Price vs Quantity in a Duopoly with Technological Spillovers: A Welfare Re-Appraisal

Luca Lambertini\# and Andrea Mantovani\#;x \# Department of Economics University of Bologna
Strada M aggiore 45
I-40125 Bologna, Italy fax: +39-051-2092664
e-mail: lamberti@spbo.unibo.it
e-mail: mantovan@spbo.unibo.it
§CORE, Université Catholique de Louvain
34, voie du Roman Pays
B-1348 Louvain-la-Neuve, Belgium

November 3, 2000

Abstract

We analyse the problem of the choice of the market variable in a model where ..rms activate R \& D investments for process innovation. We establish that (i) ..rms always choose the Cournot behaviour; and (ii) there exists a set of the relevant parameters where a benevolent social planner prefers quantity setting to price setting. This happens when the marginal cost of R\&D activities is relatively low while technological externalities are relatively high. In this situation, the con $\ddagger i c t$ between social and private preferences over the type of market behaviour disappears. J.E.L. classi..cation: L13, 031

K eywords: price, quantity, R\&D, spillovers

1 Introduction

The interplay between technological choices and market behaviour in oligopoly models has been studied along two main routes. The ..rst has emphasized the link between the kind of competition prevailing on the market and ..rms' incentives to invest either in process or in product innovation. The second concerns the in \ddagger uence of capacity constraints on market equilibrium.

Most literature on R\&D races in oligopoly deals with the evaluation of incentives to undertake cost reducing investments as the number of ..rms changes. This Schumpeterian approach holds that a major factor determining the pace of technological progress is market structure (amongst the countless contributions in this vein, see A rrow, 1962; Loury; 1979; Lee and W ilde, 1980; Dasgupta and Stiglitz, 1980; Delbono and Denicolò, 1991; for an overview see Reinganum, 1989).

An established result on cost reducing investment in oligopolistic markets under perfect certainty states that there is excess expenditure in R\&D under Cournot competition, and conversely under Bertrand competition, due to the opposite slopes of reaction functions at the market stage (Brander and Spencer, 1983; Dixon, 1985). With dixerentiated products, Bester and Petrakis (1993) maintain that the incentive to invest in cost reducing innovation depends upon the degree of product substitutability. Under both Cournot and Bertrand competition, underinvestment, as compared to the social optimum, obtains when products are fairly imperfect substitutes, while the opposite may occur when products are sut ciently similar. Cournot competition provides a lower (respectively, higher) incentive to innovate than Bertrand competition if substitutability is high (respectively, low). Social welfare may then be higher under Cournot than under Bertrand competition (Delbono and Denicolò, 1990; Qiu, 1997).

Singh and Vives (1984) investigate the choice of the market variable in a duopoly where ..rms operate costlessly. They ..nd that, independently of the degree of product substitutability, ..rms choose to be quantity setters at the subgame perfect equilibrium, while social welfare would be higher under price setting behaviour. The opposite holds if products are demand complements.

In this paper, we extend Qiu's analysis to account for the asymmetric case where one ..rm is a quantity setter while the other is a price setter, and we derive the subgame perfect equilibrium of a two-stage game where ..rms operate R\&D activities aimed at reducing marginal production costs and then compete at the marketing stage. Then, we recast Singh and Vives's analysis in a three-stage game where ..rms choose whether to be price or quantity setters at the ..rst stage, then invest in cost-reducing R\&D, and ..nally compete on the market. We establish that, at the subgame perfect
equilibrium, ..rms always choose to set quantities. However, we also ..nd that there exists a parameter region where quantity setting behaviour is socially preferable, if marginal R\&D costs are su申 ciently low and spillover are suф ciently high. In such a situation, we have a second best equilibrium where the usual con \ddagger ict over the choice of the market variable disappears.

The remainder of the paper is organised as follows. The setup is laid out in section 2 . Section 3 describes R\&D and market behaviour. Private and social preferences concerning the choice of the market variable are then investigated in section 4 . Section 5 concludes.

2 The setup

The demand side is a simpli..ed version of Bowley (1924), subsequently adopted by Spence (1976), Dixit (1979) and Singh and Vives (1984), inter alia. Assume the representative consumer is characterised by the following utility function:

$$
\begin{equation*}
U\left(q_{i} q_{i}\right)=q_{i}+q_{i} i \frac{1}{2}^{3} q_{i}^{2}+q_{j}^{2}+2^{\circ} q_{i} q_{i} \tag{1}
\end{equation*}
$$

where q_{i} and q_{i} are the quantities of goods i and j; respectively. The resulting (symmetric) demand functions under Cournot and Bertrand competition are, respectively

$$
\begin{gather*}
p_{i}=1 \mathrm{i} \quad q_{i}{ }^{\circ} q_{j} \tag{2}\\
q=\frac{1}{1+^{\circ}} \mathrm{i} \frac{p_{i}}{1 i^{\circ}{ }^{\circ 2}}+\frac{{ }^{\circ} p_{j}}{1 i^{\circ}{ }^{\circ 2}} \tag{3}
\end{gather*}
$$

In the asymmetric case, where ..rm i is a quantity setter, while ..rm j is a price setter, demand functions are:

$$
\begin{gather*}
p_{i}=1 ; q_{i}+{ }^{\circ}\left(p_{j}+{ }^{\circ} q_{i} i \quad 1\right) \tag{4}\\
q_{j}=1 i p_{j} i^{\circ} q_{i} \tag{5}
\end{gather*}
$$

Parameter ${ }^{\circ} 2(0 ; 1]$ represents product substitutability as perceived by consumers, depending upon the products ..rms supply. If one supposes that marginal costs are constant and equal to c across ..rms, then individual profits are $1 / 4$ J $=\left(p_{i} i c\right) q_{i}$; where IJ 2 fP P;QQ;PQ;QP g indicates that, at the market stage, ..rm i sets variable I while ..rm j sets variable J. In this case, the choice between price and quantity behaviour is summarised by the reduced form represented in M atrix 1.
j

Matrix 1

On the basis of Matrix 1, Singh and Vives (1984) conclude that quantity setting (resp., price setting) is the dominant strategy (at least weakly) if goods are demand substitutes (resp., complements). As a consequence, ..rms play a Cournot (resp., Bertrand) equilibrium for all ${ }^{\circ} 2(0 ; 1]$ (resp., ${ }^{\circ} 2$ (i 1;0)).

In the remainder, given the symmetry of the model w.r.t. parameter ${ }^{\circ}$; we will focus on the case of substitutes. Singh and Vives's result entails that there exists a confict between ..rms' pro..t incentives and the social incentive towards welfare maximization, which requires price setting behaviour when goods are substitutes.

If we abandon the assumption of homogeneous costs, the choice between price and quantity is driven by the sign of the following expressions:

$$
\begin{align*}
& 1 / 4^{R P}\left(c_{i} ; c_{j}\right){ }^{1 / 4 P^{P}\left(c_{i} ; c_{j}\right)} \tag{6}\\
& 1 / 4 Q\left(c_{i} ; c_{j}\right) \text { i } 1 /{ }^{1 / Q}\left(c_{i} ; c_{j}\right) \tag{7}
\end{align*}
$$

Now observe that, relabelling $1 ; c_{i}{ }^{\prime} @_{;}$; the dixerence in productive ed ciency across ..rms is formally equivalent to a dixerence in reservation prices for goods i and j in the representative consumer's preferences (see Häckner, 2000), which would now write as follows:

$$
U\left(q q_{i}\right)=\mathbb{Q} q_{i}+\mathbb{Q} q_{i} i \frac{1^{3}}{2} q_{i}^{2}+q_{j}^{2}+2^{\circ} q_{i} q_{i}
$$

Hence, as proved by Singh and Vives (1984), fQ; Qgis the unique equilibrium outcome.

Given that ..rms are ex ante symmetric, we need an explanation to justify any asymmetry in marginal costs. The reason for such an asymmetry can be found in the dixerent incentives towards R\&D investment that ..rms have in the four subgames $f P P ; Q Q ; P Q ; Q P g$:

Suppose ..rms play a non-cooperative two-stage game, where the ..rst stage involves choosing the individually optimal amount of R\&D for process
innovation, while the second is for marketing. De.ne as x_{i} the R\&D exort produced by ..rm i: The R\&D technology is the same across ..rms. The cost of $R \& D$ activity is $K_{i}=f\left(x_{i}\right)$; with $f^{0}\left(x_{i}\right)^{\prime} @\left(x_{i}\right)=@ x_{i}>0$ and $f^{\circledR}\left(x_{i}\right)$ $@ f\left(x_{i}\right)=@ x_{i}^{2}>0$: That is, we suppose that R\&D activity is characterised by decreasing returns to scale. The resulting marginal cost is $c_{i}{ }^{\prime} c_{i}\left(x_{i} ; \mu x_{j}\right)$; where $\mu 2[0 ; 1]$ denotes the spillover received from ..rm j's R \& D investment. The net pro..ts accruing to ..rm i; when the market subgame is IJ ; are

In this situation, the reduced form of the game is as in M atrix 2.

Matrix 2

Hence, the choice between P and Q is made according to the sign of:

$$
\begin{align*}
& 1 / 4^{Q P}\left[c_{i}(\phi \phi) ; c_{j}(\phi \phi] i^{1 / \$^{P}}\left[c _ { i } \left(\phi \phi ; c_{j}(\phi \phi] i_{i} f_{3}^{3} x_{i}^{Q P}{ }^{\prime},+f_{3}^{3} x_{i}^{P P^{\prime}},\right.\right.\right. \tag{9}\\
& 1 / 4{ }^{Q Q}\left[c_{i}(\phi \phi) ; c_{j}(\phi \phi)\right]^{1 / P^{Q}}\left[c_{i}(\phi \phi) ; c_{j}(\phi \phi] i f x_{i}^{Q Q}+f x_{i}^{P Q}\right. \tag{10}
\end{align*}
$$

The additional task consists in reassessing social preferences over the choice of market variables in this new setting. A priori, one cannot presume that the con \ddagger ict between social and private incentives that characterises the previous setting extends to this case. Indeed, we know from Qiu (1997) that there are situations where social welfare is higher at the Cournot equilibrium than at the Bertrand equilibrium.

In order to carry out the analysis of this problem, we model the R\&D stage as in Qiu (1997), by assuming that

$$
\begin{gather*}
c_{i}=c_{i} x_{i} i \mu x_{j} ; c 2(0 ; 1) \tag{11}\\
K_{i}=\frac{\underline{o} x_{i}^{2}}{2} \tag{12}
\end{gather*}
$$

Firms play a non-cooperative three-stage game. At the ..rst stage, they choose between price and quantity. The following two stages describe (i) the choice of R\&D exorts and (ii) marketing. A s usual, we proceed by backward induction, using subgame perfection as the solution concept.

3 R\&D and market subgames

We borrow from Qiu (1997) the characterisation of subgames fP P; QQ g; i.e., Bertrand and Cournot.

3.1 Symmetric subgames

Bertrand equilibrium prices are:

$$
\begin{equation*}
p_{i}^{P P}=\frac{\left(2+{ }^{\circ}\right)\left(1 i^{\circ}+c\right) i^{\left(2+\mu^{\circ}\right) x_{i} i\left(2 \mu+{ }^{\circ}\right) x_{j}}}{4 i^{\circ} 2} \tag{13}
\end{equation*}
$$

The associated pro..ts are:

$$
\begin{equation*}
\underline{a}_{i}^{p p}=\frac{\left[(1 ; ~ c)\left({ }^{\circ}{ }^{2}+{ }^{\circ} i 2\right) i\left(2 i \mu^{\circ} i^{\circ}{ }^{2}\right) x_{i}+\left({ }^{\circ} ; 2 \mu+\mu^{\circ}\right) x_{j}\right]^{2}}{\left(4 i 3^{\circ}\right)^{2} i^{\circ 6}} i \frac{{ }^{\circ} x_{i}^{2}}{2} \tag{14}
\end{equation*}
$$

Solving the R\&D stage, one obtains:

$$
\begin{align*}
x^{P P} & =\frac{2(1 i c)\left(2 i \mu^{\circ} i^{\circ 2}\right)}{\phi^{P P}} \tag{15}\\
\phi^{P P} & =0\left(1+{ }^{\circ}\right)\left(2 i^{\circ}\right)^{3} 4 i^{\circ 2} i^{\prime} 2(1+\mu)^{3} 2 i \mu^{\circ} i^{\circ} 2^{\prime} \tag{16}
\end{align*}
$$

The resulting per-..rm equilibrium quantity is

$$
\begin{equation*}
q^{P P}=\frac{\underline{o}(1 ; \quad c)\left(4 i^{\circ}\right)}{\phi^{P P}} \tag{17}
\end{equation*}
$$

Consumer surplus is

$$
\begin{equation*}
C S^{P P}=\left(1+{ }^{\circ}\right){\frac{\underline{o}(1 ; c)\left(4 i^{\circ}\right)^{2}}{\#_{2}}}_{\phi^{P P}}^{2} \tag{18}
\end{equation*}
$$

so that social welfare is

$$
\begin{align*}
& S W^{P P}=X \underset{i}{\text { app }}+C S^{P P}= \tag{19}
\end{align*}
$$

The following holds:
Lemma 1 (Qiu, 1997, p. 217) The condition $0^{>} 1=\subset$ is
i] suф cient but not necessary for $\phi^{P P}>0$; for all μ and ${ }^{\circ}$ (stability)
ii] necessary and suф cient for post-innovation costs to be positive, i.e., $\mathrm{c}^{\mathrm{PP}}=$ Ci $(1+\mu) x^{P P}>0$
iii] sut cient to ensure $@^{2 a}{ }^{P}=@ x_{i}^{2}<0 i \propto \mu=1$
If instead $\mu \in 1$;

$$
\frac{@^{2} \underline{a} p_{i}^{p}}{@ x_{i}^{2}}<0, \underline{o}>\frac{2\left(2 i \mu^{\circ} i^{\circ}\right)^{2}}{\left(1 i^{\circ} 2\right)\left(4 i^{\circ}\right)^{2}}
$$

Examine now the Cournot case. The equilibrium output is

$$
\begin{equation*}
q_{i}^{\mathrm{QQ}}=\frac{(1 i \mathrm{c})\left(2 i^{\circ}\right)+\left(2 i^{\circ}\right) x_{i}+\left(2 \mu_{i}{ }^{\circ}\right) x_{j}}{4 i^{\circ} 2} \tag{20}
\end{equation*}
$$

The associated pro..ts are:

$$
\begin{equation*}
\underline{a}_{\mathrm{i}}^{\mathrm{QQ}}=\frac{\left[(1 \mathrm{i} \mathrm{c})\left(2 \mathrm{i}^{\circ}\right)+\left(2 \mathrm{i} \mu^{\circ}\right) \mathrm{x}_{\mathrm{i}}+\left(2 \mu \mathrm{i}^{\circ}\right) \mathrm{x}_{\mathrm{j}}\right]^{2}}{\left(4 \mathrm{i}^{\circ}{ }^{2}\right)^{2}} \mathrm{i} \frac{{ }^{\circ} x_{i}^{2}}{2} \tag{21}
\end{equation*}
$$

Proceeding backward to solve the R\&D stage, one obtains:

$$
\begin{align*}
& x^{Q Q}=\frac{2(1 ; c)\left(2 ; \mu^{\circ}\right)}{\phi Q_{3}}, \tag{22}\\
& \phi^{\mathrm{QQ}}=0\left(2+{ }^{\circ}\right) 4 \mathrm{i}^{\circ}{ }^{\circ} \mathrm{i} 2(1+\mu)\left(2 \mathrm{i} \mu^{\circ}\right) \tag{23}
\end{align*}
$$

The resulting per-..rm equilibrium quantity is

$$
\begin{equation*}
q^{Q Q}=\frac{o(1 ; c)\left(4 i^{\circ}{ }^{2}\right)}{\phi Q Q} \tag{24}
\end{equation*}
$$

The resulting consumer surplus is

$$
\begin{equation*}
C S^{P P}=\left(1+{ }^{\circ}\right) \frac{\underline{o}(1 ; \mathrm{C})\left(4 \mathrm{i}^{\circ}\right)^{2}}{\#^{\# Q}} \tag{25}
\end{equation*}
$$

so that social welfare is

$$
\begin{align*}
& S W^{Q Q}={\underset{i}{\underline{a}}{ }_{i}^{Q Q}+C^{Q Q}=}^{X}= \tag{26}\\
& =\frac{\stackrel{\mathrm{o}}{\underline{o}(1 \mathrm{i} \quad \text { c })^{2}}{ }^{\mathrm{h}} \underline{o}\left(3+{ }^{\circ}\right)\left(4 \mathrm{i}^{\circ}{ }^{2}\right)^{2} \mathrm{i} 4\left(2 \mathrm{i} \mu^{\circ}\right)^{2^{\mathrm{i}}}}{\left(\phi^{Q Q}\right)^{2}}
\end{align*}
$$

The following holds:

Lemma 2 (Qiu, 1997, p. 216) The condition $\varrho^{>} 1=$ c is
i] su申 cient but not necessary for

$$
\begin{aligned}
& \phi^{Q Q}>0 \text { (stability) } \\
& \frac{@^{2} \underline{Q_{i} Q Q}}{@ x_{i}^{2}}<0 \text { (concavity) }
\end{aligned}
$$

for all μ and ${ }^{\circ}$
ii] necessary and suф cient for post-innovation costs to be positive, i.e., $\mathrm{c}^{\mathrm{QQ}}=$ $\mathrm{Ci}(1+\mu) \mathrm{x}^{\mathrm{QQ}}>0$

3.2 The asymmetric subgames

Cases QP and PQ are symmetric up to a permutation of ..rms. Therefore, we con..ne our attention to the situation where ..rm i is a quantity-setter, while ..rm j is a price-setter. The demand functions are (4) and (5). The Nash equilibrium at the market stage is given by:

$$
\begin{align*}
q_{i}^{Q P}= & \frac{\left(2 i^{\circ}\right)(1 i c)+\left(2 i \mu^{\circ}\right) x_{i}+\left(2 \mu i^{\circ}\right) x_{j}}{4 i 3^{\circ} 2} \tag{27}\\
p_{j}^{P Q}= & \frac{1 i c i \mu x_{i} i x_{j}}{4}+ \tag{28}\\
& i \frac{\circ\left[\left(2 i^{\circ}\right)(1 i c)+\left(2 i \mu^{\circ}\right) x_{i}+\left(2 \mu i^{\circ}\right) x_{j}\right]}{4 i 3^{\circ 2}}
\end{align*}
$$

The associated pro.ts are:

$$
\begin{align*}
& \underset{i}{\mathrm{a}} \mathrm{QP}^{P}=\frac{\left(1 \mathrm{i}^{\circ}{ }^{\circ}\right)\left[(1 ; \mathrm{c})\left(2 \mathrm{i}^{\circ}\right)+\left(2 \mathrm{i} \mu^{\circ}\right) \mathrm{x}_{\mathrm{i}}+\left(2 \mu \mathrm{i}^{\circ}\right) \mathrm{x}_{\mathrm{j}}\right]^{2}}{\left(4 \mathrm{i}^{\circ}\right)^{2}} \mathrm{i} \frac{{ }^{\mathrm{o}} \mathrm{x}_{\mathrm{i}}^{2}}{2} \tag{29}\\
& \underset{\mathrm{a}}{\mathrm{PQ}}=\frac{\left[(1 \mathrm{i} \mathrm{c})\left({ }^{\circ 2}+{ }^{\circ} \mathrm{i} 2\right) \mathrm{i}\left(\mu^{\circ}{ }^{2}+{ }^{\circ} \mathrm{i} 2\right) \mathrm{x}_{\mathrm{i}}+\left({ }^{\circ 2}+\mu^{\circ} \mathrm{i} 2\right) \mathrm{x}_{\mathrm{j}}\right]^{2}}{\left(4 \mathrm{i} 3^{\circ}\right)^{2}} \mathrm{i} \frac{\underline{o}_{\mathrm{j}}^{2}}{2} \tag{30}
\end{align*}
$$

At the ..rst stage, ..rms non-cooperatively maximise their respective pro..ts w.r.t. R\&D exort levels, solving:

$$
\begin{gather*}
\frac{@_{i}^{Q P}}{@ x_{i}}=\frac{2\left(1 i^{\circ 2}\right)\left(2 i \mu^{\circ}\right)(1 i c)\left(2 i^{\circ}\right)}{\left(4 i 3^{\circ}\right)^{2}}+ \tag{31}\\
+\frac{2\left(1 i^{\circ}\right)\left(2 i \mu^{\circ}\right)\left[\left(2 i \mu^{\circ}\right) x_{i}+\left(2 \mu i^{\circ}\right) x_{j}\right]}{\left(4 i 3^{\circ 2}\right)^{2}} i^{\circ} x_{i}=0
\end{gather*}
$$

$$
\begin{gather*}
\frac{@_{j}{ }_{j}^{P Q}}{@_{j}}=\frac{2\left(\mu^{\circ 2}+{ }^{\circ} i 2\right)(1 i \mathrm{c})\left({ }^{\circ}{ }^{2}+{ }^{\circ}{ }_{i} 2\right)}{\left(4 i 3^{\circ}\right)^{2}}+ \tag{32}\\
i \frac{2\left(\mu^{\circ} 2+{ }^{\circ} i 2\right)^{h}\left(\mu^{\circ}+{ }^{\circ}{ }^{\circ} i 2\right) x_{i}+\left({ }^{\circ 2}+\mu^{\circ} i 2\right) x_{j}^{2}}{\left(4 i 3^{\circ}\right)^{2}} i \stackrel{o}{ } x_{j}=0
\end{gather*}
$$

whose solution yields the equilibrium $R \& D$ investments:

$$
\begin{align*}
& x_{i}^{Q P}=\frac{2(1 ; c)\left(1 i^{\circ}{ }^{2}\right)\left(\mu^{\circ} i^{\circ} 2\right) ®}{4 \times Q P} \tag{33}\\
& x_{j}^{P Q}=\frac{2(1 ; c)\left(1 i^{\circ}\right)\left(4 ; 3^{\circ}\right)\left({ }^{\circ 2}+\mu^{\circ} i^{2}\right) ®}{4 \times P Q} \tag{34}
\end{align*}
$$

$$
\begin{aligned}
& \text { where: } \\
& ®=2(1 i \mu)^{3}{ }^{\circ} 2+\underset{3}{\mu^{\circ}} \mathrm{i}^{\prime} 2^{\prime}+0\left(2 \mathrm{i}^{\circ}\right)^{3} 4 \mathrm{i} \quad 3^{\circ}{ }^{2} \\
& \text { ® }=2(1 \mathrm{i}, \mu) 2 \mathrm{i} \mu^{\circ},+22 \mathrm{i} 3 \mu+\mu^{2} \circ \mathrm{i}^{\circ} \text { o }\left(2+^{\circ}\right) 4 \mathrm{i} 3^{\circ 2}
\end{aligned}
$$

$$
\begin{aligned}
& +{ }^{\circ} 164 \mathrm{i} 7^{\circ 2}+228 \mathrm{i} 3^{\circ 2}{ }^{\circ 4} \mathrm{i} 322 \mathrm{i} 3^{\circ 2} \mu^{\circ} \mathrm{i} 6\left(6 \mathrm{i}^{\circ}\right) \mu^{\circ}{ }^{5}+
\end{aligned}
$$

$$
\begin{aligned}
& \$_{x P Q}=4^{\circ}{ }^{2} \mathrm{i} 1\left({ }^{\circ} \mathrm{i} 2 \mu\right)\left(2 \mathrm{i} \mu^{\circ}\right)^{\circ}{ }^{2}+\mu^{\circ} \mathrm{i} 2{ }^{\circ} \mathrm{i} 2 \mu+\mu^{\circ}{ }^{2}+ \\
& +2^{3} 1 \mathrm{i}^{\circ 2^{\prime}}\left(4 \mathrm{i} \mu^{\circ}\right)^{2} \mathrm{i} \stackrel{o}{ }^{3} 4 \mathrm{i} 3^{\circ 2^{\prime}} 2^{\circ} \mathrm{h}^{3} 4^{3} 1 \mathrm{i}^{\circ 2} \mathrm{i} \mu^{\circ}+\left({ }^{\circ}+\mu\right)^{202^{\prime}}+ \\
& \mathrm{i}^{0^{3}} 4 \mathrm{i} 3^{02^{\prime}}{ }^{\circ}
\end{aligned}
$$

The equilibrium output levels are: ${ }^{1}$

$$
\begin{align*}
& \frac{+2^{3} 2 \mathrm{i} 3 \mu+\mu^{2}{ }^{\circ} \mathrm{i}^{\circ} \underline{o}\left(2+{ }^{\circ}\right)\left(4 \mathrm{i} 3^{\circ 2}\right)^{\mathrm{i}}}{4 \times \mathrm{PQQ}} \tag{36}
\end{align*}
$$

[^0]The corresponding equilibrium pro..ts are:

$$
\begin{align*}
& \underline{a}_{\mathrm{i}}^{\mathrm{QP}}=\frac{(1 ; \mathrm{c})^{2}\left({ }^{\circ}{ }^{2} ; 1\right) \varrho\left[2(1 ; \mu)\left({ }^{\circ} 2+\mu^{\circ} ; 2\right)+{ }^{\circ}\left(2 ;^{\circ}\right)\left(4 ; 3^{\circ}\right)\right]^{2}[2(1+}{(\$ \times Q P)^{2}} \\
& \frac{\left.i^{\circ 2}\right)\left(2 i \mu^{\circ}\right)^{2} i^{\circ}\left(4 i^{\circ 2}\right)^{i}}{(4 \times Q P)^{2}} \tag{37}
\end{align*}
$$

$$
\begin{align*}
& \left.\left.+^{\circ}\right)\left(4 \mathrm{i} 3^{\circ 2}\right)\right]^{\mathrm{h}} 8\left(1 \mathrm{i}^{\circ 2} \mathbf{i} \mu^{\circ}\right)+2\left({ }^{\circ}+\mu\right)^{2 \circ 2} \mathbf{i} \circ\left(4 \mathrm{i}^{\circ} 3^{\circ}\right)^{\mathrm{i}} \tag{38}
\end{align*}
$$

On the basis of the above expressions, we cannot derive analytically the equivalent of Lemmata 1-2 for the asymmetric case. Therefore, we must rely upon numerical calculations to ensure that (i) concavity and stability conditions are satis..ed; and (ii) post-innovation marginal costs are non-negative.

However, on the basis of (33-34), the following holds:
Lemma 3 Given acceptable values of $\mathrm{fc} \mathrm{c}^{\circ} ; \mu$; ${ }^{\circ} \mathrm{g}$; we have that $\mathrm{x}_{\mathrm{i}}^{\mathrm{QP}}>$ $x_{j}^{P Q}$: M oreover, given acceptable values of $\mathrm{fc} ; \mu$; $\underline{o}_{\mathrm{o}}^{\mathrm{g}}$; there exists $\mathrm{B} 2(0 ; 1)$; such that $x_{j}^{P Q}=0 ; c_{j}^{P Q}=c$:

That is, the quantity-setter invests more than the price setter, and the latter does not invest at all to reduce her own marginal cost, if product substitutability is larger than a critical threshold. The general behaviour of $c_{i}^{Q P}$ and $c_{j}^{P Q}$ for ${ }^{\circ} 2[0 ; 1]$ is described in F igure 1.

Figure 1: Marginal costs and product substitutability

F irst of all, notice that, as substitutability increases, the marginal cost of the price-setter becomes increasingly larger than the marginal cost borne by the quantity-setter, for all ${ }^{\circ} 2[0 ; B) .{ }^{2}$ This re \ddagger ects the higher incentive towards investment in process innovation for the quantity-setter compared to the price-setter, in line with previous ..ndings by B rander and Spencer (1983), Dixon (1985), Bester and Petrakis (1993). M oreover, at ${ }^{\circ}=\mathrm{B}$ we have that $c_{j}^{P Q}=c$ and, therefore, the price-setter stops investing in R\&D. That is, for \circ, B; we set $x_{j}^{P Q}=0$ and recalculate $x_{i}^{Q P}$ from (31). This reveals that the quantity setting ..rm reduces her investment in R\&D in response to the fact that the price setting rival is not investing at all. As a consequence, $c_{i}^{Q P}$ increases in the degree of product substitutability, for all ${ }^{\circ} 2[B ; 1]$: When ${ }^{\circ}=1$; i.e., products are homogeneous, also the quantity-setter stops investing and both ..rms operate at c :

In general, the solution to ..rm i's investment problem, when ..rm j does

[^1]not invest is given by:
\[

$$
\begin{equation*}
x_{i}^{Q P}{ }^{3} x_{j}^{P Q}=0=\frac{2\left(1 i^{\circ} 2\right)\left({ }^{\circ} \mu i 2\right)(1 ; c)\left(2 i^{\circ}\right)}{2\left(1 i^{\circ} 2\right)\left(2 i^{\circ} \mu\right)^{2} i^{\circ}\left(4 i 3^{\circ}\right)^{2}} \tag{39}
\end{equation*}
$$

\]

F inally, social welfare in the asymmetric case is:

$$
\begin{equation*}
S W^{P Q}=S W^{Q P}={\underset{i}{a} a_{i}^{1 J}+C S^{I J}}^{\prime J} \tag{40}
\end{equation*}
$$

where CS $^{I J}=\left(1+{ }^{\circ}\right)^{3} q_{i}^{\prime J}+q_{j}^{\prime}{ }^{\prime 2}=4$:

4 The ..rst stage: private vs social preferences

Equilibrium pro..ts $\mathfrak{a P P}$, aQ , PQ and QP can be plugged into Matrix 2 to yield the reduced form of the ..rst stage of the game, where ..rms noncooperatively choose whether to be price or quantity-setters.

We obtain the following:
Claim 1 For all admissible values of parameters $\mathrm{fc} ;{ }^{\circ} ; \mu$; ${ }^{\circ} \mathrm{g}$; we have that $Q \circ P$: Hence, the Cournot equilibrium is unique and results from (at least weakly) dominant strategies.

Explicit calculations over the relevant inequalities, i.e.:

$$
\begin{align*}
& \underline{a} Q Q \quad i \underline{a P Q}>0 \tag{41}\\
& \underline{a} Q P ; \underline{a P P}>0 \tag{42}
\end{align*}
$$

are omitted for the sake of brevity. Verifying that (41-42) hold for all positive $x_{i}^{(J}$ is a matter of simple albeit tedious algebra. ${ }^{3}$ Having done that, the extension to the case where $x^{\mathrm{QP}}>0$ and $\mathrm{x}^{\mathrm{PQ}}=0$ is immediate, in that the price-setter's pro..ts ${ }^{\mathrm{P} P Q}$ are decreasing over ${ }^{\circ} 2$ [$\left.\mathrm{B} ; 1\right]$; for two reasons. The ..rst is the increase in product substitutability. As ${ }^{\circ}$ increases towards one, it becomes increasingly harder for the price setting ..rm to keep her price above marginal cost. The second reason is that the quantity-setter keeps investing in cost-reducing R\&D for all ${ }^{\circ} 2$ [B;1).

[^2]Claim 1 extends Singh and Vives's ..ndings to the case where ..rms invest in $R \& D$ to reduce marginal costs. The interpretation of this result is that the lower incentive to invest that characterise a price-setter as compared to a quantity-setter, (see Brander and Spencer, 1983; Dixon, 1985; Bester and Petrakis, 1993), is insuф cient to generate equilibria where at least one ..rm is a price-setter, over the whole parameter space.

Now we are in a position to compare private and social incentives concerning the choice between P and Q : We know that the following holds:

Proposition 1 (Qiu, 1997, p. 223) Suppose $\mu 2(0 ; 1) ; \underline{o} 1=$; and

$$
\varrho>\frac{2\left(2 i \mu^{\circ} i^{\circ}\right)^{2}}{\left(1 i^{\circ} 2\right)\left(4 i^{\circ}\right)^{2}} \text { for all }{ }^{\circ} 2(0 ; 1):
$$

Then, given ${ }^{\circ}$; either
i] $S^{P P}>W^{Q Q}$ for all $\underline{0}$ and μ; or
ii] there exists a unique $8>1$; such that
${ }^{2}$ for all ${ }^{0}, B$ and all $\mu 2(0 ; 1)$; we have $S W^{P P}>S W^{Q Q}$
${ }^{2}$ for all $0<B$; there exists $\mathrm{Q} 2(0 ; 1)$ such that

$$
\begin{aligned}
& >0 \text { for all } \mu<Q \\
S W^{P P} \text { i SW } & =0 \text { for } \mu=\nexists \\
& <0 \text { for all } \mu>Q
\end{aligned}
$$

III] For ${ }^{\circ}$! 0; [i] holds; for ${ }^{\circ}$! 1; [ii] holds.
Now, consider Claim 1 and Proposition 1 jointly. If Proposition $1[i i]$ holds, and, in particular, $\underline{\circ}<B$ and $\mu>\mathrm{A}$; then ..rms play fQ ; Qg which is also the socially preferred equilibrium. Therefore, we have our ..nal result:

Proposition 2 Suppose
${ }^{2} \mu 2(0 ; 1) ; \mu>a ;$
$202 \max \frac{1}{\mathrm{C}} ; \frac{\left.2\left(2 \mathrm{i} \mu^{\circ} \mathrm{i}^{\circ}{ }^{\circ}\right)^{2}\right)}{\left(1 \mathrm{i}^{\circ} 2\right)\left(4 \mathrm{i}^{\circ}\right)^{2}} \quad ; \mathrm{B}$ for all$\circ 2(0 ; 1)$:
If so, $f \mathrm{Q}$; Qg is a second best equilibrium where social and private preferences over the choice of the market variable coincide.

Therefore, the introduction of an additional stage describing cost-reducing R\&D activities into Singh and Vives's framework produces a subgame perfect equilibrium where, provided marginal R\&D costs are su申 ciently low and spillover are su申 ciently high, quantity setting behaviour is preferred from both the social and the private standpoint. Obviously, there remains the ined ciency associated with the pro..t-maximising decisions of ..rms at the market stage, entailing a distortion in output and price levels as compared to the social optimum.

5 Concluding remarks

The foregoing analysis recasts the problem of the choice of the market variable ..rst investigated by Singh and V ives (1984) into a picture where an additional stage describes ..rms' R\&D investments in cost-reducing activities, as in Qiu (1997). This allows us to establish that (i) ..rms always choose the Cournot behaviour; and (ii) there exists a set of the relevant parameters where a benevolent social planner prefers quantity setting to price setting. This happens when the marginal cost of R \& D activities is relatively low while technological externalities are relatively high. In this situation, the overinvestment in R\&D associated with Cournot behaviour (Brander and Spencer, 1983) is welcome in that it produces positive welfare exects, to such an extent that the con \ddagger ict between social and private preferences over the type of market behaviour disappears.

R eferences

[1] Arrow, K. (1962), "E conomic Welfare and the Allocation of Resources for Inventions", in Nelson, R. (ed.), The Rate and Direction of Inventive Activity, P rinceton, NJ, Princeton University P ress.
[2] Bester, H. and E. Petrakis (1993), "The Incentives for Cost Reduction in a Dixerentiated Industry", International J ournal of Industrial Organization, 11, 519-34.
[3] B owley, A.L. (1924), The M athematical Groundwork of Economics, Oxford, Oxford University Press.
[4] Brander, J. and B. Spencer (1983), "Strategic Commitment with R \&D: The Symmetric Case", Bell J ournal of Economics, 14, 225-35.
[5] Dasgupta, P. and J. Stiglitz (1980), "Uncertainty, Industrial Structure, and the Speed of R\&D", Bell J ournal of Economics, 11, 1-28.
[6] Delbono, F. and V. Denicolò (1990), "R\&D Investment in a Symmetric and Homogeneous Oligopoly: Bertrand vs Cournot", International J ournal of Industrial Organization, 8, 297-313.
[7] Delbono, F. and V. Denicolò (1991), "Incentives to Innovate in a Cournot Oligopoly", Quarterly J ournal of Economics, 106, 951-61.
[8] Dixit, A. (1979), "A M odel of Duopoly Suggesting a Theory of Entry Barriers", B ell J ournal of E conomics, 10, 20-32.
[9] Dixon, H.D. (1985), "Strategic Investment in a Competitive Industry", J ournal of Industrial Economics, 33, 205-12.
[10] Häckner, J. (2000), "A Note on Price and Quantity Competition in Dixerentiated Oligopolies", J ournal of E conomic Theory, 93, 233-9.
[11] Lee, T. and L. Wilde (1980), "M arket Structure and Innovation: A Reformulation", Quarterly Journal of Economics, 94, 429-36.
[12] Loury, G. (1979), "M arket Structure and Innovation", Quarterly J ournal of Economics, 93, 395-410.
[13] Qiu, L. (1997), "On the Dynamic E $¢$ ciency of Bertrand and Cournot Equilibria", J ournal of Economic Theory, 75, 213-29.
[14] Reinganum, J. (1989), "The Timing of Innovation: Research, Development and Dixusion", in Schmalensee, R. and R. Willig (eds.), Handbook of Industrial Organization, vol. 1, A msterdam, N orth-Holland.
[15] Singh, N. and X. Vives (1984), "Price and Quantity Competition in a Dixerentiated Duopoly", RAND J ournal of E conomics, 15, 546-54.
[16] Spence, A.M. (1976), "Product Dixerentiation and Welfare", A merican Economic Review, 66, 407-14.

[^0]: ${ }^{1}$ For the sake of brevity, we omit the expressions of equilibrium prices, which are available upon request.

[^1]: ${ }^{2}$ For example, when

 $$
 c=\frac{3}{4} ; o=1: 34 ; \circ 2[0 ; 1] ; \mu=\frac{1}{100} ;
 $$

 concavity and stability conditions are met and we have $B=0: 83622$:

[^2]: ${ }^{3}$ As anticipated in section 3.2, the only complication consists in verifying the concavity and stability conditions, and the positivity of post innovation costs, for the asymmetric case, together with the corresp onding conditions for the symmetric cases as from Lemmata 1-2. This can only be done numerically. Calculations are available upon request.

