.1

Nowadays, we register an exponential increase in the demand for communication services

through the Internet, and we expect it to grow more and more in next years. The Federal

Communication Commission reports that on the Internet the volume of traffic is doubling

every 90-100 days, while the growth rate of telephone traffic is around 5 per cent a year!

Moreover, we observe an increase in the demand for new services like internet telephony,

video-conferencing and on-line multiplayer games, which require a much larger band-width

than simple emails or web chats do. All these factors, make web congestion a no more

negligeable danger as far as sustainable web growth is concerned.2

Ever since Rohlfs’ contribution (1974), the economic literature dealing with network

industries has dramatically grown.3 Several pricing mechanism have been proposed in order

to cope with congestion, from flat pricing to much more complex schemes based on auctions

over packets or on priority pricing.4 However, the problem of traffic ”accountability” on

the Web has prevented regulators from their practical implementation. On the supply side,

1 The quality of service on the Web can be measured as the expected waiting time or the expected loss rate
for data transfers.
2 Furthermore, the transmission protocol adopted for the Internet was not engineered to manage congestion
effects.
3 An exhaustive survey on markets characterized by network effects is in Katz and Shapiro (1994). For a
good exposition of many problems concerning competition and regulation in Telecommunication Industries
see Laffont and Tirole (1999) and Shy (2001). A focus on information network goods is in Shapiro and
Varian (1999).
4 See DaSilva (2000) and Falkner (2000) et al. for surveys on congestion pricing.
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the issue of capacity upgrades as a way to match the increasing demand has been exlored

by Mackey-Mason and Varian (1995), within a static setting. As to the interplay between

network effects and the provision of product quality, contributions have been made by Baake

and Boom (2001), Bental and Spiegel (1995) and Lambertini and Orsini (2001), either in

duopoly or in monopoly models. With reference to the Internet, Crémer et al. (2000)

and Laffont et al. (2001) have focussed on positive network externalities, while Gibbons

et al. (2000) and Mason (2000), have shed some light on congestion phenomena under

competition.5

To the best of our knowledge, little has been done to gather both positive and negative

network externalities in a unified framework. Yet, it seems to us that the comprehension of

congestion effects be essential to completing the broad economic picture referred to network

goods, both on positive and normative standpoint. In addition to this, despite their actual

relevance, very few papers have studied the economic incentives for firms to invest in network

capacity in relation with the choice of which variety to offer.

Aiming to provide a theoretical contribution in these directions, we study a differen-

tial duopoly game where firms, either non cooperatively or cooperatively, offer informa-

tion/communication services characterized by different qualitity levels through congestible

networks and, by accumulating capital, invest in order to improve their own transmission

technologies. This is equivalent to building up network capacity: if for a given data pack-

age to be transferred less common resources are needed, new customers may enter without

negatively affecting the conditions of others’ usage.

We assume that heterogeneous consumers base their choice of which services subscribing

to on the connection price and the quality of services offered. Consumers’ decisions are also

based on the expected number of subscribers to each networks, with expectations supposed

to be rational. In line with the existing static literature on product quality provision in

oligopoly (Gabszewicz and Thisse, 1979, 1980; Shaked and Sutton, 1982, 1983; Lehmann-

Grube, 1997, inter alia), we show that the high quality firm serves more customers and invests

more than the low quality firm. However, the order relationship between profits can take

a different sign than the one we are accomplished with from the aforementioned literature.

More precisely, there exists an admissible intertemporal parameters subset wherein the low

quality firm performs better than the high quality firm in terms of equilibrium profits. This

occurs whenever future profits matter enough. Moreover, we argue that it may be the case

in which the low quality firm becomes a natural monopolist. As to the cooperative play, we

5 More technical literature has studied several protocols to cope with web congestion. For an easy to read
exposition of some relevant issues see Vorthman (1999) and the references therein. At a level more tailored
to telecommunications engineers, see Kohler et al. (2003).
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find that the multi-product cartel invests less, sells less, and provides lower quality levels of

both varieties than the duopoly does.

Before turning to the model formulation, we would like to underline that, although our

leading example is the Internet, the theoretical framework provided in this paper could be

applied to the studying of all those markets for vertically differentiated goods characterized

by positive network externalities and congestion phenomena, where firms invest so as to

increase capacity.

The remainder of this paper is structured as follows: the model is laid out in section 2;

section 3 deals with non cooperative play, while section 4 deals with cooperative play, i.e. a

full cartelization. Concluding remarks are in section 5.

2. Model Formulation

Time is continous and, as usual, indicated by t. At each t ∈ [0,∞) a market for network

services exists. Let this market be supplied by two single-product firms offering network

services of on-net quality qi (t) in a number of units xi (t) at a connection price pi (t), with

i = {H,L}, ∞ > qH (t) ≥ qL (t) ≥ 0 ∀t. For the sake of simplicity, we assume that the

off-net quality is nil, meaning that consumers’ satisfaction from joining network i is totally

independent from network j. This is the same assumption as in Mackey-Mason and Varian

(1995). Moreover, we abstract from the presence of switching costs, so customers that, as

time goes by, switch from one variety to the other, bear any disutility.6 Each consumer

is characterized by a willingness to pay θ, uniformly distributed over the support [θ − 1, θ],

with θ > 1. Without any loss of generality, assume f(θ) = 1, so that consumers’ population

is normalized to 1.7

The situation modelled here is one where consumers utility from subscribing to a given

network service is positively affected by the expected number of others subscribing to the

same. We define the instantaneous net surplus a consumer of type θ draws from the variety

characterized by qi (t) as:

Uθ (t) =


[θ + qH(t)− pH(t)]x

e
H (t) if she subscribes to service H

[sθ + qL(t)− pL(t)]x
e
L (t) if she subscribes to service L

0 if she does not subscribe to any service

(1)

where xe
i (t) is consumers’ expected number of subscribers to service i at time t, and s is a

time-invariant real parameter. It is worth noting that, in order to ensure a higher willingness

6 For a good survey on consumers’ switching costs see Klemperer (1995).
7 At each point in time, each consumer buys at most one unit of the preferred quality. This rules out the
use of second-degree price discrimination.
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to pay for the high quality service, s ∈ (0, xe
H (t) /xe

L (t)).
8 (1) is such that if a consumer

subscribe to a service but only a negligible part of the population does likewise, her utility

tends to zero. This amounts to saying that the intrinsic utility that can be justified by itself

consumption is nil.9

In order to derive the expressions of market demands, we compute the threshold of θ

which characterizes the consumer who is indifferent between subscribing to the high quality

service and subscribing to the low quality service:

θ̂ (t) =
xe
H (t) (pH (t)− qH (t))− xe

L (t) (pL (t)− qL (t))

xe
H (t)− sxe

L (t)
(2)

and the one which characterizes the consumer who is indifferent between subscribing to the

low quality service and not subscribing at all:

θ̃ (t) =
pL (t)− qL (t)

s
(3)

The direct demand system follows:

xH (t) = θ − θ̂ (t) (4)

xL (t) = θ̂ (t)− θ̃ (t) (5)

Notice that θ̃ (t) does not contain neither xe
L nor xe

H , implying that the individual decision

whether to subscribe to service L, contrasted with the alternative not to subscribe to any

service, does not depend on others’ decisions. As to θ̂ (t), things are more involved, in that

it clearly becomes crucial the way consumers form their expectations. In this respect, let us

make the following assumption:

Axiom 1 Consumers have a perfect foresight. Formally: xe
i (t) = xi (t) ∀t, i = {H,L}.

The above axiom guarantees that, in the fixed-point equilibrium, expectations about

prices and network sizes turn out to be correct.

In order to deal with quantity competition, we need to explicitly solve the system (4-5)

for prices. This can be done as long as partial market coverage prevails, which amounts to

requiring that θ̃ (t) > 0:

pH(t) = θ + qH(t)− xH(t)− s
[xL (t)]

2

xH (t)
(6)

8 Parameter s is so introduced in order not to restrict the spectrum of admissible cases to x
e

H
≥ x

e

L
.

9 Such an assumption is particularly appropriate for information and communication networks.
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pL(t) = qL (t) + s
[
θ − xH (t)− xL (t)

]
(7)

The above demand system is well specified iff θ̂ (t) > θ̃ (t). From a direct comparison between

the two thresholds, it is easy to assess that last inequality holds for all s ∈ (0, xH (t) /xL (t)),

that is, in the entire admissible parameter range. Notice also that, in this range, pH(t) and

pL(t) are always positive.

On the supply side, production entails the following instantaneous cost, convex in the

current quality level:

Ci (t) = cxi (t) + [qi (t)]
2 (8)

Since (8) is separable in xi (t) and qi (t), quality improvements entail fixed costs.10 Without

any loss of generality, we normalize marginal costs to zero.

Instantaneous profits then write:

Πi(t) = pi(t)xi (t)− [qi (t)]
2 − [ki (t)]

2 (9)

where [ki (t)]
2 is the instantaneous quadratic cost of investing to build up own network

capacity, ki (t)being the amount of capital devoted by firm i at time t.

We assume that the evolution of QoS depends positively from the investment of a firm

in its network capacity and negatively from the total amount of consumers using the same

network. Consider the following linear state equation:

∂qi (t)

∂t
=

·

qi (t) = ki(t)− δxi(t) (10)

where δ > 0 is the constant decay rate. (10) reflects the basic congestion property of com-

munication and information networks: for a given network capacity, the higher the number

of customers using the network (more precisely, the more data packages are transferred),

the higher the expected delay or the loss rate. On the other hand, for a given number of

customers using the network, the larger the network capacity, the lower the expected delay

or the loss rate. It is worth considering the above kinematic equation together with (1).

A given increase in xe
i (t) yields two opposite effects: (i) a direct increase in Uθ (t), i.e. a

positive network effect; (ii) an indirect decrease in Uθ (t) due to a decrease in qi(t), i.e. a

congestion effect.

The object of firm i is to maximize the present value of its profit stream over an infinite

time horizon:

Πi(t) =

∫
∞

0

πi(t)e
−ρtdt (11)

10For models where quality improvements entail fixed costs see Aoki and Prusa (1997) and Lehmann-Grube
(1997). Motta (1993) provides a comparative evaluation between variable and fixed costs.
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w.r.t. controls xi(t) and ki(t), under the constraint given by (10). The discount rate ρ > 0

is assumed to be constant and common to both firms.

In order to evaluate the industry performance in terms of welfare, we adopt the following

welfare function:

W (t) = ΠH(t) + ΠL(t) + CS(t) (12)

where CS(t) is the instantaneous consumer surplus:

CS(t) =

θ∫
θ̂

UH (t) dθ +

θ̂∫
θ̃

UL (t) dθ = xHsx
2

L +
1

2

(
x3

H + sx3

L

)
(13)

3. Markov Perfect Open-Loop Nash Equilibria

Firm i′s current value Hamiltonian function writes:

Hi(t) = e−ρt
[
πi(t) + λii(t)

·

qi +λij(t)
·

qj
]

(14)

First order conditions (FOCs) on controls are (henceforth, time index is omitted for brevity):11

∂HH

∂xH

= 0 ⇒ xH =
1

2

(
θ + qH − δλHH

)
(15)

∂HL

∂xL

= 0 ⇒ xL =
1

2s

[
s
(
θ + xH

)
+ qL − δλLL

]
(16)

∂Hi

∂ki
= 0 ⇒ λii = 2ki (17)

The above FOCs are such that the present game produces Markov perfect open-loop Nash

equilibria, i.e. equilibria which are subgame perfect.12 Notice also that conditions (15-16-

17) do not contain λij because of the separated dynamics assumed in the model. Therefore,

we set λij = 0 for all t ∈ [0,∞) and j �= i, and specify only one co-state equation per firm:

∂HH

∂qH
= −2qH + xH = ρλHH−

·

λHH (18)

∂HL

∂qL
= −2qL + xL = ρλLL−

·

λLL (19)

11Second order conditions are in the Appendix.
12See, e.g., Mehlman and Willig (1983), Reinganum (1982), Dockner, Feichtinger and JØrgensen (1985)
and Fershtman (1987). For an exhaustive discussion on the coincidence between open-loop and closed-loop
memoryless solutions, see Dockner et al. (2000, ch.7).
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along with the transversality condition:

lim
t→∞

µi(t)qi(t) = 0 (20)

and the initial conditions qi(0) = qi0 > 0, with qH0 > qL0.

Now, using (17), (15) and (16), we obtain:

xH =
1

2

(
θ + qH − δ2kH

)
(21)

xL =
1

2s

(
3

2
sθ +

1

2
sqH − sδkH + qL − 2δkL

)
(22)

which can be plugged into the state equations, simplifying as follows:

·

qH=
1

2

(
2kH + 2δ2kH − δθ − δqH

)
(23)

·

qL=
1

4s

(
4kLs− δsθ + δsqH − 2sδ2kH − 2δqL + 4δ2kL

)
(24)

In order to characterize the dynamics of investment, we need to differentiate (17) w.r.t.

time:
·

λii= 2
·

ki (25)

By plugging (25), (17), (21) and (22) into the co-state equations, we get:

·

kH=
3

4
qH −

1

4
θ +

1

2
δkH + ρkH (26)

·

kL=
3

4
qL −

1

8
θ +

1

2
δkL + ρkL +

1

8
qH −

1

4
δkH (27)

The system
{

·

ki= 0,
·

qi= 0
}
yields the following steady states:

q∗H =
θ (1− 2δρ)

3 + 2δ (2δ + ρ)
(28)

k∗H =
2δθ

3 + 2δ (2δ + ρ)
(29)

q∗L =
sθ (1− 2δρ) [1 + 2δ (2δ + ρ)]

[3 + 2δ (2δ + ρ)] [4s− 1 + 2δ (2δ + ρ)]
(30)

k∗L =
2sδθ [1 + 2δ (2δ + ρ)]

[3 + 2δ (2δ + ρ)] [4s− 1 + 2δ (2δ + ρ)]
(31)

Proposition 1 The steady state defined by {q∗H , k
∗

H , q
∗

L, k
∗

L} is stable along a saddle path.

8



Proof. See the Appendix.

The above candidates are acceptable as steady state solutions if and only if they belong

to the set of positive real numbers. By a direct inspection of the involved expressions, we

can write:

Lemma 1 q∗i ≥ 0 with i = {H,L} if

ρ ≤
1

2δ

while k∗i > 0 always.

Proof. The proof is straightforward. It suffices to note that 4s− 1 + 2δ(2δ + ρ) > 0, since

it has to be true that s > 1/4 for second order conditions to hold (see the Appendix). �

Now, we are in a position to derive the expressions of equilibrium quantities:

x∗

H =
2θ

3 + 4δ2 + 2δρ
(32)

x∗

L =
2sθ

(
1 + 4δ2 + 2δρ

)(
3 + 4δ2 + 2δρ

) (
4s− 1 + 4δ2 + 2δρ

) (33)

which are both positive in the entire admissible parameter range. Once noted that

q∗H
q∗L

=
k∗H
k∗L

=
x∗

H

x∗

L

(34)

the following can immediately be established:

Lemma 2 At the steady state, the high quality firm invests more in network capacity and

obtains a larger market share than the low quality firm.

The fact that q∗H > q∗L ⇒ x∗

H > x∗

L in the entire admissible parameter range, allows us to

simplify the algebra by setting s = 1. As to the comparison between quality levels, we have:

Lemma 3 q∗H ≥ q∗L always.

Proof. q∗H − q∗L ∝ 3s − 1 + 4δ2 + 2δρ − 4sδ2 − 2sδρ. With s = 1 this expression simplifies

to 2. �

Unlike the conventional wisdom coming from analyses based on multi-stage games, in

our dynamic framework the order relationship between equilibrium profits is ambiguous.13

13A differential duopoly game where the low quality firm may perform better than the rival in terms of
equilibrium profits is in Colombo and Lambertini (2003).
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To see this, we compute the steady state level of profits accruing to firm H and to firm L,

respectively:

π∗

H = −
{13 + 4δ [∆]} θ

2

[3 + 2δ (2δ + ρ)]4
(35)

with

∆ = −20ρ+ δ
{
5− 64δρ− 22ρ2 + 16δ3

[
δ
(
−1 + ρ2

)
− ρ

(
4− ρ2

)]
+ 4δ2

(
−1− 7ρ2 + ρ4

)}
π∗

L =
θ
2

[1 + 2δ (2δ + ρ)]2
[
3 + 4δρ+ 4δ2 (1− ρ2)

]
[3 + 2δ (2δ + ρ)]4

(36)

By substracting π∗

L from π∗

H we get:

π∗

H − π∗

L =
16

{
−1 + δ

[
4ρ+ δ

(
−3 + 10δρ+ 8δ3ρ+ 4ρ2 + 4δ2 (−1 + ρ2)

)]}
[3 + 2δ (2δ + ρ)]4

(37)

which, a priori, can take either sign.

Now, let us define ρ the admissible value of ρ such that π∗

H = π∗

L. From (37) we obtain:

ρ =
−2− 5δ2 − 4δ4 +

√
8 + 36δ2 + 69δ4 + 56δ6 + 16δ8

4δ
(
1 + δ2

) (38)

wich is always admissible, being 0 < ρ < 1/ (2δ). Moreover, let us define ρ̃ the value of ρ

such that π∗

H = 0.

The sustainability of either the monopoly or the duopoly regime depends upon the non-

negativity of profits. In this respect, we have:

Lemma 4 π∗

L > 0 always; π∗

H > 0 for all ρ > ρ̃, with ρ̃ ∈ (0, ρ) ∀ δ ∈ (0, 0.81832) and ρ̃ < 0
∀ δ ∈ (0.81832, 1).

Proof. From (36):

π∗

L > 0 if ρ <
1

2δ

(
1 + 2

√(
1 + δ2

))
Since 1/ (2δ) (1 + 2

√
1 + δ2) > 1/ (2δ), and provided that, from Lemma 1, the admissible

range for ρ is ρ < 1/ (2δ), we have the result. The analytical expresion of ρ̃ is cumbersome,

therefore omitted. By taking limρ→0 (π
∗

H) = θ
2 (

−13− 20δ2 + 64δ6 + 16δ4
)
/
(
3 + 4δ2

)4
and

by evaluating the sign of the numerator, we can assess that for all δ ∈ (0.81832, 1) π∗

H < 0

iff ρ > ρ̃ < 0, therefore in this regime we have π∗

H > 0 always. �

The above discussion yields our:
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Proposition 2 For all δ ∈ (0.81832, 1) the market is a natural duopoly; if ρ < ρ we have

0 < π∗

H < π∗

L, otherwise we have π∗

H > π∗

L > 0. For all δ ∈ (0, 0.81832) the market is

served by both firms iff ρ > ρ̃, otherwise the low quality firm becomes a natural monopolist;

if ρ ∈ (ρ̃, ρ) we have 0 < π∗

H < π∗

L, otherwise we have 0 < π∗

L < π∗

H.

The following figure illustrates the above proposition:

Figure 1 : Parameter Space

�

�
δ

ρ

A : π∗

H > π∗

L > 0
B : 0 < π∗

H < π∗

L

C : 0 = π∗

H < π∗

L

A

B

C

0.8183

ρ
ρ̃

1

2δ

Within area A, we find the traditional static result on product quality provision in oligopoly;

within area B, although the market is still served by both firms, the order relationship

between profits is reversed; finally, what we register within area C, is that the market

becomes a natural monopoly, with only the low quality firm being active. This, is in contrast

with the so called finitess property (Shaked and Sutton, 1983), according to which if only

one firm can earn positive profits while supplying a vertically differentiated good, such a firm

will be the one providing the highest (technically producible) quality level. Not surprisingly,

in our dynamic model, the sustainability of a duopoly regime crucially depends upon the

intertemporal parameters, δ and ρ. If the decay rate is sufficiently high, implying that

congestion phenomena are sufficiently important, we expect the market to be a natural

duopoly regardless of discounting. If, on the other hand, congestion effects are very small,

we expect the market to be served only by the low quality firm. Therefore, we can conclude

that, in the long run, congestion is pro-competitive.
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4. Full Cooperative Play

In this section, we assume that the two competitors decide to implement a full cartelization

rule, that is, to act so as to maximize the present value of joint profits14 The relevant current

value Hamiltonian function writes:

H(t) = e−ρt
[
πH(t) + πL(t) + λH(t)

·

qH +λL(t)
·

qL
]

(39)

By applying Pontryaguin’s Maximum Principle, first order conditions are:

∂HH

∂xH

= 0 ⇒ xH =
1

2
θ +

1

2
qH −

1

2
xL −

1

2
λHδ (40)

∂HH

∂xL

= 0 ⇒ xL =
1

4
qL +

1

4
θ −

1

4
xH −

1

4
λLδ (41)

∂HH

∂kH
= 0 ⇒ λH = 2kH (42)

∂HH

∂kL
= 0 ⇒ λL = 2kL (43)

∂HH

∂qH
= xH − 2qH = ρλH−

·

λH (44)

∂HH

∂qH
= xL − 2qL = ρλL−

·

λL (45)

along with the same transversality and initial conditions as in duopoly. From the above

conditions, we obtain the following dynamic system:

·

kH= ρkH + qH −
xH

2
(46)

·

kL= ρkL +
6

7
qL −

1

14
θ +

1

14
qH +

2

7
kLδ −

1

7
kHδ (47)

·

qH= kH − δ
3

7
δθ −

4

7
δqH +

1

7
δqL −

1

7
2kLδ

2 +
4

7
2kHδ

2 (48)

·

qL= kL −
2

7
δqL −

1

7
δθ +

1

7
δqH +

4

7
kLδ

2 −
2

7
kHδ

2 (49)

whose steady state point is defined as follows:

k∗∗H =
2δθ

(
4δ2 + 2δρ+ 5

)
20δρ+ 40δ2 + 17 + 4δ2ρ2 + 16δ3ρ+ 16δ4

(50)

14For models where R&D in product quality improvements is activated by joint ventures, see Motta (1992)
and Rosenkranz (1995).
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k∗∗L =
2δθ

(
4δ2 + 1 + 2δρ

)
20δρ+ 40δ2 + 17 + 4δ2ρ2 + 16δ3ρ+ 16δ4

(51)

q∗∗H =
θ (1− 2δρ)

(
4δ2 + 5 + 2δρ

)
20δρ+ 40δ2 + 17 + 4δ2ρ2 + 16δ3ρ+ 16δ4

(52)

q∗∗L =
θ (1− 2δρ)

(
4δ2 + 1 + 2δρ

)
20δρ+ 40δ2 + 17 + 4δ2ρ2 + 16δ3ρ+ 16δ4

(53)

From Lemma 1, the above solutions are always non negative in the admissible parameter

range.

Proposition 3 The steady state defined by {k∗∗H , k∗∗L , q∗∗H , q∗∗L } is stable along a saddle path.

Proof. See the Appendix.

As to equilibrium quantities, we have:

x∗∗

H = 2θ
4δ2 + 2δρ+ 5

20δρ+ 40δ2 + 17 + 4δ2ρ2 + 16δ3ρ+ 16δ4
(54)

x∗∗

L = 2θ
4δ2 + 1 + 2δρ

20δρ+ 40δ2 + 17 + 4δ2ρ2 + 16δ3ρ+ 16δ4
(55)

Notice that, as in duopoly, k∗∗H /k∗∗L = x∗∗

H /x∗∗

L = q∗∗H /q∗∗L , implying that k∗∗H > k∗∗L and

x∗∗

H > x∗∗

L . Therefore, Lemma 2 can be extended to the case in which firms behave coopera-

tively. By comparing the above solutions with those arising in duopoly, we can write:

Proposition 4 k∗∗

i < k∗i , x
∗∗

i < x∗

i , q
∗∗

i < q∗i , with i = {H,L}, provided that the duopoly

regime be sustainable.

Proof. It suffices to make a direct comparison between the involved expressions. As to

qualities, we have (q∗∗i − q∗i ) ∝ (−1 + 2δρ). Since, from Lemma 1, ρ < 1/(2δ), the sign is

negative. �

Corollary 1 x∗∗

i < x∗

i ⇒ CS∗∗ < CS∗, i = {H,L}. At the steady state, consumers are

better off under duopoly than under full cartelization regime, provided that the duopoly regime

be sustainable.

When the duopoly regime is not sustainable (see Proposition 2), only the low quality

firm survives and (13) becomes CS(t) = x3

L/2. Under full cartelization, using equilibrium

quantities, the equilibrium level of consumers’ surplus turns out to be:

CS∗∗ = 32θ
364δ4 + 50δ2 + 25δρ+ 16δ2ρ2 + 64δ3ρ+ 48δ5ρ+ 32δ6 + 24δ4ρ2 + 4δ3ρ3 + 17(

20δρ+ 40δ2 + 17 + 4δ2ρ2 + 16δ3ρ+ 16δ4
)3

(56)
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while, under non cooperative play (in case of natural monopoly), we obtain:

CS∗ =
1

2

[
2θ

(
1 + 4δ2 + 2δρ

)(
3 + 4δ2 + 2δρ

)2
]3

(57)

By a direct comparison between (56) and (57) we can establish our:

Proposition 5 When the duopoly regime is not sustainable, there exists an admissible subset

of parameters {θ, δ, ρ} wherein CS∗∗ > CS∗.

As an illustration, a numerical example is provided in the Appendix.

5. Concluding Remarks

We have investigated a differential duopoly game with vertical differentiation and network

externalities and focussed on the steady state properties of the system. Unlike multi-stage

games, differential games are particularly suitable to shed light on the deep nature of in-

vestments, which is inherently a dynamic one. Another novelty of our approach has been to

jointly deal with both the positive and the negative side of network externalities. It seems

to us that these two main departures from the existing relevant literature, represents a step

ahead in the comprehension of the nature and the effects of firms investments on the Web.

The main result obtained in our paper is that, in contrast with the acquired wisdom

based on static models, the low quality firm may earn higher equilibrium profits than the

high quality firm. The intuition of this result lies in the fact that, whenever active, the high

quality firm sells always more than the rival, leading to more relevant congestion effects on

its infrastructures. In order not to let its quality decreasing, the firm supplying the superior

variety has to devote more resources to building up network capacity. Indeed, in the long

run equilibrium, it may be more profitable to provide the market with the inferior quality

than otherwise. Furthermore, in contrast with the so called finitess property (Shaked and

Sutton, 1983), we have shown the low quality firm may become a natural monopolist.

The duopoly regime has been compared with the full cartelization regime. In this respect,

we have shown that the multi-product cartel invests less, sells less, and provides lower quality

levels of both varieties than the duopoly does, implying that consumers are better off under

non cooperative play. However, one important remark is in order. The superiority of the

non cooperative play in terms of consumers well-being requires that duopoly be sustainable.

When congestion effects are very small, only the low quality firm may survive. In this case,

the relevant comparison between non cooperative and cooperative play involves a single-

product monopolist and a multi-product monopolist, respectively. Quite surprisingly, we

14



have found that it may be socially desirable to let the market be served by the multi-product

cartel.
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Appendix

Stability

Proof of Proposition 1. We consider the system composed by (10) in combination with

(26) and (27).The resulting dynamic system can be written in matrix form as follows:


·

qH
·

kH
·

qL
·

kL

 =



−
δ

2

(
1 + δ2

)
0 0

3

4

1

2
(δ + 2ρ) 0 0

δ

4
−
δ2

2
−
δ

2
1 + δ2

1

8
−
δ

4
1−

1

4
ρ+

δ

2




qH

kH

qL

kL

+



0

−
θ

4

−
δθ

4

−
θ

8


By computing the four eigenvalues, it is easy to assess that two eigenvalues are positive

while two eigenvalues are negative. Hence the equilibrium is a saddle point.

Proof of Proposition 3. We consider the dynamic system (46-49), which can be written

in matrix form as follows:


·

qH
·

kH
·

qL
·

kL

 =



−
4δ

7

(
1 +

8δ2

7

)
δ

7
−
2δ2

7

1−
2

7
ρ+

4

7
δ

1

14
−
1

7
δ

1δ

7
−
2δ2

7
−
2δ

7
1 +

4δ2

7
1

14
−
1δ

7

6

7
ρ+

2δ

7




qH

kH

qL

kL

+



−
3δθ

7

−
3θ

14

−
δθ

7

−
θ
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By computing the four eigenvalues, as before, we find that two are negative while two

are positive, implying saddle path stability.

Sufficient Conditions

Sufficiency (Arrow) for the duopoly:

Using Arrow’s sufficiency theorem:

∂2HH

(
xO
H , k

O
H

)
∂2qH

= −
3

2

∂2HL

(
xO
L , k

O
L

)
∂2qL

=
1− 4s

2s
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where x0

i and k0i denote optimal control expressions. While s.o.c. are always satisfied for

firm H, as to firm L we need s > 1/4.

Sufficiency (Arrow) for the full cartelization:

The relevant Hessian metrix is
∂2H

(
xO
i , k

O
i

)
∂2qH

= −
10

7

∂2H
(
xO
i , k

O
i

)
∂qHqL

= −
1

7
∂2H

(
xO
i , ki

)
∂qLqH

= −
1

7

∂2H
(
xO
i , k

O
i

)
∂2qL

= −
12

7


which is negative definite.

Numerical Examples

Duopoly regime:

δ =
1

10
, ρ = 2, θ =

11

10

π∗

L = 0.06594, π∗

H = 0.05921, q∗H = 0.19186, q∗L = 0.08031, x∗

H = 0.63953, x∗

L = 0.26771, k∗H =

0.06395, k∗L = 0.02677, p∗H = 0.54027, p∗L = 0.27307, ρ = 1.39045, ρ̃ = 2.08458.

δ =
15

100
, ρ = 1, θ =

12

10

π∗

L = 0.07584, π∗

H = 0.01598, q∗H = 0.24779, q∗L = 0.1016, x∗

H = 0.70796, x∗

L = 0.29029, k∗H =

0.10619, k∗L = 0.04354, p∗H = 0. 6208, p∗L = 0.30335, ρ = 1.40118, ρ̃ = 0.9124.

Welfare comparison between single- and multi-product monopolist:

δ =
5

100
, ρ =

1

2
, θ =

11

10

π∗

L = 0.04819, CS∗ = 0.00515, CS∗∗ = 0. 1387, W ∗ = 0.05334.

CS∗∗ > W ∗ ⇒ W ∗∗ > W ∗.
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