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Abstract

Classical automated test assembly (ATA) methods assume fixed and known parameters, an

hypothesis that is not true for estimates of item response theory parameters which are key

elements in test assembly. To account for uncertainty in ATA, we propose a

chance-constrained version of the MAXIMIN ATA model which allows to maximize the

α-quantile of the sampling distribution function of the test information function obtained

by bootstrapping the item parameters. An heuristic based on the simulated annealing is

proposed to solve the ATA model. The validity of the proposed approach is verified by

simulated data and the applicability is verified by an application to real data.

Keywords: automated test assembly; uncertainty; chance-constrained; simulated

annealing
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Chance-Constrained Automated Test Assembly

In the field of educational measurement, tests should be designed and developed providing

evidence of fairness, reliability and validity (American Educational Research Association

et al., 2014). In order to make different measurements comparable, a test assembly process

may be used to select items from an item pool and build test forms conforming to content

and psychometric specifications. Thus, test assembly plays a crucial role in this field as it

allows to control the entire protocol of the test production, from the item construction,

since the features of the pool depend on the requirements on the final tests, to the final test

building. Large testing programs, having better access to modern digital resources like

sophisticated item banking systems, opened the possibility to improve their test assembly

process by means of automated test assembly (ATA).

ATA differs from manual test assembly because the item selection is performed by

optimizing mathematical models through specific solvers. Therefore, ATA has several

advantages over manual test assembly. First of all, a rigorous definition of test

specifications will reduce the need to repeat some phases of the test development. More

importantly, ATA is the only way to find optimal or near-optimal combinations of items

starting from large item banks, for which manual assembly is not feasible due to the large

number of possible solutions. As a consequence, ATA is fundamental to make

measurements comparable while reducing operational costs. A limit of classical

optimization models such as 0-1 linear programming (LP) models (see van der Linden,

2005), usually applied in ATA, is that they consider each model parameter as fixed or

known. However, this assumption is not valid for parameter estimates, key elements in

ATA models. In fact, most test assembly models are based on item response theory (IRT),

which is used for estimating both the item parameters and the examinees’ ability.

Consequently, the estimated IRT item parameters and the item information function (IIF)

are uncertain inputs in ATA models (Veldkamp et al., 2013). Mislevy et al. (1994), Patton

et al. (2014), Tsutakawa and Johnson (1990), Xie (2019), Zhang et al. (2011), Zheng (2016)
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discussed the consequences of uncertainty in item parameters on several aspects, such as

ability estimation. In the ATA literature, relatively few studies focused on the issue of

dealing with uncertainty by proposing robust alternatives to the classical optimization

models (De Jong et al., 2009; Veldkamp & Paap, 2017; Veldkamp & Verschoor, 2019;

Veldkamp, 2013; Veldkamp et al., 2013).

Our proposal in this paper is to incorporate uncertainty in the optimization model for

simultaneous multiple test assembly which is the most seen in practice and in the literature

(Ali & van Rijn, 2016; Debeer et al., 2017; van der Linden, 2005). We suggest a test

assembly model based on the chance-constrained (CC) approach (see Charnes & Cooper,

1959; Charnes et al., 1958) which allows to maximize the α-quantile of the sampling

distribution of the test information function (TIF). The proposed model is an extension of

the classical MAXIMIN ATA model (van der Linden, 2005, p. 69-70) in which the

minimum TIF among all the tests is maximized. The sampling distribution of the TIF is

obtained by adopting the bootstrap technique in the calibration process (Bradley &

Tibshirani, 1993). In this way we ensure that, independently on the situation in which the

calibration has been made, we have an high probability to have a certain, possibly low

error in the ability estimation. For solving the ATA models, chance-constrained or not, we

developed an algorithm based on the simulated annealing (SA), a stochastic meta-heuristic

proposed by Goffe (1996). This technique can handle large-scale models and non-linear

functions. All the proposed algorithms have been coded in the open-source framework

Julia (Bezanson et al., 2017). In our novel model, the entire structure of uncertainty of

the item parameters is taken into account and this is optimal with respect to the accuracy

of the ability estimates.

The paper is organized as follows. Firstly, the key elements of IRT and ATA are reviewed

discussing the issue of including uncertainty. Secondly, an introduction to the CC approach

for solving optimization problems with uncertainty is provided. Then, the proposal of an

ATA model, specifically a CC version of the MAXIMIN test assembly model, is developed
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by discussing the retrieval of the TIF empirical distribution function by bootstrap and the

heuristic based on SA for solving the model. Afterwards, the results of a simulation study

are presented in order to compare our proposal to the existent approaches solved by the

CPLEX 12.8.0 Optimizer (IBM, 2017). An application of our approach on real data taken

from the 2015 Trends in International Mathematics and Science Study (TIMSS) data is

shown. Concluding remarks end the paper.

Item Response Theory and Test Assembly Models

In educational and psychological measurement, IRT provides a good framework for ATA

methods because, from the item parameter estimates describing the item psychometric

characteristics, it is possible to derive the item Fisher information, a key object used to

build optimal test in terms of accuracy of ability estimation.

Once the item parameters have been estimated for a given IRT model, it is possible to

understand how precise the test is at various ranges of the latent ability by using the TIF,

which is defined as the sum of the item Fisher information for all the items in the test. In

fact, the TIF has a very favourable property that is the additivity (and hence linearity)

over the items of a test. Given a test with k items, the TIF is equal to

I(θ) =
k∑
i=1

Ii(θ), (1)

where Ii(θ) is the IIF for item i, with i = 1, ..., k, and θ ∈ (−∞,∞) is the latent ability.

Expressions for the IIFs can be easily derived within the framework of IRT. For example,

let assume binary response data, where the probability of item i endorsement Pi(θ) follows

the two-parameter logistic (2PL) model. In this case, the IIF of item i is equal to

Ii(θ) = a2
iPi(θ)(1− Pi(θ)) = a2

i

exp(aiθ+bi)

[1 + exp(aiθ+bi)]2 , (2)

where the item parameters ai and bi represent the discrimination and the easiness for item

i, respectively, and a slope-intercept parameterization is used for the 2PL model.
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The Fisher information function is a crucial element in test assembly because of its

linearity and its easy interpretation. In general an ATA model is an optimization model

composed by some constraints to be fulfilled and an objective function to maximize or

minimize, where the test specifications are defined as the set of the desiderata considered

for the test. Well defined test specifications can always be represented in the standard form

of Table 1 as reported in van der Linden (2005, p. 40).

Table 1

Standard Form of a Test Assembly Problem

optimize Objective function

subject to

Constraint 1

Constraint 2
...

Constraint N

Only one objective can be optimized at a time; if we have more than one function to

optimize some tricks can be applied to transform the objectives into constraints. On the

other hand, there is no upper limit for the number of constraints, provided that the solver

can handle the problem. If at least one combination of items that meets all the constraints

does exist, then the set of these combinations is the feasible set; otherwise, the model will

be infeasible. The subset of tests in the feasible set that optimizes the objective function

represents the optimal feasible solution.

Tests can be assembled merely through the selection of appropriate items out of an item

bank; one way to do so is to use mathematical programming techniques like 0-1 linear

programming (LP) or mixed integer programming (MIP) models by using commercial
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solvers such as CPLEX (IBM, 2017) or Gurobi (Gurobi, 2018). Using these approaches the

tests can be built by, for instance, maximizing the TIF at predefined θ points (MAXIMIN),

or matching it with known optimal values (MINIMAX) with linear restrictions on the

values of items properties (see van der Linden, 2005). In multiple simultaneous test

assembly, if we need to assemble T tests and each test has to meet a target for its

information function at K ability points the problem has at least T ×K objectives. In this

setting, given an item pool of I items, the MAXIMIN ATA model is specified by adding to

the standard form of Table 1 the following set of objective and constraints:

maximize y (objective) (3a)

subject to
I∑
i=1

Ii(θkt)xit ≥ yRkt, ∀t, k ∈ Vt, (3b)

y ≥ 0,

where Ii(θkt) is the IIF for item i at the ability level θk in test t, xit is a decision variable

which takes value 1 if the item i is assigned to test t and 0 otherwise, Rkt is the relative

target for each θk in test t, with t = 1, ..., T and k = 1, ..., K, i.e. the set of ability points

for test t in which we want to control the shape of the TIF. The Rkt may be chosen equal

among the tests, i.e. Rkt = Rk′t′ with t 6= t′ and ∀k = k′ ensuring the parallelism.

Uncertainty in Test Assembly

In the context of test assembly, the optimization models commonly used for item selection

do not consider the inaccuracy of the estimates of item parameters (van der Linden, 2005).

For example, the MAXIMIN ATA model is based on the TIF which appears in the

objective function, being the goal of the optimization model. The TIF is the sum of the

IIFs, which in turn depend on the item parameter estimates and are considered as known

quantities. This approach of ignoring uncertainty derived from the estimation process may

lead to several issues such as infeasibility, e.g. the impossibility to find T parallel tests that
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have TIFs inside a fixed interval around the targets. Another issue is the misinterpretation

of the assembly results. For example, if the calibration algorithm had produced biased

estimates for the item parameters, the IIFs are not accurate enough and, consequently, the

TIF of the assembled test might be underestimated or overestimated. As a consequence,

the accuracy of ability estimates may be compromised. Regarding the latter issue, a good

test assembly model would consider the variation of the item parameter estimates in order

to build test forms in a conservative fashion, i.e., it would produce tests with a maximum

plausible lower bound of the TIF.

Several attempts to include uncertainty in the test assembly models have been done by

developing robust proposals. Starting from the conservative approach of Soyster (1973),

where the maximum level of uncertainty is considered for 0–1 LP optimization, De Jong

et al. (2009) proposed a modified version where one posterior standard deviation is

subtracted from the estimated Fisher information to take the calibration error into account

in ATA. This approach was adopted also in Veldkamp et al. (2013), where the

consequences of ignoring uncertainty in item parameters are studied for ATA models. In

addition, Veldkamp (2013) investigated the approach of Bertsimas and Sim (2003), who

developed a robust method for 0-1 LP models by including uncertainty only in some of the

parameters, in the assembly of linear test forms. More recently, Veldkamp and Paap (2017)

proposed to include the uncertainty related to the violation of the assumption of local

independence in ATA for testlets. Finally, Veldkamp and Verschoor (2019) discussed

robust alternatives for both ATA and computerized adaptive testing (CAT).

The mentioned ATA robust approaches consider the standard error of the estimates and a

protection level Γ that indicates how many items in the model are assumed to be changed

in order to affect the solution. In a sense, the uncertainty is treated in a deterministic way

and, given Γ, the solution is adjusted by adopting a conservative approach, as standard

errors are the maximum expression of uncertainty of the estimates. Chance-constraints (or

probabilistic constraints) appears to be a natural solution to the mentioned problem. In
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fact, they are among the first extensions proposed in the stochastic programming

framework to deal with constraints where some of the coefficients are uncertain (Charnes &

Cooper, 1963; Krokhmal et al., 2002).

Chance-Constrained Modeling

The CC approach (Charnes & Cooper, 1959; Charnes et al., 1958) is a method to deal with

sources of uncertainties in optimization problems by adjusting a conservative parameter α,

the risk level, to modulate the level of fulfilment of some probabilized constraints enabling

to relax or to tighten the feasibility of the problem.

The CC modeling has been deeply explored in the financial scientific field. In fact, in risk

management and reliability applications the decision maker must select a combination of

assets for building a portfolio by maximizing their utility function. Since the prices of

instruments are usually random variables, the theory of choice and portfolio optimization

under risk was born (see Rockafellar & Uryasev, 2000, 2001). In the past five decades, this

sort of problems followed the expected mean-variance approach (Chen, 1973; Freund, 1956;

Scott Jr & Baker, 1972). In particular, the utility function is defined in terms of the

expected mean and variance of the returns or of the prices of the instruments which are

uncertain coefficients in the linear objective or constraints of the optimization model. More

recently, instead, the regulations for finance businesses require to reformulate the problem

in terms of percentiles of loss distributions. These requirements gave rise to the theory of

chance-constraints, also called probabilistic constraints, originally proposed by Charnes and

Cooper (1959).

The probabilistic constraints include coefficients which are assumed to be randomly

distributed and are subject to a some predetermined threshold α controlling the fulfilment

of constraints. By modifying α, it is possible to relax or tighten some constraints

modulating the level of conservativeness of the model. The standard form of a
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mixed-integer optimization problem can be represented by

arg max
x

f(x) (4)

subject to gj(x) ≤ 0 j = 1, . . . , J

x ∈ Zp × Rn−p,

where f(·) is the objective function to be optimized, gj(·) is the function expressing the

constraints, J is the number of constraints, and x is the vector of p integer and n− p

continuous optimization variables. Both f(·) and g(·) are scalar functions.

The optimization domain is D = dom(f) ∩ ⋂J
j=1 dom(gj) and the set

X = {x : x ∈ D, gj(x) ≤ 0 ∀j} is the feasible set, i.e. a solution x is feasible if it is in the

optimization domain and it satisfies the constraints. Starting from (4), a

chance-constrained reformulation adds the following set of H constraints:

P [gh(x, ξ) ≤ 0] ≥ 1− α h = 1, . . . , H, (5)

where ξ is a vector of random variables. This formulation seeks a decision vector x that

minimizes the function f(x) while satisfying the chance constraints gh(x, ξ) ≤ 0 with

probability at least equal to (1− α). Such constraints imply having a function to compute

(or better approximate) the probability and a solver to deal with that function.

CC models represent a robust approach to optimization. However, despite they were

proposed in the 1950s, CC models are still hard to be solved. An issue is the general

non-convexity of the probabilistic constraints. In fact, even if the original deterministic

constraints gh(x, ξ) with non-random ξ are convex, the respective chance-constraints may

be non-convex. In general they are usually untractable because, even if they are convex,

the quantiles of the random variables are difficult or impossible to compute (see

Nemirovski & Shapiro, 2006). Examples of approximations of chance-constraints are the

sample average approximation (Ahmed & Shapiro, 2008), based on linearization, and the

case of random variables following a known multivariate distribution with known
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parameters. For the first case, a big-M approach is needed to deal with the indicator

function bringing numerical instability in the optimization. The second approach instead

imposes strong distributional assumptions (see Kataria et al., 2010). Since they are based

on the Chebyshev’s inequality, they require a modest number of elements in the

summations to achieve the convergence, and they need also a solver to deal with

second-order conic constraints, the most difficult type of convex functions to be optimized.

All the mentioned formulations increase exponentially the number of optimization

variables, thus they are not suitable for large-scale models.

Other approaches rely on the discretization of the random variables. The model is

optimized in all possible scenarios (i.e. realizations of the random variables) and, as a

consequence, these approaches do not fit to problems with a large number of random

variables because all the patterns must be considered (Margellos et al., 2014; Tarim et al.,

2006; Wang et al., 2011). In finance, such models are called value at risk (VaR) and they

are usually characterized by non-concavity and hence computational intractability, except

for specific cases where returns are known to have an elliptical distribution, see for example

Vehviläinen and Keppo (2003) or McNeil et al. (2005).

Chance-Constrained Automated Test Assembly

In order to develop a conservative approach including uncertainty on item parameters into

the ATA model, we propose a stochastic optimization for the MAXIMIN test assembly

model based on the CC method. Under this approach, the TIF is not considered as a fixed

quantity but as a random variable. As it is explained further on, the distribution of the

TIF is retrieved by using the bootstrap technique.

Whenever a MAXIMIN principle is applied, the chance constraints can be seen as

percentile optimization problems (Krokhmal et al., 2002). In fact, the probability in (5) is

replaced by the α-th percentile of the distribution function of gh(x, ξ) and these percentiles

must be maximized.
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By considering the MAXIMIN model (3a), the constraints (3b) involved in the

maximization of the TIF are replaced by the chance-constrained equivalents as follows

P
[
I∑
i=1

Ii(θkt)xit ≥ y

]
≥ 1− α, ∀t, k, (6)

where t = 1, . . . , T are the test to be assembled and θkt are the ability points in which the

TIF of the test form t must be maximized, with k = 1, ..., K. In order to simplify the

notation, the relative targets Rkt have been omitted (or equivalently put equal to one) but

the extension is straightforward. We call the model (6) chance-constrained MAXIMIN, or

CCMAXIMIN. The key element of this model is, again, the information function which is

assumed to be random.

The CCMAXIMIN model allows to maximize the expected precision of the assembled tests

in estimating the latent trait of the test-takers at pre-determined ability points with a high

confidence level if the α is chosen to be close to zero. In terms of probability we can say

that the constraints in (3b) must be fulfilled with a probability at least equal to (1− α).

By adjusting the confidence level, it is possible to relax or tighten the attainment of the

chance-constraints to reflect a specific conservative attitude, i.e. a small α means an high

level of conservatism while, on the contrary, a large α means an almost complete relaxation

of the constraints. This is the main novelty of the CCMAXIMIN model with respect to the

robust approach proposed by Veldkamp (2013), Veldkamp et al. (2013) who, instead,

perform a worst-case optimization. Once the chance-constraints have been defined, a way

to evaluate the probability in (6) must be found in order to quantify the feasibility of the

solution. To solve this problem, some methods rely on assumptions regarding the

probability distribution of ξ, such as the multivariate normal (Kim et al., 1990). Ahmed

and Shapiro (2008) try to approximate the probability distribution using samples of the

random variable of interest by a Monte Carlo simulation, which is a specific case of a

scenario generation where all the scenarios have the same probability of occurrence. We

decided to use the Monte Carlo method because of its flexibility and adaptability to our

problem.
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The proposed CCMAXIMIN model for ATA is based on the empirical distribution of the

TIFs of the assembled tests. Therefore, our random variable is the TIF of a test form, a

statistic depending on the IRT item parameter estimates, such as the discrimination and

the easiness, which are uncertain. There are different ways to sample from the distribution

function of this random variable: given the standard errors of the estimates, the samples

can be uniformly drawn from their confidence intervals as in the robust model of

(Veldkamp, 2013); otherwise, if a Bayesian estimation is carried on, the samples in the

Markov chain can be used.

In this paper, a bootstrap procedure is performed resampling the response data and

generating a sample of estimates for each item parameter. At the end of this phase, the IIF

for all the items in the pool, at predefined ability points, is computed using the

bootstrapped samples. These quantities are then used in the CCMAXIMIN model to

compute the α-quantiles of the TIFs and the model is optimized by looking for the best

combination of items which produces the tests with the highest quantiles. A percentile

optimization model would maximize a reasonable lower bound of the TIF, its α-quantile,

approximated by the dαRe-th ranked value of the TIF computed on the R bootstrap

replications of the estimates of item parameters. In the following sections, the details of the

retrieval of the empirical distribution function of the TIF by the bootstrap and the

heuristic proposed to solve the model are explained.

Empirical Measure of the TIF

The test forms built using the CCMAXIMIN model should have the maximum possible

empirical α-quantile of their TIFs. The optimality in this sense will ensure that the

assembled tests are conservative in terms of accuracy of ability estimation (indeed, the

TIF) taking into account the uncertainty in the estimates of the item parameters. A

standard approach to extract the uncertainty related to the item parameter estimates

could be to sample a high number of plausible values of the item parameters in the
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confidence intervals built using the standard errors and, subsequently, compute the related

IIFs at target θ points. This may be an optimal starting point to assemble robust tests (see

Veldkamp, 2013; Veldkamp et al., 2013), but it has its own downsides as a uniform interval

of plausible values is assumed. Another attempt to account for the influence of sampling

error in the Bayesian framework has been made by Yang et al. (2012) who proposed a

multiple-imputation approach with the aim to better measure the latent ability of a

respondent.

Our approach is based on bootstrapping the calibration process; in particular, the observed

vectors of responses coming from the full sample (one vector for each test-taker) are

resampled with replacement R times and the item parameters are estimated for each

sample. In this way, it is possible to preserve the natural relationship of dependence

between the items and, given the ability targets, it is possible to compute their IIFs. After

that, given a set of items, we can build a test form and compute its TIF for each of the R

replications. The resulting sample constitutes the empirical distribution function of the

TIF.

More formally, let ξ1, . . . , ξR be an independent identically distributed (iid) sample of R

realizations of a I-dimensional random vector ξ, its respective empirical measure is

F̂R := R−1
R∑
r=1

∆ξr, (7)

where R is the number of bootstrap replications, with r = 1, ..., R, and ∆ξr denotes the

mass at point ξr, with ∆ξr(A) = 1 when ξr ∈ A. Hence F̂R is a discrete measure assigning

probability 1/R to each sample. In this way we can approximate the probability in the

left-hand side of (6) by replacing the true cumulative distribution function of ξ by F̂R.

Let 1(−∞,0]{x} : R→ R be the indicator function of x in the interval (−∞, 0], i.e.,

1(−∞,0]{x} =


0, if x > 0

1, if x ≤ 0.
(8)

Thus, given a specific chance-constraint h, a known set of optimization variables x and a
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sample ξ1, . . . , ξR of our random vector, we can rewrite

P [gh(x, ξ) ≤ 0] =EF
[
1(−∞,0]{gh(x, ξ)}

]
≈EF̂R

[
1(−∞,0]{gh(x, ξ)}

]
(9)

= 1
R

R∑
r=1

1(−∞,0]{gh(x, ξr)}.

That is, the chance-constraint is evaluated by the proportion of realizations for which

gh(x, ξ) ≤ 0 in the sample.

Adopting the same principle to the left-hand side of the chance-constraints in (6), the

CCMAXIMIN model can be approximated by

arg max
x

y

subject to 1
R

R∑
r=1

1[y,∞){Ir(θkt)′xt} ≥ 1− α, ∀t, k, (10)

gj(xt) ≤ 0 ∀j, t,

xt ∈ {0, 1}I , y ∈ R+, ∀t.

Model (10) is characterized by the following issues: it is clearly non-convex because of the

chance-constraints (see Rockafellar & Uryasev, 2000, 2001, for the demonstrations) and the

indicator function is not well handled by commercial solvers. To overcome these problems

we propose to solve the model by an heuristic which is described next.

The Heuristic

Since the proposed CCMAXIMIN model for ATA cannot be approximated by a linear

formulation, an heuristic based on the SA (Goffe, 1996) has been developed. This technique

can handle large-scale models and non-linear functions. The mechanism to incorporate the

constraints in the objective function is inspired by the work of Stocking and Swanson

(1993) who used the hinge function and more in general, the Lagrange relaxation.

Through the Lagrange relaxation (Fisher, 1981), the violation (i.e. the absolute deviation

from the constraints of the analyzed solution) is included in the objective function. In this
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way, it is possible to solve a simplified version of the problem and to obtain an upper

bound for the optimal solution of the initial problem. In fact, even if the problem is highly

infeasible, the solver returns the most feasible combination of variables that maximizes the

modified objective function. Given the general mixed-integer optimization model (4), its

Lagrange relaxation will be:

arg max
x

f(x)− λ
∑
j

gj(x) ∀j (objective) (11)

x ∈ Zp × Rn−p,

where λ is the Lagrange multiplier, which has the role to weight the violations of the

constraints in the new objective function. We opt for a modification of the previous model

to allow the violations to interfere in the optimization only when the constraints are not

met. The (11) will become:

arg max
x

f(x)− λ
∑
j

max [0, gj(x)] ∀j (objective) (12)

x ∈ Zp × Rn−p,

In the case of test assembly, the relaxation of the classical linear ATA model is still linear.

We summarize this approach by an example of the Lagrange relaxation applied to a single

test assembly model with an objective function to maximize. Suppose we have two set of

indices mu ∈Mu and ml ∈Ml for upper and lower bound constraints and m ∈Mu ∪Ml.
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We can rewrite the relaxed version of a standard single test assembly model as follows:

maximize β
I∑
i=1

qixi − (1− β)
∑

m∈Mu∪Ml

zm (objective) (13a)

subject to
I∑
i=1

cimuxi − ubmu ≤ zmu , ∀mu (constraints) (13b)

−
I∑
i=1

ciml
xi + lbml

≤ zml
, ∀ml (constraints) (13c)

xi ∈ {0, 1}, ∀i, (decision variables)

zm ∈ R+, ∀m, (violations)

where (1− β), with 0 ≤ β ≤ 1, is a modified version of the Lagrange multiplier which is

explained in detail below. Note that any linear constraint with upper or lower bounds can

be represented as a generic constraint either of the form (13b) or (13c). For example, the

minimum length of the test can be written as (13c) and the maximum length as (13b)

where the ci are all equal to 1, lb = nmin and ub = nmax. The definition of zm as a positive

real number let the solver look for solutions that makes the sum of zm goes to zero and

hence it tries to satisfy all the constraints.

The weight β can be chosen by the test assembler to control the trade-off between

optimality and feasibility of the final solution. For example, if a solution producing more

accurate ability estimates is preferred at the expense of the fulfillment of tougher

constraints, the β should be chosen close to 1. Viceversa, if all the constraints should be

fulfilled, a lower β should be selected. An optimal choice of β can be done by analyzing the

results of several optimization attempts. The choice of β will depend on the level of

feasibility of the model and to the highest value that the TIF can assume, given the item

pool.

On the other hand, adopting the SA algorithm, more than one area of the solution space is

explored avoiding to being trapped in a local optimum. Unfortunately, the SA has the

disadvantage that is hardly able to find the feasible space of a problem, this is why we
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decided to start our heuristic by a filling up sequential phase in which the worst performing

test, both in terms of optimality and feasibility, is filled-up with the best item available in

the item pool. After the item has been assigned, the process is repeated until all the tests

have reached their maximum length, i.e. they are all filled-up. Once the first step is

performed, we process the solution with the SA principle. If a feasible set of tests is still

not available, the solver will first take into account only the feasibility of the model and

then it proceeds introducing the TIF optimality. At each step of the optimization, the tests

are altered by removing or switching one of the already selected items with the ones still

available in the pool. We maintain the latter solution if the computed objective function

satisfies the normalized Boltzmann factor proper of the SA algorithm (Goffe, 1996),

otherwise we proceed to the next step where another item or test is altered. The cooling

scheme is implemented by selecting a starting temperature and decreasing it by a

geometric factor at each step. When no improvement is achieved after 100 alterations, we

save the last best solution and we reheat the environment by setting the temperature to its

starting value and we move forward another area of the space of x that we call

neighbourhood. The algorithm stops whenever one of the termination criteria, e.g. time

limit or relative objective function tolerance, is met. All the proposed algorithms have been

coded in the open-source framework Julia (Bezanson et al., 2017).

The result of the heuristic is a set of solutions with length equal to the number of

neighbourhoods explored. It is also possible to decide how many of these areas must be

evaluated just in terms of feasibility, and how many in terms of optimality. In this way, the

test assembler has a wider choice of optimally assembled tests in terms of other features

not considered in the assembly model, such as content validity.

Simulation Study

The performance and benefits of the CCMAXIMIN test assembly model (10) are

investigated through a simulation study. This setting allows us to evaluate the effects of
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using probabilistic methods in the field of ATA models in terms of conservatism of the test

solution. In particular, this purpose is assessed by comparing the quantile of the TIFs

obtained by our CCMAXIMIN model, solved in Julia, and by the classical MAXIMIN one

(3a) solved in CPLEX through the JuMP interface1. We refer to a model without the

Lagrange relaxation as the strict model, instead, when the Lagrange relaxation is applied

the model is called relaxed. Our heuristic only handles the relaxed version of the model,

with CPLEX, instead, we can define the model also in its strict version.

The data needed for assembling the CC tests consist of the sample of the IIFs computed at

the predetermined ability points, θkt, of each item in the pool, namely the Ir(θkt), for

r = 1 . . . , R. These quantities are obtained by bootstrapping the item parameters. A 2PL

model is assumed.

The CCMAXIMIN model (10) is solved and the best value of its objective function among

all the explored neighbourhoods is retained together with the amount of infeasibility given

by the sum of all the violations (which is zero by definition in the strict model). In order to

show that our heuristic effectively reaches a near optimal solution in an uncertain

environment we compare the minimum, among all the T tests, of the empirical α-quantile

of the TIF computed at θ = 0, i.e. mint [Q(TIFt(0), α)]. As already mentioned, considering

that CPLEX is not able to solve the CCMAXIMIN model, the quantiles are computed on the

items chosen by solving the classical MAXIMIN ATA model (3a).

Test Specifications

The just mentioned models are solved under different settings, such as the number of test

forms and the confidence level α. The assembly is performed in a parallel framework, i.e. all

the tests must meet the same constraints. Two fictitious categorical variables, content_A

and content_B, with three possible categories each, are simulated to constrain the tests to

have a certain content validity. The complete set of test settings is summarized in Table 2.

1 http://www.juliaopt.org/JuMP.jl/0.18/

http://www.juliaopt.org/JuMP.jl/0.18/
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Table 2

Test Settings

Number of tests {10, 20, 25}

Maximum item use {2, 4}

α (only for CCMAXIMIN ATA model) {0.05, 0.01}

Test length [38, 40]

Content_A [6, 10], [9, 12], [18, 25]

Content_B [9, 12], [15, 19], [9, 12]

Maximum overlap between tests 11

The constraint described in Content_A, for example, requires that each test must have

from 6 to 10 items having the first category of the variable content_A, from 9 to 12 items

having the second category, etc... Different combinations of the first three settings in Table

2 (number of tests, maximum item use and α) create four cases to be investigated for the

classical MAXIMIN ATA model and eight cases for the CCMAXIMIN ATA model in an

increasing order of complexity and/or size of the model. The hyperparameters for the SA

algorithm have been chosen as follows: we start with a temperature equal to 1.0 since we

do not want the solver to go too far from the last explored neighbourhood and, at every

step we decrease the temperature with a 0.1 geometric cooling parameter; at the beginning

of the optimization we perform one fill-up phase only taking into account the feasibility of

the model; then we proceed looking for the most optimal combination of items by

randomly selecting one item in all the tests to be removed or switched. The imposed

termination criterion is limited to the amount of time needed for solving the model which

is equal to 1000 seconds. This criterion is also valid for the CPLEX solver. We noticed that

the fill-up phase produces solutions with a deviation of around 3.0 or 4.0 and the peak of

TIF is around 10.0 so we chose a β equal to 0.1 to balance the two summands of the

objective function.
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The optimization has been performed on a desktop PC with an AMD Ryzen 5 3600X

6-Core Processor and 32 GB of RAM. We ran the Julia package in parallel with respect to

the neighbourhoods to be explored, starting Julia with 4 cores. The steps addressed in the

simulation study are described herewith:

1. Simulate a pool of I=250 items. Item parameters (2-parameter logistic):

a ∼ LN(0, 0.25) (discrimination), b ∼ N(0, 1) (easiness). Contents:

content_A={type1,type2,type3}, content_B={type4,type5,type6}.

2. Generate the responses of N = 3000 students with θ ∼ N(0, 1). Calibrate the items

with a marginal maximum likelihood estimation approach with an unbalanced design

(500 test-takers per item).

3. Re-calibrate the items R = 500 times on N∗ = N respondents resampled with

replacement (bootstrap). Compute the IIF (r)
i (0) for r = 1, . . . , R and i = 1, . . . , I.

4. Set the constraints as in 2 and optimization features as explained in the previous

paragraph.

5. For the 4 cases taken into account:

(a) Solve the classic MAXIMIN model (3a) in its strict and relaxed versions by

CPLEX.

(b) For α ∈ {0.01, 0.05}: Solve the CCMAXIMIN model (10) by our heuristic.

Results

In Table 3 and Table 4, the minimum among the T tests, of the α-quantiles, Q(TIFt(0), α),

and of the true values of the TIFs, TIF ∗t (0), obtained with the different approaches are

reported. The highest values, so the best, are formatted in bold.
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Table 3

mint [Q(TIFt(0), 0.05)](mint [TIF ∗t (0)])

Model Strict MAXIMIN Relaxed MAXIMIN CCMAXIMIN

Case T Item use max CPLEX CPLEX Our solver

1 10 4 13.588(13.028 ) 13.592(12.795 ) 13.699(13.074 )

2 10 2 10.179(10.183 ) 10.180(10.203 ) 10.230(10.353 )

3 20 4 10.105(9.610 ) 10.154(10.018 ) 10.192(10.084 )

4 25 4 8.705(8.817 ) 8.622(8.529 ) 8.829(8.725 )

Table 4

mint [Q(TIFt(0), 0.01)](mint [TIF ∗t (0)])

Model Strict MAXIMIN Relaxed MAXIMIN CCMAXIMIN

Case T Item use max CPLEX CPLEX Our solver

1 10 4 13.218(13.028 ) 13.134(12.795 ) 13.298(13.043 )

2 10 2 9.813(10.183 ) 9.780(10.203 ) 9.948(9.957 )

3 20 4 9.679(9.610 ) 9.746(10.018 ) 9.987(9.889 )

4 25 4 8.375(8.817 ) 8.375(8.529 ) 8.554(8.849 )

The results are overall very promising. First of all, it was not necessary to report the total

violation of the solutions since the constraints are always profitably fulfilled. This proves

that our heuristic is able to find the feasible space of the problem and it is not sensible to

alterations of the test specifications. Moreover, it is consistent with the definition of the

empirical quantiles since it never produces a set of tests with a minimum 0.01-quantile

higher than the minimum 0.05-quantile. Secondly, we observe the closeness of the true

TIF, i.e. the objective function computed on the true values of the item parameters, to the

value of the objective function obtained optimizing the CCMAXIMIN model. Thus,

despite the CCMAXIMIN model not always has the best performance in terms of
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maximizing the true value of the TIF, it’s able to approximate it very well, giving to the

test assembler a better idea of how much the tests are accurate in estimating future

abilities given the current uncertainty in item parameters.

At the end, the distance from the true TIFs observed in the tests assembled by the

analyzed ATA models is summarized in Table 5 for all the cases. In particular, we averaged

across the tests the differences between the true TIFs and the TIFs estimated on the full

sample for the strict and relaxed classic MAXIMIN model, and the differences between the

true TIF and the α-quantiles of the TIF for the CCMAXIMIN model. We consider the

TIFs at θ = 0 because it is the ability point in which it is maximized.

Table 5

Average Difference from the True TIF at θ = 0.

Case/Model Strict MAXIMIN Relaxed MAXIMIN CCMAXIMIN CCMAXIMIN

1 1.000 1.082 0.091 -0.186

2 0.341 0.341 -0.320 -0.575

3 0.350 0.345 -0.321 -0.527

4 0.165 0.173 -0.412 -0.669

The positive discrepancies for the classical MAXIMIN model highlight the main worrisome

aspect we are trying to present in this paper: the TIF is likely to be overestimated and, if

we do not take into account the uncertainty in the item parameters in the test assembly

process, we are possibly overestimating the expected error of ability estimation of the

assembled tests. On the other hand, with the CC approach, a nonhazardous position can

be adopted by maximizing a lower bound of the true TIF, its α-quantile, which is derived

from the item calibration error. The latter statement is supported by negative or barely

positive differences between the true TIF and their observed quantiles. Furthermore, the

difference increases when α is reduced showing that the level of conservativeness of the

solution is, as expected, negatively correlated with α and hence customizable.
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Application to Real Data

The data used in this application come from the 2015 TIMSS survey, a large-scale

standardized student assessment conducted by the International Association for the

Evaluation of Educational Achievement (IEA). Since 1995, this project monitors trends in

mathematics and science achievement of 39 countries every four years, at the fourth and

eighth grades and at the final year of secondary school. TIMSS 2015 was the sixth of such

assessments. Further information regarding this study are available at the TIMSS 2015

web page. We selected the Italian sample of grade 8 students for the science test

(n = 4479). The choice of the subject was driven by the availability of items, in fact the

science item bank was larger than the mathematics one. The original item pool has been

filtered removing derived and polytomous items and retaining only original binary items.

The final dataset contains 234 items divided into the following categorical features: 4

content domains (69 Biology items, 57 Chemistry items, 58 Physics items, and 50 Earth

Science items), 3 cognitive domains (98 Applying items, 88 Knowing items, and 48

Reasoning items), and 4 topics (110 items with topic 1, 80 items with topic 2, 33 items

with topic 3, 11 items with topic 4). Furthermore, some items are grouped in 27 units.

The design is unbalanced so missing values appear in the data. The item parameters were

estimated according to the 2PL model. After the calibration, we performed a

non-parametric bootstrap with R = 500 replications on the item parameters and we

computed the IIF at θ = 0 for all the items in the pool.

In the calibrated item pool, the discrimination parameter estimates range from 1e-05 to

4.708, with a mean of 0.920 and a median of 0.867. There are two items with the minimum

allowed value of the discrimination estimate. On the other hand, the easiness parameter

estimates range from -4.340 to 4.546, with mean and median equal to 0.071 and 0.025,

respectively.

The final matrix of the IIFs contains 234× 500 samples. Subsequently, we solved the

CCMAXIMIN model by using the proposed approach and imposing the following

https://www.iea.nl/studies/iea/timss/2015
https://www.iea.nl/studies/iea/timss/2015
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specifications, in terms of test constraints, which were inspired by the features of the tests

administered in the TIMSS 2015. In detail, a set of T = 14 tests with length from 29 to 31

items is assembled. The already mentioned friend sets are included in the assembly as

constraints. We imposed the tests to have at least 6 items for each content domain

(Biology, Chemistry, Physics and Earth Science), a minimum of 8 items in the Applying

and Knowing cognitive domains, and a minimum of 7 items in the Reasoning cognitive

domain. The first and the second topic must be present at least 10 times in each test form.

The forms must contain at least 2 items on the third topic and 1 item on the fourth topic.

Each item can be used in at most 3 test forms. The overlap must be less or equal to 15

items between adjacent forms, 5 items between forms at distance equal to 2 (e.g. form 1

and 3 can have an overlap of maximum 5) and, no overlap is allowed for all the pairs at

distance greater than 2. For the CCMAXIMIN model we chose α = 0.05 and a β = 0.01.

The last choice is motivated by the high level of infeasibility of the model. We excluded

from the assembly 11 items which had IRT b parameter higher than 3 or lower than -3.

This helped the solver to assemble the tests with a TIF peaked where the θ is around 0.

After we included all the specifications in the model, we run the optimization algorithm

which implements our heuristic. We selected the same termination criteria as in the

simulation study. Before the time limit had been reached, the algorithm explored 4

neighbourhoods: the first and the second neighbourhoods were not feasible, their objective

function reached the value of 15.84 and 14.85 respectively. These values are positive, which

means that most of the inequalities imposed with the constraints were false. This fact can

be easily confirmed by looking at the infeasibility vector returned by our solver which

showed for the first two neighbourhoods values higher than 0. On the other hand, the third

and the fourth neighbourhood had a negative value of the objective function equal to

-0.0455 and -0.0484, respectively.

Thus, the best solution is produced within the last neighbourhood where the smallest

0.05-quantile among the tests is equal to 4.843. The assembled tests fulfil all the constraints
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as it can be seen from Table 6. Also constraints on overlap and item use are satisfied.

Table 6

TIMSS Data, Features of the Test Forms Assembled by the CCMAXIMIN ATA Model.

Test (t) 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Length

29 29 29 30 29 29 29 29 29 30 30 29 29 29

Content Domain

Biology 9 6 7 6 10 10 10 10 7 7 9 8 9 10

Chemistry 6 6 8 9 6 7 6 6 6 8 9 8 7 6

Physics 8 9 8 6 7 6 7 7 8 8 6 7 7 7

Earth Science 6 8 6 9 6 6 6 6 8 7 6 6 6 6

Cognitive Domain

Applying 12 13 10 12 12 13 12 8 11 13 12 10 12 10

Knowing 9 8 12 11 9 9 10 12 11 9 11 11 9 11

Reasoning 8 8 7 7 8 7 7 9 7 8 7 8 8 8

Topic

1 11 10 11 11 11 10 12 15 16 15 17 13 10 15

2 10 12 10 10 10 10 10 10 10 10 10 10 13 10

3 7 6 6 7 6 8 6 3 2 4 2 2 2 3

4 1 1 2 2 2 1 1 1 1 1 1 4 4 1

The maximized α-quantiles together with the TIF at θ = 0 computed on the sample are

reported in Table 7. A graphical representation of the sampling distributions of the TIFs in

shown in Figure 1.
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Table 7

Test Information Function of the Assembled Tests for TIMSS Data at θ = 0

Test (t) Q(TIFt(0), 0.05) TIFt(0)

1 4.853 5.157

2 4.843 5.166

3 4.893 5.243

4 4.861 5.175

5 4.999 5.325

6 4.876 5.178

7 4.893 5.276

8 4.854 5.259

9 4.865 5.243

10 4.857 5.175

11 4.862 5.286

12 4.880 5.355

13 4.877 5.308

14 4.852 5.185

The resulting TIFs and quantiles do not considerably differ among the test forms, this is a

signal that the model reached an optimal solution which is very proximal to the global one.

However, the TIF is rather low, and this is due to the high infeasibility of the model and

because the values of the IIFs at θ = 0 were also low. We suppose that the items considered

in this application are not suitable to evaluate the average ability of the Italian sample but

they are most appropriate to measure the ability of more proficient students. This can be

seen also from the TIFs of the assembled tests which have their peaks for θ > 0 (Figure 1).

Analyzing the sampling distribution of the TIFs of the assembled tests illustrated in Figure

1, we can notice that the TIF computed on the full sample is always higher than the
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Figure 1

Examples of TIFs of the Assembled Tests 1 and 2. TIF Estimated on the Full Sample (solid

black) against Quantiles.
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0.05-quantile. Thus, for example, we could say that there is a low possibility that test 2

produces estimates of the ability of an examinee with a true θ = 0 with a standard error of

measurement greater than
√

(1/4.843) = 0.454.

Concluding Remarks

In this work, a chance-constrained version of the MAXIMIN ATA model, namely

CCMAXIMIN ATA, has been defined. Our novel test assembly model is able to deal with

the uncertainty in item parameters affected by calibration errors, which, in practice, can be

relevant especially for small sample sizes. In particular, we tried to take into account the

entire structure of the uncertainty of a test optimal with respect to its accuracy in

estimating the individual ability. This task is performed by approximating the distribution

function of the TIF using the bootstrapped replicates of the item parameter estimates. The

last step reformulates the classic MAXIMIN ATA model in a percentile optimization

problem which is a sub-category of the CC models. To deal with the non-linear formulation

of the proposed CCMAXIMIN model, we developed an heuristic based on the SA principle

for finding the optimal conservative tests. In this way, unlike classical optimization

techniques, it is also possible to handle large-scale models.

The results of a simulation study show that the CCMAXIMIN ATA model, together with

our heuristic, maximizes an adjustable conservative version of the test information

function, i.e. its α-quantile, where α can be arbitrarily chosen from the test assembler. The

latter has been empirically proven to be a lower-bound to its true counterpart when α is

taken as a small value such as 0.05 or 0.01. Thus, the use of the sampling distribution

function of the TIF along with the CC formulation gives a better representation of the

accuracy of the tests in estimating future abilities and reduces the potential side effects of

the calibration errors. In contrast, with the classic method which uses the full sample

estimates, the TIF is often higher than the true one giving dangerous misinterpretations.

At the end, an application on real data coming from the TIMSS survey demonstrated that
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our approach is replicable in real-world situations.
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