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Abstract

Recent structural VAR studies of the monetary transmission mechanism have
voiced concerns about the use of recursive identification schemes based on short-run
exclusion restrictions. We trace out the effects on impulse propagation of infor-
mational constraints embodying classical Cholesky-timing restrictions in otherwise
standard Dynamic New Keynesian (DNK) models. By reinforcing internal propaga-
tion mechanisms and enlarging a model’s equilibrium state space, timing restrictions
may produce a non-trivial moving average component of the equilibrium represen-
tation, making finite order VARs a poor approximation of true adjustment paths
to monetary impulses, albeit correctly identified. They can even serve as an in-
dependent source of model-based nonfundamentalness, thereby hampering shock
identification via VAR methods. This notwithstanding, restricted DNK models
are shown to feature (i) invertible equilibrium representations for the observables
and (ii) fast-converging VAR coefficient matrices under empirically tenable param-
eterizations. This alleviates concerns about identification and lag truncation bias:
low-order Cholesky-VARs do well at uncovering the transmission of monetary im-
pulses in a truly Cholesky world.
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Non - Technical Summary

Understanding how changes in the monetary policy instruments (e.g. the mon-

etary base and/or the short term nominal interest rate) affect real variables such

as aggregate output and employment, is key to evaluating the effectiveness of mon-

etary policy against its stabilization goals. In standard New Keynesian models

of the monetary transmission mechanism, a monetary tightening, in the form of

an unexpected shock to the interest rate, produces real effects in the presence of

staggered price setting, for it depresses aggregate output, which in turn puts down-

ward pressure on inflation. It is often argued that such monetary policy shocks

affect real variables only with a delay. This view has informed a large number of

econometric explorations of the transmission mechanism that rely on reduced form

autoregressive models. It is nonetheless less clear what this view would bring about

in theory-based representations of the dynamic interactions between private agents

and the monetary authority. The present paper interrogates theoretical New Key-

nesian models in order to trace out the effects of transmission delays that originate

from the lack of up-to-date information on the part of private agents about the

occurrence of unforeseen monetary tightenings. Our main results are as follows:

(i) information-based transmission delays can be a serious threat to the proper es-

timation of the true monetary transmission mechanism, for it is likely to require

sample (time series) data of length that are unavailable in practice; these delays can

even prevent identification of monetary shocks, for they are not retrievable from ob-

served data; (ii) information-constrained New Keynesian models do not suffer from

these issues: standard reduced form autoregressive systems that comply with the

”delayed effects” view of policy shocks perform well in detecting the true monetary

transmission mechanism.
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1 Introduction

Recursive identification schemes based on short-run exclusion restrictions have tradition-

ally been used to identify the macroeconomic effects of monetary policy shocks (e.g. Sims

(1980), Christiano et al. (1999)). Making the recursive scheme operative in the VAR con-

text is accomplished by generating a Cholesky decomposition of the variance-covariance

matrix associated with the reduced-form residuals, with the monetary policy shock or-

dered last (Kilian (2013)). Given its ability to exactly identify the dynamic responses of

all variables included in the VAR system to the monetary policy shock, the Cholesky as-

sumption is empirically appealing, and yet calls for a conceivable structural interpretation

of the recursive ordering.1

The present paper develops a formal analysis of informational constraints embodying

Cholesky-timing restrictions in otherwise standard Dynamic Stochastic General Equilib-

rium (DSGE) models; and explores the econometric relationship between such models and

recursively identified VARs in controlled Monte Carlo experiments. Timing restrictions

specify an information structure under which control variables are set on the basis of an

increasing sequence of nested information sets, that constrain the endogenous adjustment

paths to exogenous impulses (e.g. Kormilitsina (2013)). By reinforcing internal propaga-

tion mechanisms and enlarging a model’s equilibrium state space, these informational con-

straints may dramatically change rational expectations cross-equation restrictions (CERs)

to the point of (i) generating nonfundamental representations for the observables, or (ii)

inducing (invertible) non-trivial moving average (MA) components vis-à-vis their coun-

terparts free of timing restrictions. Even when fundamental, equilibrium representations

of DSGE models with timing restrictions may thereby exhibit slowly converging VAR

polynomial matrices at longer horizons. In these cases, finite order VARs would stand as

a poor approximation of the true VARMA structure because of truncation effects, that

need not originate from small sample bias of the estimator, see e.g. Kapetanios et al.

(2007), Ravenna (2007), Poskitt and Yao (2017)).

We identify conditions for existence of fundamental equilibrium representations of

DSGE models with timing restrictions, that rely on the underlying information structure

and the reduced-form coefficients of the model’s solution under conventional (unrestricted)

timing.2 We then employ a variety of model laboratories to evaluate the performance of

1The performance of Cholesky-VARs has recently been shown to be competitive with that of alterna-
tives such as traditional sign restrictions in a Monte Carlo context (Wolf (2020)).

2We will henceforth use the labels “unrestricted model” and “model without timing restrictions”, as
well as the labels “restricted model” and “model with timing restriction”, interchangeably.
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Cholesky-VARs in impulse response analysis. Our core findings show that DNK models

with timing restrictions do not suffer from nonfundamentalness issues under empirically

tenable parameterizations, and typically display fast decaying coefficients of the ensuing

VAR(∞) representation. Even in cases where the timing of decisions deeply affect the

sign, the magnitude and the persistence of dynamic adjustment paths to a monetary policy

surprise, low-order Cholesky-VARs are found to perform remarkably well in retrieving

structural monetary impulse responses in a truly Cholesky world.

It is well known that a broad class of DSGE models allow contemporaneous responses

of the full set of model variables to structural disturbances. This lack of conformity with

Cholesky-style identifying assumptions raises two crucial questions for empirical work.

First, were a given unrestricted DSGE model to serve as the actual data generating

process, what kind of distortion would estimated dynamic responses to macroeconomic

shocks exhibit if derived from a Cholesky-identified VAR? Second, and relatedly, when

taking a DSGE model to the data, would statistical techniques based on impulse response

matching (e.g. the minimum distance estimation approach popularized by Rotemberg

and Woodford (1997)) represent a valid guidance in the development of economic theory

by offering reliable estimates of structural (deep) parameters, i.e. those invariant to policy

changes?

Against these questions, Canova and Pina (2005) and Carlstrom et al. (2009) both

exploit small-scale DSGE models as data generating processes in order to inspect the

identifying properties of short-run exclusion restrictions in the VAR realm. Relying on

calibrated versions of a limited participation framework and a sticky price-sticky wage

economy, Canova and Pina (2005) report evidence of severe mis-identification in estimated

dynamic responses to monetary policy disturbances as well as in variance decomposition

outcomes. Carlstrom et al. (2009) theoretically explore the mapping from the true pa-

rameterization of Dynamic New Keynesian (DNK) models to the impulse predictions of

Cholesky-type VARs when it comes to estimating macroeconomic reactions to a monetary

policy shock. They show that, conditional on the selected parameterization, short-run ex-

clusion restrictions may fail to identify unexpected, temporary increases in the policy rate

and even point to a muted response of output and price inflation to the latter at all time

horizons, even when the model-implied dynamic adjustment path starts away from zero

and displays a large degree of persistence. What is more, price and output puzzles are

shown to be fairly likely to arise under small perturbations of the model’s parameters,

that leave the theoretical impulse responses almost unchanged.3

3The apparent inconsistency between the standard timing in DSGE economies and the recursive order-
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Castelnuovo (2016) contributes to the debate by proposing a formal comparison of

impulse response functions (IRFs) generated by a recursively identified VAR estimated

on real-world data vis-à-vis the IRFs associated with recursively identified VAR estimated

on artificial series produced by an estimated medium-scale DSGE model. Upon control-

ling for typical issues of the VAR framework (e.g. sample size, lag order selection and

model specification), the author concludes that the documented close-to-muted monetary

shock responses over the Great Moderation period are an artifact of the Cholesky-style

identification scheme rather than an actual feature of the data generating process.4

On the relationship between DSGE models and recursively identified VARs, Altig

et al. (2011) document the good performance of Cholesky-VARs in identifying monetary

impulse responses in a three-shock business cycle model featuring a lagged transmission

mechanism. Carlstrom et al. (2009) show that the theoretical IRFs produced by the stan-

dard, unrestricted DNK small-scale model and its version featuring timing restrictions

are qualitatively similar at all time periods subsequent to the one where the monetary

policy shock materializes; estimated IRFs delivered by a recursively identified VAR rather

display, in population (i.e. assigning the econometrician full knowledge of the model’s re-

duced form structure other than the true structural shocks), considerably muted patterns,

conditional on the underlying parameterization – see Figs. 1 to 5.5

While this evidence clearly supports the existence of a severe mis-identification issue

in Cholesky-identified VARs when the true data generating process does not warrant a

Cholesky structure, it might also suggest that timing restrictions in DNK models would

not produce significant changes in the qualitative properties of the monetary transmission

mechanism. We argue that this conclusion is unwarranted. In a rather general setting,

we show that timing assumptions that reproduce the standard Cholesky identification

strategy can generate substantial differences in the CERs and the persistence properties of

the theoretical infinite VAR representation of the observables relative to their unrestricted

counterparts. This is so since DSGE models exhibiting timing restrictions necessarily give

rise to VARMA equilibrium representations for the observables. From an inferential point

of view, even when impulse responses are rightly constrained by the Cholesky scheme to

ing of variables in Cholesky-VARs has spurred interest in the development of structural macroeconomic
models exhibiting some degree of recursiveness, e.g. Rotemberg and Woodford (1997) and Christiano
et al. (2005).

4See Wolf (2020) for similar remarks on what short-run exclusion restrictions are likely to identify in
VAR models, when the data generating process is the equilibrium representation of a structural macroe-
conomic model.

5To be clear, all the results in Carlstrom et al. (2009) depend on neither small sample length nor
truncation bias (the DNK model admits a finite second order VAR representation and the econometrician
is assumed to select the same lag order and to precisely estimate all the autoregressive coefficients).
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be an exact match to the theoretical ones on impact, a finite order Cholesy-VAR can

still prove a very inaccurate approximation of the true adjustment paths of endogenous

variables to monetary policy shocks (e.g. Ravenna (2007) and Poskitt and Yao (2017)).

We explore this issue using two different DNK structures as data generating processes

(DGP). The first one is the sticky-price framework popularized by Benati and Surico

(2009) and fruitfully employed in policy and academic circles to conduct business cycle

analysis.6 The second is the DNK model with an active fiscal-passive monetary policy

regime advanced by Leeper and Leith (2016) in their thorough investigation of the fiscal

and monetary origins of inflation.

While virtually any DSGE model can be adapted to feature information-based timing

restrictions, there are at least two good reasons for our choice of the mentioned DNK

model laboratories. First, since structural (deep) parameters of DSGE models should be

invariant to the timing of decisions as enforced by informational constraints, calibrating

these parameters to the posterior medians reported in Benati and Surico (2009)allows

us to feed our baseline Cholesky-VARs with artificial data generated by an empirically

validated framework, as far as the sticky-price monetary model is concerned. Second,

notwithstanding their simplicity, both DNK models are flexible enough to allow us to

scrutinize the role of internal propagation mechanisms in generating persistent effects

of timing restrictions, and how this feeds back into the identification problem sketched

above.

As mentioned, a second contribution of this paper is to subject the connection between

timing restrictions and nonfundamentalness to formal investigation. It is well-known that

identifying and quantifying the relative importance of an economy’s true (structural)

shocks via structural VAR analysis require that the observed variables contain sufficient

information to recover the unobserved state variables of interest which are assumed to

produce the observables. In particular, if a given DSGE model’s solution (i.e. the data

generating process) does not admit an invertible (or fundamental) representation, then

there exists no (linear) invertible mapping from the VAR innovations to the structural

shocks of the underlying economy. Obviously, nonfundamentalness implies non-existence

of a finite-order VAR approximation of the true model’s dynamics. Since the empirical

6Lubik and Schorfheide (2004), Fanelli (2012) and Castelnuovo and Fanelli (2015) have studied the
consequences of changes in the monetary policy stance for the U.S. business cycle and macroeconomic
stability; Boivin and Giannoni (2006) and Benati and Surico (2009) have investigated salient empirical
facts from the U.S. Great Moderation; Castelnuovo and Surico (2010) put forward a new theoretical
interpretation of the VAR evidence on the positive response of prices to a monetary policy shock; Fanelli
and Sorge (2017) shed light on the implications of equilibrium indeterminacy for the forecast ability of
standard reduced-form prediction models.
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question addressed herein is whether the structural monetary shocks of a restricted DSGE

model can be retrieved from a finite-order VAR on the observable variables, we need to

address the question whether, and under what conditions, timing restrictions serve as a

source of nonfundamentalness.

Differently from RE structures with persistently dispersed information (e.g. Kasa

(2000), Kasa et al. (2014)), the specification of information-based timing restrictions does

not involve an infinite regress of expectations, and the underlying model’s representation

will be finite dimensional. However, while being fundamental in terms of the innovations

to agents’ information sets, this representation can prove nonfundamental (with respect

to any set of observables) in terms of the structural shocks.7

We construct (necessary and sufficient) conditions that pin down existence of funda-

mental representations of general DSGE models featuring timing restrictions. We next

show that such conditions are fulfilled by standard DNK environments under empirically

plausible parameterizations, thus validating the use of VAR-based approaches to evalu-

ation of monetary impulse responses. Inspection of the evolution of the coefficients of

the theoretical VAR(∞) reveals that they rapidly decay towards zero, mitigating con-

cerns about lag truncation bias arising from the adoption of low-order VAR systems: our

analysis shows that VAR(p) systems with p ≤ 3 are enough to recover qualitative and

quantitative characteristics of monetary impulse responses in restricted DNK models, for

a sufficiently large sample size.8

Our paper clearly speaks to the rapidly increasing literature on imperfect information

in models of the business cycle. On the one hand, scholars have been interested in ex-

ploring the role of imperfect information in fueling the propagation of structural shocks

in otherwise standard stochastic environments – e.g. Nimark (2008), Nimark (2014),

Angeletos and La’O (2013), Acharya et al. (2017). On the other, attention has been

focused on the conditions under which imperfect information qualifies as an alternative

mechanism that supports self-fulfilling expectations and sunspot fluctuations in models

that would rather exhibit a determinate equilibrium in the presence of perfect and sym-

7It should be emphasized that DSGE models with timing restrictions due to informational constraints
do not involve any kind of parameter variation, either exogenous or endogenous; time-invariant structures
will then dictate optimal linearized decision rules featuring time-invariant coefficients for the enlarged set
of state variables. See Kulish and Pagan (2017) for a method for constructing and estimating solutions for
linearized models with (actual or perceived) structural changes; Canova et al. (2020) for an exploration
of inferential issues related to time-varying structural macroeconomic models; and Cavicchioli (2020) for
the analysis of the invertibility conditions for DSGE models with Markovian coefficients.

8Truncation effects reflect existence of both an approximation error and an estimation error, that arise
even when the identification scheme is consistent with the structure of the macroeconomic model that
generates the observables, see e.g. Ravenna (2007) and Poskitt and Yao (2017).
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metrically shared information – e.g. Lubik et al. (2020). As emphasized in Sorge (2020),

information-based timing restrictions naturally embed an informational asymmetry across

economic agents, which in turn affects how beliefs are formed with respect to the stochas-

tic unfolding of economic variables. While requiring rather different mutual consistency

conditions for the beliefs of asymmetrically informed agents to coordinate into an RE

equilibrium, differential information processing in this setting generically preserves the

saddle-path properties of the underlying model economy: if the unrestricted model dis-

plays a determinate equilibrium, so will its restricted counterpart. Timing restrictions can

however produce nonfundamental or close to nonfundamental (in the time series sense)

equilibrium representations, thereby calling for a careful analysis of the mapping between

restricted DSGE structures and VAR models.

The paper proceeds as follows: Section (2) motivates our analysis by means of a simple

analytical example. Section (3) formally discusses how to construct first-order approxi-

mate solutions to general DSGE models with Cholesky-timing restrictions. Section (4)

provides easy-to-check conditions under which restricted DSGE models admit a funda-

mental equilibrium representation for the observables. Section (5) lays out the DNK

model laboratories, that are next used to explore the ability of Cholesky-VARs to iden-

tify and estimate theoretical IRFs generated by a monetary policy shock (Section (6)).

Section (7) offers concluding remarks.

2 An illustrative example

Answering the question of whether the structural shocks of a given multivariarate macroe-

conomic model can be recovered from a VAR analysis requires understanding if, and under

what conditions, such a model can be represented as a reduced-form VAR. To build in-

tuition on how timing restrictions influence the mapping from the DSGE structure to its

equilibrium representation, let us consider the following simple bi-variate RE system

E [y1,t − αy1,t+1 − y2,t − x1,t|I1,t] = 0, α > 0, (1)

E [y2,t − βy2,t+1 − x1,t − x2,t|I2,t] = 0, β > 0, (2)

x1,t = ρ1x1,t−1 + ε1,t, |ρ1| < 1, (3)

x2,t = ρ1x2,t−1 + ε2,t, |ρ2| < 1, (4)

ε1,t ∼ NID(0, 1), ε2,t ∼ NID(0, 1) (5)
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where yt = (y1,t, y2,t)
′ are endogenous (control) variables, xt = (x1,t, x2,t)

′ are exogenous

(state) variables, and E [·|Ii,t] denotes the expectation operator accounting for potential

informational constraints embedded in the conditioning sets Ii,t, i = 1, 2 (all variables are

defined on a common filtered probability space).

In the unrestricted case, I1,t and I2,t both coincide with the smallest closed linear

subspace It spanned by the semi-infinite history of all the model’s variables up to time t,

i.e. It = Vt(y
t) ∨ Vt(x

t). Letting Et[·] = E [·|It], the RE system (1)-(5) can be cast in the

conventional form

yt = AEtyt+1 +Bxt (6)

where

A =

(
α β

0 β

)
, B =

(
2 1

1 1

)
(7)

When α, β ∈ (0, 1), the number of explosive roots associated with A−1 equals the

number of jump variables, and thus the model features a locally unique (determinate)

equilibrium of the form(
y1,t

y2,t

)
=

(
2−βρ1

(1−αρ1)(1−βρ1)
1

(1−αρ2)(1−βρ2)
1

1−βρ1
1

1−βρ2

)(
x1,t

x2,t

)
(8)

which generically admits a finite-order VAR representation.9

Assume now the control variable y1,t is optimally set prior to the realization of the

exogenous variable x2,t. This information-based timing restriction is simply captured

by letting I1,t = Vt(y
t
1, y

t−1
2 ) ∨ Vt(x

t
1, x

t−1
2 ) ⊂ I2,t = Vt(y

t) ∨ Vt(x
t). Provided α, β ∈

(0, 1), the restricted model will exhibit the same determinacy properties as its unrestricted

counterpart (Sorge (2020)). Notice however that, in contrast with the unrestricted case,

the endogenous variable y1,t varies with the shock process x2,t (and functions of it) only

with delay, and yet immediately adjusts in reaction to the optimal estimate of the latter on

the basis of information contained in I1,t; this implies that, generically, E [y2,t|I1,t] 6= y2,t.

A straightforward application of the method of undetermined coefficients revels that

the RE solution under timing restrictions has the following representation

(
y1,t

y2,t

)
=

(
2−βρ1

(1−αρ1)(1−βρ1) 0 ρ2
(1−αρ2)(1−βρ2)

1
1−βρ1

1
1−βρ2 0

) x1,t

x2,t

x2,t−1

 (9)

9Specifically, provided the square coefficient matrix in (8) is non-singular, the determinate solution is
in VAR(1) form, see Morris (2016).
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which admits the factorized MA form

yt = M1(L) ·M2(L)εt, (10)

M1(L) =

(
2−βρ1

(1−αρ1)(1−βρ1)
ρ2

(1−αρ2)(1−βρ2) · L
1

1−βρ1
1

1−βρ2

)
, (11)

M2(L) =

(
(1− ρ1L)−1 0

0 (1− ρ2L)−1

)
(12)

Existence of a causal VAR representation of the RE model obtains is warranted when

the determinant of the filter M1(L) only vanishes within the unit circle. For some para-

metric configurations of the RE system (1)-(5) this will be the case, and yet the inversion

of the MA filter will result in VAR polynomial matrices whose coefficients slowly decline

toward zero as the lag counter increases. As an example, when α = 0.8, β = 0.69,

ρ1 = 0.45 and ρ2 = 0.84, the evolution of the coefficients of the theoretical VAR matrices

with and without timing restrictions at different lags is markedly different, see Figure

(1). Under these circumstances, the true DGP is a VARMA with a non-trivial MA com-

ponent, and fitting a finite-order VAR to data generated from the restricted RE model,

albeit correctly identified, may produce highly inaccurate estimates of impulse responses,

for they involve non-linear (at horizons larger than one) functions of biased estimates of

the truncated VAR coefficients.

Figure 1: Evolution of coefficients of the theoretical V AR representation of the RE model
(1)-(5) with and without timing restrictions.

Non-fundamentalness is also an issue here. In fact, for generic parametric configura-
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tions, such as e.g. β ≥ α = 0.8, ρ1 ∈ (0.1, 0.3), ρ2 ∈ (0.9, 0.99), there exists no (linear)

invertible mapping from the empirical VAR innovations to the structural shocks of the

RE model. As a result, the theoretical impulse responses to shocks εi,t (i = 1, 2) cannot

be retrieved from the history of observables yt, no matter which identification strategy is

adopted.

3 Environment: DSGE models with timing restric-

tions

Once reduced to its first-order optimality conditions, DSGE models under RE are typically

described by a system of nF expectational stochastic difference equations of the form

Etf (yt+1, yt, xt+1, xt;σ) = 0 (13)

where the random processes (yt) and (xt) are defined on the same probability space,

and Et is the standard (conditional) expectation operator associated with the underlying

probability measure. The ny-dimensional vector y collects the model’s endogenous jump

variables, whereas the nx-dimensional vector x contains endogenous predetermined as

well as exogenous states. Finally, the scalar σ ≥ 0 is used to scale the size of aggregate

uncertainty surrounding the economy, see Schmitt-Grohé and Uribe (2004).

3.1 Unrestricted model

To ease notation, let the prime superscript denotes one-step ahead variables. In the

standard unrestricted case, policy functions for all the endogenous variables depend on

all the state variables x. Time-invariant, analytic solutions to (13) are in the form

y = g(x, σ), x′ = h(x, σ) + σε′ (14)

where the elements of the nX-dimensional vector ε are i.i.d. zero-mean, unit variance

innovations (e.g. structural shocks).

As shown in Schmitt-Grohé and Uribe (2004), up to first order certainty equivalence

holds generically, and therefore σ does not enter the linearly perturbed model’s dynamics

for endogenous variables, i.e. one has

y = gxx, x′ = hxx+ σε′ (15)

11



where gx and hx are conformable matrices of first-order derivatives of the maps g(x, σ)

and h(x, σ) with respect to x, evaluated at the non-stochastic steady state (ȳ, x̄) that

solves (13) when σ = 0.

3.2 Restricted model

Let us now turn to studying the implications of information-based timing restrictions. To

this end, we consider the most basic case where any given time period is split into two

informational subperiods, according to the timing of the model’s variables. Formally, the

control and state vectors are accordingly partitioned as

y = [yu; yr] , x = [xu; xr] (16)

where the nxu-dimensional vector xu consists of endogenous predetermined as well as ex-

ogenous variables which materialize in the beginning of the first subperiod, xr contains nxr

exogenous variables with realizations in the second subperiod, yu is the nyu-dimensional

vector of fully endogenous jump variables, i.e. endogenous variables which are condi-

tioned on all the state variables x. Finally, the nyr -dimensional vector yr collects partially

endogenous variables, which are decided upon in the first subperiod, when realizations

of only a subset of state variables are known. To apply Kormilitsina (2013)’s solution

approach, the RE system (13) is partitioned as follows

f =
[
f 0; f 1; fxr

]
(17)

so that the sub-system f 0 includes nyr equations determining endogenous variables yr,

the sub-system f 1 includes nyu equations that determine endogenous variables yu and nxu

equations determining the dynamics of the states xu, and the sub-system fxr describes

the evolution of exogenous shocks xr, represented as a first-order stationary autoregressive

process

x′r = Pxr + σε′xr , εxr ∼ i.i.d.N(0, Vεxr ) (18)

where P is a stable square matrix of autoregressive coefficients, and ε′xr collects the nxr

shocks associated with the states xr.

The RE system with timing restrictions can be equivalently rewritten as

Et [f (y′, x′, y, x)] = 0 (19)
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and its recursive solution represented in general form as

yu = ĝ(xu, xr, xr,−1, σ), yr = ĵ(xu, xr,−1, σ), x′u = ĥ(xu, xr, xr,−1, σ) + σε′xr (20)

Endogenous (jump) variables in yr only react to the conditional forecast of states in

xr (a function of previous period variables xr,−1), as the latter do not belong in the first

subperiod information set. By the same token, endogenous (jump) variables in yu are

a function of yr – a state variable in the second informational subperiod – and thus of

lagged states xr,−1. Notice that the timing restrictions only involve exogenous variables

xr which are uncorrelated with other exogenous variables in x; also, all the xr variables

are not observed in the first subperiod, hence the filtering problem does not require using

the variance-covariance matrix of the εxr shocks in order to compute an optimal (in the

mean-square sense) estimate of unobserved states.

As established in Kormilitsina (2013), linearly perturbed DSGE models with timing

restrictions comply with the certainty equivalence principle, so that the first-order ap-

proximation to (20) is

yu = ĝxuxu + ĝxrxr + ĝxr,1xr,−1,

yr = ĵxuxu + ĵxr,−1xr,−1, (21)

x′u = ĥxuxu + ĥxrxr + ĥxr,−1xr,−1 + σε′xu

or in more compact form

y = ĝx

 xu

xr

xr,−1

 , x′ = ĥx

 xu

xr

xr,−1

+ σε′ (22)

where

ĝx =

(
ĝxu ĝxr ĝxr,−1

ĵxu 0nyr×nxr
ĵxr,−1

)
, ĥx =

(
ĥxu ĥxr ĥxr,−1

0nxr×nxr
P 0nxr×nxr

)
(23)

Sorge (2020) formally shows that, provided a given full rank condition is met, the restricted

model (19) admits a unique, dynamically stable first-order approximate solution whenever

its unrestricted counterpart (13) does. In this case, the solution to the restricted model

can be readily constructed via linear transformations of (15), however computed (e.g.
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Klein (2000); Christiano (2002); King and Watson (2002); Sims (2002)).10

Upon partitioning the equilibrium coefficient matrices (gx, hx) in (15) as follows

gx =

(
gxu gxr

jxu jxr

)
, hx =

(
hxu hxr

0 P

)
(24)

we can easily map the full information coefficient matrices into those appearing in (22),

i.e.

ĝx =

(
gxu gxr +

(
∇(f 1)−1f 1

yrjxr
)
nyu

−
(
∇(f 1)−1f 1

yrjxrP
)
nyu

jxu 0nyr×nxr
jxrP

)
, (25)

ĥx =

(
hxu hxr +

[
∇(f 1)−1f 1

yrjxr
]
nxu

[
−∇(f 1)−1f 1

yrjxrP
]
nxu

0 P 0

)
(26)

where ∇(f 1) denotes the Jacobian of the sub-system f 1 with respect to the vector [x′u, yu],

f 1
yr is the matrix of partial derivatives of f 1 with respect to the partially endogenous

variables collected in the vector yr, and [M ]m is used to denote the selection of the first

(or last) m rows of some matrix M .

We remark that virtually any DSGE model can be adapted to feature timing restric-

tions, for they can be directly applied to equilibrium conditions (whether nonlinear or

linearized) in a way that does not violate any of the RE postulates; as a matter of fact,

the restricted equilibrium representation (22) is equivalent to the first-order approxima-

tion of the same underlying model where nested information sets are specified at the

outset. In the Appendix we report full details on the solution algorithm developed in

Kormilitsina (2013), and apply it to the illustrative example discussed in Section (2).

4 Timing restrictions and VAR representations of

DSGE models

The foregoing arguments clarify that the information-based timing restrictions engender

an enlarged state space as well as an increased degree of backward dependence in policy

10Hespeler and Sorge (2019) devise a simple model economy where timing restrictions force a mismatch
between the number of fully endogenous variables and the number of equations that are required to
pin down them. Whenever this is the case, generic singularity of the Jacobian ∇(f1) obtains for it
reflects a fundamental failure of regularity requirements which are implicitly invoked for the algorithmic
implementation of computational routines in standard (unrestricted) RE systems, see e.g. Klein (2000).
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functions. Since all the non-zero eigenvalues of the companion matrix

h†x =


hxu hxr +

[
∇(f 1)−1f 1

yrjxr
]
nxu

[
−∇(f 1)−1f 1

yrjxrP
]
nxu

0 P 0

0 I 0

 (27)

are those of hxu and P , the first-order approximate solution under timing restrictions is

dynamically stable (Sorge, 2020). The ensuing equilibrium MA representation for (all)

the endogenous variables included in the y vector is

yt = C(L)xt = C(L) (I − A(L))−1 σεt = B(L)εt (28)

where L stands for the conventional lag operator and

C(L) =
(
ĝxu , ĝxr + ĝxr,−1L

)
, A(L) =

(
ĥxu , ĥxr + ĥxr,−1L

)
(29)

Recall that the IRFs of the elements of yt to a unit shock in one of the elements of εt

occuring at some time t = s are given by the sequences of corresponding MA coefficients

in (28) from time s onward. These coefficients functionally depend on those entering

the C(L) filter, which in turn depends on the elected structure of timing restrictions

as embodied in the partition-based Jacobian ∇(f 1). As a consequence, theoretical im-

pulse response functions (IRFs) associated with a DSGE model under timing restrictions

generically differ from those implied by its unrestricted counterpart over all time horizons.

The equilibrium MA representation (28) may in principle fail to invert into a causal

autoregressive one, thereby preventing VAR methods from recovering the truly structural

economic shocks. Non-fundamentalness is known to be a generic issue in square systems,

i.e. when ny = nx, e.g. (Alessi et al., 2011).

The reduced form of the general model (13) under timing restrictions will be non-

fundamental (and thus non-invertible in the past) if and only if the determinant of the

filter B(L) vanishes within the unit circle. By virtue of the stability property of A(L), an

easy-to-check condition for fundamentalness of the first-order approximate solution can

be stated as follows11

Condition 1 (Fundamentalness). Let ny = nx. Then, for any given informational par-

tition (16)-(17), the equilibrium representation under timing restrictions is fundamental

11See Rozanov and Rozanov (1967) for a comprehensive discussion of fundamentalness and invertibility
properties for stationary random processes.
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if and only if

Det

(
gxu gxr +

[
∇(f 1)−1f 1

yrjxr
]
nyu
−
[
∇(f 1)−1f 1

yrjxrP
]
nyu
· z

jxu jxrP · z

)
= 0 =⇒ |z| ≥ 1

(30)

Even when fundamentalness is warranted by the model’s parameterization, the equi-

librium dynamics (28) need not admit a finite-order (causal) VAR representation, opening

room to lag truncation bias in IRFs estimation exercises, e.g. Chari et al. (2008) and Soc-

corsi (2016). As is known, approximating VAR(∞) representations with finite-order VAR

systems may severely distort estimation the structural IRFs, whatever the identification

strategy adopted by the researcher (Ravenna (2007), Poskitt and Yao (2017)). Notice

that the state space representation

yt = C(L)A(L)xt−1 + C(L)σεt, (31)

xt = A(L)xt−1 + σεt (32)

is tied directly to the CERs of the RE model under timing restrictions and thus involves the

state vector xt of the smallest dimension possible for replicating the dynamic properties

of the reduced form equilibrium process for the observables. The following condition

will therefore fully characterize existence of a finite order VAR representation for the

observables in the square case (Franchi and Vidotto, 2013)

Condition 2 (Finite order VAR representation). Let ny = nx and define the matrices

I◦ =

(
Inx×nx

0nxr×nx

)
, (33)

g†x =

(
gxu gxr +

[
∇(f 1)−1f 1

yrjxr
]
nyu

jxu 0nyr×nxr

)
, (34)

g◦x =

(
gxu gxr +

[
∇(f 1)−1f 1

yrjxr
]
nyu

−
[
∇(f 1)−1f 1

yrjxrP
]
nyu

jxu 0nyr×nxr
jxrP

)
· h†x (35)

Then, provided g†x is non-singular, for any given informational partition (16)-(17), a finite

order VAR equilibrium representation under timing restrictions exists if and only if the

(nx + nxr)-dimensional square matrix

F := h†x − I◦ ·
(
g†x
)−1 · g◦x (36)
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is nilpotent – i.e. all its eigenvalues are equal to zero.

We emphasize that both conditions (1) and (2) are expressed in terms of the reduced

form coefficients of the RE solution to the unrestricted model (13), and can thus be

checked whatever the solution algorithm employed, once the informational partition (17)

has been devised.12

5 Model laboratories

As mentioned, we employ two distinct model laboratories to conduct our numerical ex-

periments: the hybrid sticky-price model put forward in Benati and Surico (2009) in their

VAR analysis of the so-called Great Moderation; and a dynamic production model with

an passive monetary-active fiscal policy regime, popularized in Leeper and Leith (2016)

that expands on the standard forward-looking DNK model by allowing fiscal policy to

influence the real economy.

5.1 Benati and Surico (2009)’s model

The model is given as follows

gt = γEtgt+1 + (1− γ)gt−1 − δ(it − Etπt+1) + ωgt (37)

πt =
β

1 + βα
Etπt+1 +

α

1 + βα
πt−1 + κgt + ωπt (38)

it = ρit−1 + (1− ρ)(ϕππt + ϕggt) + ωit (39)

where

ωjt = ρjω
j
t−1 + εjt , |ρj| < 1, εjt ∼WN(0, σ2

j ) , j = g, π, i (40)

and expectations are conditional on the information set It, i.e. Et·:=E(· | It). The

variables gt, πt, and it stand for the output gap, inflation, and the nominal interest rate,

respectively; γ is the weight of the forward-looking component in the dynamic IS curve;

α is price setters’ extent of indexation to past inflation; δ is households’ intertemporal

elasticity of substitution; κ is the slope of the Phillips curve; ρ, ϕπ, and ϕg are the interest

12We provide Matlab code that performs this task, that expands on the perturbation approach put
forward in Kormilitsina (2013). Notice that, given that the state space representation (31) is in minimal
form, a necessary and sufficient condition for the process for yt to admit an infinite order causal VAR
representation is that F be a stable matrix, i.e. its eigenvalues are all strictly below one in modulus, see
Fernández-Villaverde et al. (2007) and Franchi and Paruolo (2015).
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rate smoothing coefficient, the long-run coefficient on inflation, and that on the output

gap in the monetary policy rule, respectively; finally, ωgt , ω
π
t and ωit in eq. (40) are the

mutually independent, AR(1) disturbances and εgt , ε
π
t and εit are the structural shocks.

The DNK model (37)-(38)-(39) is submitted to Cholesky-timing restrictions according

to which (i) the monetary policy shocks are orthogonal to the non-policy variables (gt, πt),

and (ii) these non-policy variables are thus predetermined with respect to the policy instru-

ment, i.e. the nominal interest rate. A relevant characteristic of this model environment is

that it always predicts conventional macroeconomic reactions to a monetary policy shock

for this entails recessionary and deflationary effects that are only delayed when timing

restrictions are at work. Monetary impulse responses are thus qualitatively similar across

the two information structures (restricted versus unrestricted), and eventually follow the

same exact pattern when the effect of the policy shock dies out.

Cholesky-timing assumptions in Benati and Surico (2009)’s model are enforced by the

following assignment of variables:

yu = i, yr = [g, π]′

xu = [g−1, π−1, ω
g, ωπ]′, xr = ωi

(41)

Let us remark that the recursive structure of the equilibrium representation of the

restricted DNK model will have non-policy variables (output gap and inflation) not react

to the monetary shock ωi on impact; and yet both non-policy variables are free to adjust

in response to the demand shock ωg and the cost-push shock ωπ. This is different from the

fully recursive ordering of variables in the Cholesky-VAR, where the non-policy variable

ordered first is restricted not to react to the shock ordered second. Model-wise, perfectly

aligning the DNK structure and the Cholesky-VAR would require using a multiperiod

informational partition that reflects the presence of different layers for the partially en-

dogenous variables that are allowed to react to only a subset of the shock other than the

monetary policy one, see Kormilitsina (2013). This is however not an issue for our empir-

ical exercises, since the Cholesky scheme is known to be sufficient for the identification of

the dynamic response of all variables in the VAR system to the monetary shock, provided

the interest rate equation is ordered last, e.g. Christiano et al. (1999).

5.2 Leeper and Leith (2016)’s model

Based on the standard DNK structure, Leeper and Leith (2016)’s model considers a

representative agent cashless economy featuring monopolistic competition in the goods
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market and nominal rigidities (staggered price setting). One-period nominal bonds Bt sell

at price 1/it, where it is also the monetary policy instrument; bonds maturity is measured

by the rate of decay ρ ≥ 0 (ρ = 0 means one period maturity). Government purchases are

zero and the primary government surplus st is assumed to evolve exogenously (reflecting

the presence of lump-sum taxes). Monetary and fiscal policies are subject to structural

disturbances, in addition to shocks to the dynamic IS equation and the NKPC, as in Wolf

(2020). Once linearly approximated around the zero inflation non-stochastic steady state,

the model dynamics are described by the following equations

gt = Et[gt+1]− σ(it − Et[πt+1]) + ωgt (42)

πt = βEt[πt+1] + κgt + ωπt (43)

it = ϕππt + ϕggt + ωit (44)

Pm
t = −it + βρEt[P

m
t+1] (45)

bmt = β−1bmt−1 + (ρ− 1)Pm
t + (1− β−1)st − β−1πt (46)

ωjt = ρjω
j
t−1 + εjt , |ρj| < 1, j = g, π, i (47)

st = ρsst−1 + εst , |ρs < 1 (48)

where (45) is no-arbitrage condition linking bond prices to the one-period nominal interest

rate and (46) is the flow Government budget identity. The shocks εgt , ε
π
t , ε

i
t and εst are taken

to be mutually independent white noise sequences.

Following Leeper and Leith (2016) and Wolf (2020), we focus attention on the pas-

sive monetary - active fiscal policy regime. The system then delivers RE equlibria for

the endogenous variables gt (output gap), πt (inflation rate), it (nominal interest rate),

Pm
t (bond price) and bmt (real face value of outstanding debt); determinacy of the RE

equilibrium is warranted when e.g. ϕπ ∈
[
0, 1− 1−β

κ
ϕg
)
.

As shown in Leeper and Leith (2016), monetary policy shocks that raise the nominal

interest rate and depresses output in the short-run can bring about a rise in inflation,

whose magnitude and persistence vary non-monotonically with the strength of reaction of

the policy rule to fluctuations in the inflation rate. In the passive monetary-active fiscal

regime, higher nominal interest rates trigger strong inflationary expectations that overtake

the deflationary push flowing from lower output through the Phillips curve (wealth effect).

This positive inflation impact response to monetary surprises is pronounced for relatively

short debt maturities (ρ equal or close to zero) for they enhance, all else equal, the market

value of debt.

Under the conventional Cholesky-timing assumption, we observe that (i) the monetary
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policy shocks are orthogonal to the non-policy variables (gt, πt), and (ii) these non-policy

variables are thus predetermined with respect to the nominal interest rate. Valuation of

debt is also taken not to reflect unexpected changes in the nominal interest rates. This

feature, together with the presence of long debt and of high persistence of structural shocks

other than the cost-push one, generates a significant (although delayed) contraction in

both the inflation rate and the output gap, that eventual rise when the real interest rate

and bond prices start declining at longer horizons.

Methodology-wise, the restricted version of the model is fully characterized by the

following assignment of variables

yu = [i], yr = [g, π, Pm, bm]′ (49)

xu = [s, ωg, ωπ, bm−1]
′, xr = [ωi] (50)

6 Numerical experiments

We now conduct a number of numerical experiments aimed at comparing DNK model-

implied impulse responses to those produced by a VAR in (possibly a subset of) the

model’s variables, in which the monetary policy shock is identified by a Cholesky de-

composition of the variance-covariance matrix of the reduced-form residuals. Specifically,

we consider a VAR specification involving three observables generated by each of the two

DNK models described above – the output gap, the inflation rate and the nominal interest

rate – and adopt the Cholesky identification approach by restricting the monetary policy

shocks not to have a contemporaneous impact on non-policy variables; since the policy

instrument (here, the interest rate) is allowed to react on impact to other structural dis-

turbances, the equation for the nominal interest rate is placed last in the VAR ordering.

Notice that, different from Carlstrom et al. (2009), our Cholesky-VAR econometrician is

not assumed to know the exact VAR representation of the DNK model generating the

data, and is thus concerned with the estimation of the VAR matrix coefficients; parame-

ter identification may thus contaminate the inference on the monetary impulse responses

as identified via short-run exclusion restrictions. Lag length selection is data-driven and

appeals to the Bayesian information criterion (BIC), see e.g. Lütkepohl (2005).

In order to generate artificial time series for the observables (our DGPs), we first

calibrate Benati and Surico (2009)’s model with their posterior estimates over the Great

Period13 and Leeper and Leith (2016)’s model with the parameters reported in Wolf

13See last column of Table 1, Carlstrom et al. (2009), p. 1640.
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(2020). Then, for both the restricted and the unrestricted versions of the model, artificial

data samples are generated by simulating the model’s determinate solution when shock

realizations are independently drawn from the assumed densities at any given period.

For each simulation a Cholesky-VAR is specified, its lag length selected via the BIC

and autoregressive coefficients estimated by a standard Maximum Likelihood technique;

estimated IRFs to a normalized monetary policy shock are finally computed and stored.

All our figures below report average Cholesky-VARs monetary impulse responses and

plot them against the DGP-consistent IRFs, for both the restricted and the unrestricted

version of each model. Operationally, we use K = 100 repetitions, H = 15 as the IRF

horizon, and T = 1000 as length of the artificial data sample, with a burn-in of 200

observations.14

Figures (4) and (7) deliver our comparison results for the benchmark calibration. In

the same spirit of Carlstrom et al. (2009), we also re-run the above described numeri-

cal exercises by varying either the persistence parameters of exogenous shock processes

(Figures (5) and (8)), or some of the key structural parameters that govern the degree of

endogenous persistence (hence, the strength of the internal propagation mechanism) of the

underlying model (Figures (6) and (9)). Tables (1) collects all the parameter choices for

the DNK models under scrutiny; for all of these empirically plausible parameterizations,

condition 1 is fulfilled, whereas condition 2 is not: thus, lag truncation bias will neces-

sarily arise when employing a finite-order VAR specification to estimate the equilibrium

infinite-order VAR representation of the DNK model with timing restrictions.15

We argue, however, that truncation effects on the approximating VAR performance

are moderate, even when timing restrictions endogenously propagate over time. First,

notice that truncation does not induce an identification error due to functional dependen-

cies of the identifying matrix relating structural shocks and reduced-form innovation on

the VAR coefficients, since impact exclusion restrictions are employed as an identification

14Of course, short data samples and measurement errors can undermine the precision of estimates
IRFs as in any other inferential problem. Given our focus on the ability of Cholesky-VARS in correctly
identifying the true monetary impulses responses when timing restrictions re-shape a model’s internal
propagation mechanism, we endow our econometrician with a sufficiently large sample to perform her
task. Further investigation of these issues (available on request) suggests that (i) a small sample size
produces a standard downward bias and yet does not affect the ability of Cholesky-VARs to closely
reproduce the essential shape of the true IRFs generated by restricted models, and (ii) measurement
errors generates attenuation effects on point estimates of impulse-response coefficients, lowering all else
equal the power of significance tests against the null of a zero response.

15Notice that, provided ρ 6= 0, our expanded version of Leeper and Leith (2016)’s model involves five
observables and only four shocks; the ensuing equilibrium MA representation is therefore non-square and
tall. Fundamentalness in tall systems is known to be a generic property in absence of measurement errors,
that we explicitly rule out for our purpose of focusing exclusively on model-implied nonfundamentalness.
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Benati and Surico (2009)
γ δ β α κ ρ φπ φg ρg ρπ ρi

Figure 4 0.74 0.12 0.99 0.06 0.044 0.83 1.75 1.15 0.8 0.42 0.4
Figure 5 0.74 0.12 0.99 0.06 0.044 0.83 1.75 1.15 0.9 0.9 0
Figure 6 1 0.12 0.99 0 0.044 0 1.75 1.15 0.8 0.42 0.4

Leeper and Leith (2016)
σ β κ ϕπ ϕg ρ ρg ρπ ρi ρs

Figure 7 1 0.95 0.3 0.5 0.5 0 0.3 0.4 0.6 0.6
Figure 8 1 0.95 0.3 0.5 0.5 0.95 0.3 0.4 0.6 0.6
Figure 9 1 0.95 0.3 0.5 0.5 0.95 0.9 0 0.9 0.9

Table 1: Alternative parameterizations for Benati and Surico (2009) and Leeper and Leith
(2016)’s DNK model.

device (e.g. Ravenna (2007)). Second, the estimated VAR matrices in the finite-order

empirical specification will be less prone to pure truncation bias for the true VAR rep-

resentation features fast decaying coefficients at relatively short horizons. To see this,

consider the benchmark calibration of Benati and Surico (2009)’s model, reported in the

first row of Table 1, that identifies inertia in the endogenous behavior on the part of

households and firms as a non-negligible source of time series persistence. In the presence

of Cholesky-timing restrictions, the model admits an infinite-order VAR representation

whose polynomial matrices asymptotically converge to zero as a function of the largest

(in modulus) eigenvalue of the F matrix defined in (36), see e.g. Ravenna (2007), which is

equal to 2.3012e− 06. The following Figures show the evolution of the coefficients of the

theoretical VAR matrices with and without timing restrictions at different lags (Figure

(2)), and also the largest eigenvalue (in modulus) of the F matrix associated with the

restricted DGP as a function of the deep parameters δ and κ, all else equal (Figure (3)).

It is apparent that, although reflecting existence of an approximation error, the truncated

VAR system serves as a reasonably good description of the true equilibrium reduced form

of the restricted DNK model.16

16Notice that Leeper and Leith (2016)’s model suffers from stochastic singularity if all the five endoge-
nous variables are taken to be observable. This is not an issue for our applications, since we do not
engage in system-based structural estimation exercises of any kind.
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Figure 2: Evolution of coefficients of the theoretical V AR representation of Benati and Surico
(2009)’s model with timing restrictions (green) and without timing restrictions (red).

6.1 Benati and Surico (2009) vs. Cholesky-VARs

Figures (4) to (6) contrast the DNK-implied monetary impulse responses with those gen-

erated by Cholesky-VARs, when Benati and Surico (2009)’s model is used the DGP. In

all the figures, the solid red lines are the true IRFs in the unrestricted model; the solid

green lines are the true IRFs in the restricted model; the dashed blue lines are the IRFs

identified using Cholesky-VARs when the DGP is the unrestricted model; the solid yellow

lines are the IRFs identified using Cholesky-VARs when the DGP is the restricted model.

The BIC suggests adopting VAR systems with at most three lags to approximate the true

DGP dynamics.

Inspection of Figure (4) reveals the following. First, and in line with findings from Carl-

strom et al. (2009) and Castelnuovo (2016), when the unrestricted DNK model generates

the data, the Cholesky-identified IRFs systematically underestimate the true responses of

all the three endogenous variables to a monetary shock, while also displaying a puzzling

upward pattern of variation for the output gap at relatively short horizons. Second, on

the assumption that the restricted DNK model serves as the actual DGP, the Cholesky-

identified IRFs are correctly signed and similar in shape to their theoretical counterparts,

with moderate differences in the estimated magnitudes.

Figure (5) confirms this conclusion by showing that the Cholesky identification strat-

egy produces puzzling positive reactions of inflation and output gap at short horizons

when the unrestricted DNK model serves as DGP, and demand- and supply-side struc-

23



-5

1.75

0

1.50 1.75

10-5

1.501.25
1.251.00

5

1.000.75 0.750.50 0.500.25 0.25

Figure 3: Largest eigenvalue of F matrix in Benati and Surico (2009)’s model under timing
restrictions, as a function of households’ intertemporal elasticity of substitution (σ) and the slope
of the Phillips curve (κ).

tural disturbances feature a large degree of persistence (ρg = ρπ = 0.9) vis-à-vis a serially

uncorrelated monetary policy shock (ρi = 0). A recursive identification scheme in a non-

recursive world thus severely distorts estimates of the adjustment paths of model variables

to a monetary policy surprise; it however delivers a fairly reasonable empirical representa-

tion of the true IRFs when the model complies with the Cholesky recursive assumptions,

even though the autoregressive coefficients of the empirical VAR are estimated with error

due to lag truncation bias.

Figure (6) finally illustrates that these astonishing discrepancies in the relative perfor-

mance of Cholesky-VARs across the restricted and the unrestricted model environments

are not due to the presence of a strong internal propagation mechanism that transmits

the effects of structural disturbances within the model and over time: even when the

DNK model is purely forward-looking (γ = 1 and α = 0) and yet has no recursive struc-

ture, a serious mis-representation of true monetary impulse responses will arise when the

VAR system is submitted to short-run exclusion restriction. This is not the case for a

restricted model-consistent DGP, although the magnitude of short to medium-horizon ef-

fects of monetary policy shocks are not fully retrieved (a finding in line with Wolf (2020)).
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Figure 4: Impulse response functions (IRFs) to a monetary shock for Benati and Surico
(2009)’s model with ρg = 0.8, ρπ = 0.42 and ρi = 0.4.
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Figure 5: Impulse response functions (IRFs) to a monetary shock for the Benati and Surico
(2009)’s model with ρg = 0.9, ρπ = 0.9 and ρi = 0.
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Figure 6: Impulse response functions (IRFs) to a monetary shock for the Benati and Surico
(2009)’s model with ρg = 0.8, ρπ = 0.4 ,ρi = 0.4, γ = 1, α = 0, and ρ = 0.
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6.2 Leeper and Leith (2016) vs. Cholesky-VARs

Figures (7) to (9) report the DNK-implied monetary impulse responses against Cholesky-

VARs identified ones, when Leeper and Leith (2016)’s model is used as the underlying

DGP. As before, in all the figures the solid red lines are the true IRFs in the unrestricted

model; the solid green lines are the true IRFs in the restricted model; the dashed blue lines

are the IRFs identified using Cholesky-VARs when the DGP is the unrestricted model;

the solid yellow lines are the IRFs identified using Cholesky-VARs when the DGP is the

restricted model. Again, adoption of the lag length selection information criterion results

in the estimation of VAR(p) systems with p ≤ 2.

Figures (7) and (8) reinforce our claim about the good approximating performance

of Cholesky-VARs when applied to a DGP exhibiting a Cholesky-style recursive struc-

ture. Most remarkably, Figure (9) shows that information-based timing restrictions dra-

matically alter the true monetary impulse responses relative to the model’s unrestricted

counterpart: while both inflation and output gap jump on impact above their long-run

values and then remain positive over shorter horizons (up to four periods), they stay in

the negative territory when restricted not to react contemporaneously to an unexpected

change in the nominal interest rate; and these dynamic adjustment patterns then flip sign

at medium to long horizons in the convergence process to steady state.

This strikingly different behavior of the unrestricted and restricted versions of the

same underlying DNK structure dramatically impact the ability of Cholesky-VARs to

uncover the true monetary impulse responses: estimated IRFs are almost flat at zero

for the unrestricted model, whereas are closely replicated if generated by the restricted

model.17

17This observation also qualifies the results in Wolf (2020) as it points to the possibility of severe mis-
identification of monetary IRFs in cases where a standard Cholesky identification scheme is imposed on
data generated by a non-recursive model of monetary-fiscal policy interaction.
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Figure 7: Impulse response functions (IRFs) to a monetary shock for the Leeper and Leith
(2016)’s model with ρ = 0.
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Figure 8: Impulse response functions (IRFs) to a monetary shock for Leeper and Leith (2016)’s
model with ρ = 0.95.
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Figure 9: Impulse response functions (IRFs) to a monetary shock for Leeper and Leith (2016)’s
model with ρ = 0.95 and ρπ = 0.

27



7 Concluding remarks

This paper assesses Cholesky-VARs against model-based data generating processes in con-

trolled DSGE environments. When the building blocks of structural macroeconomic mod-

els prove inherently at odds with Cholesky-timing restrictions, the ensuing discrepancy

between theoretical and Cholesky VAR-implied dynamic responses can be remarkable,

and absolutely impossible to phase out via the impulse response matching procedure.

Moving from the analytical characterization of the effects of Cholesky-timing restric-

tions on the equilibrium representation of otherwise standard DNK models, this paper

establishes that these restrictions are a potential source of non-trivial VARMA equilib-

rium representations as well as of model-based nonfundamentalness, making inference

from VAR systems unreliable.

Simulation results nonetheless suggest that concerns about identification and lag trun-

cation bias are not as serious as one may suspect. The results of our numerical experiments

invariably provide support to the view that Cholesky-VARs perform well in identifying the

actual monetary impulse responses in restricted DNK structures, no matter whether tim-

ing restrictions display long-lasting effects and/or predict substantially different response

patterns (in terms of sign, shape and magnitude) relative to the unrestricted benchmark

case.
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Appendix

A.1 Solution algorithm for general DSGE models

The first-order approximate solutions (and their minimal state space representation) to

the general DSGE mode under informational constraints can be obtained via the following

algorithm — see Kormilitsina (2013) and Sorge (2020) for further details.

Step 1. Compute the steady state (ȳ, x̄) of the unrestricted RE modelEtf (yt+1, yt, xt+1, xt;σ) =

0;

Step 2. Arrange variables in y and x in vectors [yu, yr] and [xu, xr]. Sort the equilibrium

conditions into vectors f 0, f 1 and fxr , and arrange them into the partition f =

[f 0; f 1; fxr ] accordingly;

Step 3. Obtain matrices gx and hx for the unrestricted RE model, and partition them as

follows

gx =

(
gxu gxr

jxu jxr

)
, hx =

(
hxu hxr

0 P

)
(51)

where gxu is (nyu×nxu)-dimensional, gxr is (nyu×nxr)-dimensional, jxu is (nyr×nxu)-

dimensional, jxr is (nyr × nxr)-dimensional, hxu is (nxu × nxu)-dimensional and hxr

is (nxu × nxr)-dimensional;

Step 4. Set

ĝxu = gxu , ĵxu = jxu , ĥxu = hxu , (52)

ĝσ = 0, ĵσ = 0, ĥσ = 0; (53)

Step 5. Compute the partial derivatives f 1
y′ , f

1
x′u
, f 1
yu , evaluate them at the steady state (x̄, ȳ)

and check invertibility of the square matrix

∇(f 1) =
[
f 1
y′gxu + f 1

x′u
, f 1

yu

]
.
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Then compute (
ĥxr,−1

ĝxr,−1

)
= −∇(f 1)−1f 1

yrjxrP (54)(
ĥxr

ĝxr

)
=

(
hxr

gxr

)
+∇(f 1)−1f 1

yrjxr (55)

ĵxr,−1 = jxrP (56)

Step 6. Derive the minimal state space representation under timing restrictions as follows x′u

x′r

xr

 =

 ĥxu ĥxr ĥxr,−1

0nxr×nxu
P 0nxr×nxr

0nxr×nxu
Inxr×nxr

0nxr×nxr


 xu

xr

xr,−1

+ σ

(
εxu

εxr

)
(57)

(
yu

yr

)
=

(
ĝxu ĝxr ĝxr,−1

ĵxu 0nyr×nxr
ĵxr,−1

) xu

xr

xr,−1

 (58)

A.2 Solving the bi-variate example from section (2)

Consider again the model

E [y1,t − αy1,t+1 − y2,t − x1,t|I1,t] = 0, α > 0, (59)

E [y2,t − βy2,t+1 − x1,t − x2,t|I2,t] = 0, β > 0, (60)

x1,t = ρ1x1,t−1 + ε1,t, |ρ1| < 1, (61)

x2,t = ρ1x2,t−1 + ε2,t, |ρ2| < 1, (62)

ε1,t ∼ NID(0, 1), ε2,t ∼ NID(0, 1) (63)

under the assumption I1,t = Vt(y
t
1, y

t−1
2 ) ∨ Vt(x

t
1, x

t−1
2 ) ⊂ I2,t = Vt(y

t) ∨ Vt(x
t). This

timing restriction involves the following assignment of the model’s variables

yu = [y2], yr = [y1] (64)

xu = [x1], [xr] (65)
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and thereby the following informational partition

f 0 = (y1,t − αy1,t+1 − y2,t − x1,t) (66)

f 1 =

(
y2,t − βy2,t+1 − x1,t − x2,t
x1,t+1 − ρ1x1,t − ε1,t+1

)
(67)

fxr = (x2,t+1 − ρ2x1,t − ε2,t+1) (68)

Recall that the determinate solution (8) to the unrestricted model can be partitioned

as follows:

jxu = 2−βρ1
(1−αρ1)(1−βρ1) , jxr = 1

(1−αρ2)(1−βρ2) , (69)

gxu = 1
1−βρ1 , gxr = 1

1−βρ2 , (70)

hxu = ρ1, hxr = 0, P = ρ2 (71)

It is easily seen that f 1
yr = [0, 0]′ and thus ĥxr,−1 = ĝxr,−1 = 0, ĥxr = hxr , ĝxr = gxr ,

and finally ĵxr,−1 = jxrρ2. This leads to the equilibrium representation

y1,t =
2− βρ1

(1− αρ1)(1− βρ1)
x1,t +

ρ2
(1− αρ2)(1− βρ2)

x2,t−1, (72)

y2,t =
1

1− βρ1
x1,t +

1

1− βρ2
x2,t (73)

which is in the same form as (9).

A.3 VARs and Cholesky identification

Let an ny-dimensional vector of observable variables be represented as a canonical VAR

of order k

yt = A1yt−1 + . . .+ Akyt−k + ut, E[ut] = 0, E [utu
′
t] = V (74)

where k is a non-negative integer (capturing the number of lags) and the innovations ut

are assumed to be uncorrelated with all variables dated t− 1 and earlier.

To uncover the dynamic response functions of yt to fundamental (structural) economic

shocks εt, researchers usually assume existence of a linear relationship between the latter

and the VAR innovations, i.e.

B0ut = εt, (75)
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with B0 being a square, full-rank matrix. The VAR (74) thus admits the structural

representation

B0yt = B1yt−1 + · · ·+Bkyt−k + εt, Bi := B0 · Ai, i = 1, . . . , q (76)

which makes clear that the impulse response of any component of the yt vector to a

transitory, unit shock in some component of εt is a function of entries of matrices Bi,

i = 0, . . . k. Absent restrictions on B0, the identification of structural shocks εt requires

additional restrictions, for data will only provide information about the response of yt

to innovations ut. Since E[εtε
′
t] = Iny×ny = B0V B

′
0, and upon recognizing that V can

be consistently estimated from (74) and thus treated as known, the B0 matrix will be

completely identified by imposing ny(ny + 1)/2 identifying constraints.

According to the Cholesky scheme, identification is achieved by orhogonalizing the

innovations ut via a Cholesky decomposition of its variance covariance matrix of the form

PP ′ = V (where P is a conformable, lower triangular matrix with real and positive

diagonal entries) and then simply imposing B−10 = P . This reveals that the Cholesky

scheme amounts to restricting the impact reactions of some variables to structural shocks,

i.e. by setting selected elements of B−10 to zero for a given ordering in yt.
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