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Abstract

This paper analyzes Structural Vector Autoregressions (SVARs) where identification

of structural parameters holds locally but not globally. In this case there exists a set of

isolated structural parameter points that are observationally equivalent under the imposed

restrictions. Although the data do not inform us which observationally equivalent point

should be selected, the common frequentist practice is to obtain one as a maximum likeli-

hood estimate and perform impulse response analysis accordingly. For Bayesians, the lack

of global identification translates to non-vanishing sensitivity of the posterior to the prior,

and the multi-modal likelihood gives rise to computational challenges as posterior sampling

algorithms can fail to explore all the modes. This paper overcomes these challenges by pro-

posing novel estimation and inference procedures. We characterize a class of identifying

restrictions that deliver local but non-global identification, and the resulting number of

observationally equivalent parameter values. We propose algorithms to exhaustively com-

pute all admissible structural parameters given reduced-form parameters and utilize them

to sample from the multi-modal posterior. In addition, viewing the set of observationally

equivalent parameter points as the identified set, we develop Bayesian and frequentist pro-

cedures for inference on the corresponding set of impulse responses. An empirical example

illustrates our proposal.
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Non-Technical Summary

Structural Vector Autoregressions (SVARs) represent a standard tool for macroeconomic

policy analysis. Various types of identifying assumptions have been proposed, including equality

and sign restrictions, and analytical investigation of whether they point- or set-identify the

objects of interest is an active area of research. The seminal work of Rubio-Ramirez et al. (2010)

shows a necessary and sufficient condition for zero restrictions to achieve global identification.

This class of zero restrictions, however, does not exhaust the universe of zero and non-zero

equality restrictions that are relevant in practice. Questions regarding identification, estimation,

and inference when identification is not global remain largely open.

This paper analyzes Structural Vector Autoregressions where identification of structural para-

meters holds locally but not globally. In this case there exists a set of isolated structural para-

meter points that are observationally equivalent under the imposed restrictions. In this respect,

the main issue is that the data do not inform us which observationally equivalent point should

be selected. The common frequentist practice is to obtain one as a maximum likelihood estim-

ate and perform impulse response analysis accordingly. All the other observationally equivalent

parameter points are completely ignored. For Bayesians, instead, the lack of global identifica-

tion translates to non-vanishing sensitivity of the posterior to the prior, and the multi-modal

likelihood gives rise to computational challenges as posterior sampling algorithms can fail to

explore all the modes. This paper overcomes these challenges by proposing novel estimation and

inference procedures.

The first part of the paper is mainly dedicated to the identification issue. We character-

ize a class of identifying restrictions that deliver local but non-global identification, and the

resulting number of observationally equivalent parameter values. Moreover, we provide a geo-

metric interpretation of the local identification case and, through a simple example, we show

to what extent this phenomenon can lead to misleading results. The second part of the pa-

per, instead, is dedicated to the estimation and inference of locally- but not globally-identified

SVARs. We propose algorithms to exhaustively compute all admissible structural parameters

given reduced-form parameters and utilize them to sample from the multi-modal posterior. In

addition, viewing the set of observationally equivalent parameter points as the identified set, we

develop Bayesian and frequentist procedures for inference on the corresponding set of impulse

responses. These approaches for conducting inference are general enough to be applied to other

locally-identified econometric models, like proxy or non-Gaussian SVARs, or SVARs identified

through heteroskedasticity. Finally, an empirical example illustrates our proposal.
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I Introduction

Macroeconomic policy analysis makes extensive use of impulse response analysis based on Struc-

tural Vector Autoregressions (SVARs). Various types of identifying assumptions have been

proposed, including equality and sign restrictions, and analytical investigation of whether they

point- or set-identify the objects of interest is an active area of research. The seminal work of

Rubio-Ramirez et al. (2010) (henceforth RWZ) shows a necessary and sufficient condition for

zero restrictions to achieve global identification. This class of zero restrictions, however, does

not exhaust the universe of zero and non-zero equality restrictions that are relevant in practice.

Questions regarding identification, estimation, and inference when identification is not global

remain largely open.

This paper focuses on a class of SVARs where the imposed identifying restrictions guarantee

local identification but do not attain global identification. The set of observationally equivalent

structural parameters then consists of multiple isolated points, which implies that the likelihood

can have multiple peaks of the same height. Such locally- but non-globally identified SVARs ap-

pear in various settings of practical relevance. Examples include non-zero restrictions which set

the structural parameters to calibrated values, non-recursive zero restrictions, equality restric-

tions across shocks and/or equations, and heteroskedastic SVARs with across-regime restrictions

on the structural coefficients. Although the data do not inform us which observationally equi-

valent point should be selected, the common frequentist practice is to obtain one as a maximum

likelihood estimator and perform impulse response analysis as if it were the only maximizer.

This approach is problematic as different maximizers of the likelihood may imply very different

impulse responses. In our view, this practice is prevalent due to the lack of an efficient algorithm

that can uncover all the local maxima. Standard Bayesian analysis also faces challenges when the

likelihood has multiple modes. First, the lack of global identification leads the posterior to re-

main sensitive to the choice of prior even asymptotically. Second, posterior sampling algorithms

may fail to explore all the modes, resulting in an inaccurate approximation of the posterior.

This paper proposes methods for estimation and inference that overcome these challenges.

We first characterize a class of equality and sign restrictions that delivers local but non-global

identification. Second, we show a necessary and sufficient condition for local identification that

can be easily checked under a general class of equality constraints imposed on the structural

parameters or functions of them. Third, we investigate how many observationally equivalent

parameter values exist under such identifying restrictions, and propose algorithms to exhaustively

compute them given reduced-form parameter values. Specifically, we exploit the orthogonal

matrix parametrization of Uhlig (2005) and Rubio-Ramirez et al. (2010) and pin down the

observationally equivalent parameter points (conditional on the reduced-form parameters) by
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sequentially exhausting the admissible orthogonal vectors satisfying the imposed restrictions,

or in some cases solving a system of polynomial equations. We provide an intuitive geometric

exposition that illustrates the mechanism driving the lack of global identification and the number

of observationally equivalent parameter values. As a byproduct, we also characterize the set of

reduced-form parameter values that yield no admissible structural parameters (i.e, an empty

identified set) despite the condition for local identification being met.

Our proposal for computing the identified set contributes to standard Bayesian inference

by simplifying and stabilising sampling from the multi-modal posterior. The way we obtain a

draw of the structural parameters or an impulse response from the posterior incorporates the

following three steps. The first step is to obtain a draw of the reduced-form parameters either by

directly sampling it or transforming a draw of the structural parameters into the reduced-form

parameters. In the second step, given the draw of the reduced-form parameters, we compute

all the observationally equivalent orthogonal matrices using our proposed algorithm. In the

third step, we draw one of the observationally equivalent orthogonal matrices according to the

probability weights implied by the prior distribution. Combining the draws of the reduced-form

parameters and orthogonal matrix provides a draw of the structural parameters and impulse

responses. Thus-constructed new draw stochastically moves across the modes supported by the

prior. Hence, merging these extra steps into Gibbs or Metropolis-Hasting algorithm helps us

explore all the posterior modes of the structural parameters.

Bayesian inference for non-identified parameters requires specifying a prior over the observa-

tionally equivalent parameter values and its influence to posterior remains even asymptotically.

This phenomenon persists to the current case of only locally-identified structural parameters.

To deal with the case where the user cannot form the prior or wants to draw prior-free fre-

quentist inference, we propose projection-based frequentist inference procedures for the impulse

responses. Viewing the set of observationally equivalent parameter points as the identified set (a

set-valued map from the reduced-form parameters to the set of observationally equivalent struc-

tural parameters), we extend the approach of Norets and Tang (2014), Kline and Tamer (2016),

and Giacomini and Kitagawa (2021), designed primarily for models with interval identified sets,

to cases where the identified set consists of a finite number of points. Specifically, we consider

projecting the posterior credible region for the reduced-form parameters to the impulse responses

through the discrete identified set mapping. This approach obtains asymptotically frequentist

valid confidence intervals in the presence of local identification. A complication unique to the

current case of discrete identified set is how to label these observationally equivalent parameter

points in a manner consistent over different values of the reduced-form parameters. We pro-

pose two different ways to do so. As shown in Giacomini and Kitagawa (2021), our frequentist

procedure can be interpreted as (multiple prior) robust Bayesian procedures performing global
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sensitivity analysis with respect to a certain class of priors.

To illustrate our proposal, we apply the method to a locally identified New-Keynesian mon-

etary policy SVAR. We show that, when a single element is selected from the identified set, the

choice of the element can lead to significantly different and arguably contradictory results. We

perform Bayesian inference with the prior that equally weights these observationally equivalent

contradictory impulse responses, and show that the posterior distribution, approximated by our

sampling procedure, well captures these contradictory impulse responses by its multimodality.

Our proposals of asymptotically valid frequentist inference also explore all the admissible impulse

responses and provide their summary by interval estimates.

I.1 Related literature

The theory of identification for linear simultaneous equation models has a long history in eco-

nometrics. See Dhrymes (1978), Fisher (1966) and Hausman (1983), among others. Rothenberg

(1971) analyses identification in parametric models. Building on this, Giannini (1992) proposes

a criterion for verifying local identification for SVAR models. This criterion takes the form of

rank conditions for the Hessian matrix of the average likelihood. It is much weaker than the

necessary and sufficient condition for global identification shown in Rubio-Ramirez et al. (2010).

The focus of the present paper is the class of identifying restrictions that satisfies the former

but not the latter. Once local identification is guaranteed, Giannini (1992) proposes estimat-

ing the parameters of the SVAR by numerically maximizing the likelihood. This approach is

also recommended by the textbooks Amisano and Giannini (1997), Hamilton (1994), Lütkepohl

(2006), and Kilian and Lütkepohl (2017). For the locally identified models considered in this

paper, however, the maximum likelihood estimate is not necessarily unique, and a typical numer-

ical maximization routine will select only one point in a non-systematic manner (e.g. depending

on a choice of initial value). Sims and Zha (1999) and Hamilton et al. (2007) include discussions

of the existence of multiple likelihood peaks due to local identification.

Following Uhlig (2005), Rubio-Ramirez et al. (2010), Arias et al. (2018) and Granziera et al.

(2018), we parameterize an SVAR by its reduced-form VAR-parameters and the orthogonal

matrix relating its reduced-form error covariance matrix and structural parameters. Fixing the

reduced-form parameters, finding all the observationally equivalent structural parameters reduces

to finding all the admissible orthogonal matrices that satisfy the imposed identifying restrictions.

Compared to expressing the non-linear equation system by the reduced form and structural

parameters, this formulation is advantageous in terms of geometric interpretability and analytical

tractability. In addition, it simplifies not only assessing local identification (e.g., Magnus and

Neudecker, 2007), but also obtaining all the solutions given the reduced-form parameters.
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Our paper is related to the growing literature on SVARs that are set-identified through sign

and zero restrictions (Faust 1998; Canova and de Nicoló 2002; Uhlig 2005; Mountford and Uhlig

2009, Arias et al. 2018, Gafarov et al. 2018, Giacomini and Kitagawa 2021, Granziera et al.

2018, among others). The identified set of impulse responses in this class of models is a set

with a positive measure if nonempty, whereas the identified set here consists of a finite number

of isolated points, each corresponding to a solution of a non-linear system of equations. This

difference in the topological features of the identified set distinguishes our inferential procedure

from these works.

Our proposals of asymptotically frequentist-valid inference build on Bayesian approach to

inference on identified set as considered in Chen et al. (2018), Giacomini and Kitagawa (2021),

Kline and Tamer (2016), Liao and Simoni (2019), Moon and Schorfheide (2012), and Norets and

Tang (2014). To our knowledge, however, none of these proposals have been applied to the case

where the identified set consists of isolated points. As discussed in Giacomini and Kitagawa

(2021), our approach for drawing frequentist inference has a robust Bayes interpretation, where

ambiguity within the identified set is introduced through a set of unrevisable priors. In this sense,

it can be appealing to Bayesians who cannot form a credible prior for the structural parameters

or want to perform global sensitivity analysis. Depending on the application, the class of priors

considered in Giacomini and Kitagawa (2021) could be too large. In such cases, refining the

set of priors would be sensible. This can be done, for instance, by applying the approaches

considered in Giacomini et al. (2020) and Giacomini et al. (2019), although we do not present

them in this paper.

The results and proposals of this paper, from identification to estimation and inference, can

also contribute to the literature that bridges Dynamic Stochastic General Equilibrium (DSGE)

and VAR models. The solution of a linearized DSGE model can be summarized by a state-space

representation that implies, under appropriate invertibility conditions, an (infinite order) SVAR

subject to specific identifying restrictions (see, Christiano et al. 2006, Fernandez-Villaverde

et al. 2007, and Ravenna, 2007 for example). As stressed by Canova (2005, chapter 4) among

others, popular identification schemes that lead to global identification, such as the Cholesky

decomposition, cannot be justified in a large class of DSGE models. Hence, if the mapping

between the DSGE and the SVAR is unique as in Christiano et al. (2006, Proposition 1), DSGE-

based identifying restrictions can result in local (but not global) identification. This is due to

the non-recursive nature of the identification scheme, and the possible multiplicity of solutions

characterizing the DSGE model. See Iskrev (2010), Komunjer and Ng (2011) and Qu and

Tkachenko (2012) for DSGE models, and Al-Sadoon and Zwiernik (2019) for local identification

in linear rational expectation models. This paper is related to the DSGE literature for two

reasons: firstly, DSGE models may imply non-recursive identifying restrictions in an SVAR,
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resulting thus in local identification of the SVAR, and, secondly, our estimation and inference

methods to handle local identification can also be extended to locally identified (linearised)

DSGE models.

Although identification analysis of this paper mainly focuses on Gaussian SVARs, the infer-

ential proposals we propose can also contribute to the growing literature on identification using

non-Gaussianity and/or heteroskedasticity. Concerning the former, Lanne et al. (2017), Lanne

and Luoto (2019), Gourieroux et al. (2017) exploit higher moments and Independent Component

Analysis (ICA) to point identify all or a subset of the structural shocks of SVARs. For the latter,

Sentana and Fiorentini (2001), Rigobon (2003), Lanne and Lütkepohl (2008), Brunnermeier et al.

(2021), Lewis (2021), among others, propose to use the heteroskedasticity in the data to reach

point identification for factor models, simultaneous equations, and SVARs. Without a enough

number of restrictions that can pin down the labeling of the structural shocks, the identification

under these approaches are inherently local but not global due to the observationally equivalent

representations through permutations of the structural shocks or structural equations. As pur-

sued in Drautzburg and Wright (2021), adding sign restrications motivated via economic models

to non-Gaussian SVARs help reduce the number of admissible impulse responses, while it is not

known if the sign restrictions can guarantee global identification in non-Gaussian SVARs. Our

inferential proposals can be implemented in these models if we can compute the set of admissible

structural parameters given the reduced-form parameters (e.g., moments of the data).

The remainder of the paper is organized as follows. Section II introduces notation and a

general analytical framework for SVARs whose identifying restrictions take the form of equality

and sign restrictions. It also presents a new necessary and sufficient condition for local identific-

ation in SVARs. Section III discusses a battery of examples of locally- but not globally-identified

SVARs. Section IV presents algorithms for computing observationally equivalent parameter val-

ues, and Section V proposes inference methods that accommodate frequentist, Bayesian, and

robust Bayesian perspectives. Section VI presents an empirical example and Section VII con-

cludes. Further results on local identification are reported in Appendices A and B, and the

proofs omitted from the main text are presented in Appendix C.

II Econometric framework

Let yt be a n× 1 vector of variables observed over t = 1 . . . T . The SVAR model is specified as

A0yt = a+

p∑
j=1

Ajyt−j + εt (1)
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where εt is a n×1 multivariate normal white noise process with null expected value and covariance

matrix equal to the identity matrix In. The quantities A0, A1, . . . , Ap are n × n matrices of

parameters, and a is a n × 1 vector of constant terms. The set of structural parameters is

denoted by A = (A0, A+) ∈ A ⊂ R(n+m)n, with m ≡ np + 1 and A+ ≡ (a, A1, . . . , Ap) being a

n×m matrix. We also assume that the initial conditions y1, . . . , yp are given.

The reduced-form representation of the SVAR, obtained by pre-multiplying by the inverse of

A0, is the standard VAR model

yt = b+

p∑
j=1

Bjyt−j + ut (2)

where Bj = A−1
0 Aj, j = 1, . . . , p, b = A−1

0 a, ut = A−1
0 εt and E(ut u

′
t) ≡ Σ = A−1

0 A−1′
0 . The set of

reduced-form parameters is φ = (B, Σ) ∈ Φ ⊂ Rn+n2p ×Ω, where B = (b, B1, . . . , Bp) and Ω is

the space of positive semi-definite matrices.

Assuming further that the VAR Eq. (2) is invertible, it has the VMA(∞) representation:

yt = c+
∞∑
j=0

Cj(B)ut−j = c+
∞∑
j=0

Cj(B)A−1
0 εt−j

where Cj(B) is the j -th coefficient matrix of the inverted lag polynomial
(
In −

∑p
j=1BjL

j
)−1

.

We define the impulse response matrix at horizon h (IRh) and the long-run cumulative impulse

response matrix (CIR∞) to be

IRh = Ch(B)A−1
0 , (3)

CIR∞ =
∞∑
j=0

IRh =

(
∞∑
j=0

Cj(B)

)
A−1

0 , (4)

In what follows throughout, we denote the Cholesky decomposition of Σ by Σ = ΣtrΣ
′
tr,

where Σtr is the unique lower-triangular Cholesky factor with non-negative diagonal elements.

The column vectors ofΣ−1
tr andΣ ′tr are denoted byΣ−1

tr ≡ (σ̃1, σ̃2, . . . , σ̃n) andΣ ′tr ≡ (σ1, σ2, . . . , σn).

The i-th entry of σ̃j and σj are denoted by σ̃j,i and σj,i, respectively.

II.1 Identification of SVAR models

Identification analysis of SVAR models concerns solving Σ = A−1
0 A−1′

0 to decompose the reduced

form error variance-covariance matrix Σ into the matrix of structural coefficients A0. Following

Uhlig (2005), any structural matrix A0 defined by a rotation of the Cholesky factor A0 = Q′Σ−1
tr
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admits the decomposition Σ = A−1
0 A−1′

0 and, given the reduced-form parameters φ, the set of

admissible A0 matrices can be represented by A0(φ) ≡ {A0 = Q′Σ−1
tr : Q ∈ O (n)}, where

O (n) is the set of n × n orthogonal matrices. Let R be generic notation denoting identifying

restrictions. The identifying restrictions constrain the admissible values of A to a subset of A.

We denote this subset by AR, and its projection for A0 by AR,0. Accordingly, let ΦR ⊂ Φ be the

space of reduced-form parameters formed by projecting A ∈ AR, and let

AR,0(φ) ≡ A0(φ) ∩ AR,0, (5)

which is nonempty for φ ∈ ΦR.

We define global and local identification for an SVAR as follows.

Definition 1 (Global identification). An SVAR model is globally identified under identifying

restrictions R if for almost every A ∈ AR there is no other observationally equivalent A in AR.

Definition 2 (Local identification). An SVAR model is locally identified under identifying re-

strictions R if for almost every A ∈ AR, there exists an open neighborhood G such that G∩AR
contains no other observationally equivalent A.

Some remarks on these two notions of identification are in order. An equivalent definition

of global identification would be that, for almost every φ ∈ ΦR, there exists a unique corres-

ponding structural parameter point. In other words, AR,0(φ) is singleton-valued at almost every

φ ∈ ΦR. In addition, the case where ΦR = Φ, i.e. the imposed identifying assumptions are not

observationally restrictive, is what RWZ refer to as exact identification. In contrast, the defin-

ition of local identification says that, if there are multiple observationally equivalent structural

parameter points, they must be far apart. This implies that for almost every φ ∈ ΦR, if AR,0(φ)

is not singleton, it consists of isolated points. In Proposition 2 below, we characterize a class

of locally identified SVARs. For this class of SVARs, the space of reduced-form parameters Φ

can be partitioned into three subsets. The first, of positive measure, contains parameters for

which the model is locally- but not globally-identified; the second, of positive measure, on which

there is no structural parameter satisfying the identifying assumption (i.e., AR,0(φ) is empty);

and the third, of measure zero, on which the model is globally identified. This feature of locally

identified SVARs stands in contrast to exactly identified SVARs and globally and over-identified

SVARs, where the mapping from the reduced-form parameter space Φ to structural parameters

that satisfy the identifying restrictions is guaranteed to be either singleton-valued or empty at

almost every φ ∈ Φ.
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II.2 Normalization, sign, zero and non-zero identifying restrictions

This section introduces the types of identifying restriction considered in this paper. We begin

with sign normalization restrictions, and then move to zero, non-zero, and sign restrictions.

Sign Normalization restrictions

Following Waggoner and Zha (2003) and Hamilton et al. (2007), and in line with RWZ and

Giacomini and Kitagawa (2021), we impose sign normalization restrictions on the structural

shocks. Specifically, we restrict the diagonal elements of A0 to be non-negative.

diag (Q′Σ−1
tr ) ≥ 0. (6)

Under these assumptions, a unit positive change in a structural shock can be interpreted as a

one standard-deviation ceteris paribus positive shock in the corresponding endogenous variable.

Zero and non-zero equality restrictions

While sign normalization restrictions on the diagonal elements of A0 restrict the set of admissible

structural matrices, they are not enough to obtain point identification. The standard approach in

the literature is to impose equality restrictions either on the structural parameters or particular

linear and non-linear functions of them.1

Following RWZ, we represent identifying restrictions as restrictions on the reduced-form

parameters φ and the column vectors (q1, q2, . . . , qn) of the orthogonal matrix Q.

1Other proposals of identification strategies include the use of external instruments as in Mertens and Ravn
(2013) and Stock and Watson (2018), heteroskedasticity of the structural shocks as in Rigobon (2003), Bacchiocchi
and Fanelli (2015) and Bacchiocchi (2017), and the presence of non-normality as in Lanne and Lütkepohl (2010)
and Lanne et al. (2017).
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((i, j)-th element of A−1
0 ) = c ⇐⇒ (e′iΣtr)qj = c, (7)

((i, j)-th element of A0) = c ⇐⇒ (Σ−1
tr ej)

′qi = c, (8)

((i, j)-th element of Al) = c ⇐⇒ (Σ−1
tr Blej)

′qi = c, (9)

((i, j)-th element of CIR∞) = c ⇐⇒
[
e′i

∞∑
h=0

Ch(B)Σtr

]
qj = c, (10)

(linear restriction between (i, j)-th

and (h, k)-th elements of A−1
0 ) ⇐⇒ (e′iΣtr)qj − d(e′hΣtr)qk = c, (11)

(linear restriction between (i, j)-th

and (h, k)-th elements of A0) ⇐⇒ (Σ−1
tr ej)

′qi − d(Σ−1
tr ek)

′qh = c, (12)

where ei is the i-th column of the identity matrix In, and c and d are known non-zero scalars. Eq.

(7) and Eq. (8) cover short-run identifying restrictions including the causal ordering restrictions

of Sims (1980) and Bernanke (1986). Eq. (9) corresponds to restrictions that exclude some of the

right-hand side variables in the structural equations. Eq. (10) corresponds to long-run identifying

restriction as considered in Blanchard and Quah (1989). These first four equality restrictions,

when c = 0, were considered in RWZ and Giacomini and Kitagawa (2021), but the remaining

two were not. The additional restrictions we allow are non-zero equality restrictions (i.e., when

c 6= 0 in Eq.s (7)-(10)), and cross-equation restrictions on the structural parameters and impulse

responses. As we clarify in Section III, these last types of restriction drive a departure from

global identification to local identification.2

We represent these equality restrictions by

F(φ,Q) ≡


F11(φ) F12(φ) · · · F1n(φ)

F21(φ) F22(φ) · · · F2n(φ)
...

...
. . .

...

Fn1(φ) Fn2(φ) · · · Fnn(φ)




q1

q2

...

qn

−


c1

c2

...

cn

 = 0

≡ F(φ)vecQ− c = 0 (13)

where Fij(φ), 1 ≤ i, j ≤ n, is a matrix of dimension fi × n, which depends only on the reduced-

form parameters φ = (B, Σ). The dimension of F(φ) is f × n2, where f = f1 + · · ·+ fn denotes

2Starting from Eq. (11) it is straightforward to extend the restrictions to CIR∞ or responses at any horizon.
Similarly, starting from Eq. (12), we can also restrict the elements A1, . . . , Ap across two or more equations. The
general form to be given in Eq. (13) can accommodate these two extensions.
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the total number of restrictions imposed. We allow fi = 0 for some i, in which case the i-th block

row in F(φ) is null. Finally, vecQ ≡ (q′1, . . . q
′
n)′ is the vectorization of Q, and c ≡ (c′1 . . . , c

′
n)′

is a vector of known constants with length f , where each ci is a fi × 1 vector.

If Fij(φ) = 0 for all i 6= j, there are no cross equation restrictions or restrictions across

the effects of the shocks. If ci = 0 for all i, then only zero restrictions are imposed. This

representation of the identifying restrictions is in line with Lütkepohl (2006) and Bacchiocchi

and Lucchetti (2018), both of which allow non-homogeneous and across-shock restrictions. We

provide the following formal definitions.

Definition 3 (Recursive restrictions). The restrictions are said to be recursive if Fij(φ) = 0 for

j > i, and fi = n− i, for i = 1, . . . , n.

Definition 4 (Homogeneous and non-homogeneous restrictions). The restrictions are said to be

homogeneous if c = 0 and non-homogeneous if c 6= 0.

Defined in this way, recursive restrictions pin down a unique ordering of the variables with

Eq. (13) becoming a lower-triangular block matrix. Otherwise, our framework allows for the

ordering of variables to be non-unique. Even with the order of variables fixed, if the restrictions

include across-shock restrictions, then Eq. (13) allows for a multiple block-matrix representation.

The general identification results of this section are valid independent of how the variables are

ordered or how the imposed restrictions are represented within Eq. (13), unless the recursive

structure is assumed explicitly.

Sign restrictions

In addition to equality restrictions, sign restrictions can be imposed on impulse responses or

structural parameters. These sign restrictions can be seen as additional constraints on the

columns of the Q matrix. Suppose we impose sh,i ≤ n number of sign restrictions on the impulse

responses to i -th shock at h-th horizon. They can be expressed as

Sh,i(φ)qi ≥ 0, (14)

where Sh,i ≡ Dh,iCh(B)Σtr is a sh,i×n matrix, Dh,i is the sh,i×n signed selection matrix, which

indicates by 1 (−1) the impulse responses whose signs are retricted to being positive (negative),

and Ch(B) is from the definition of an impulse response Eq. (3). The inequality in Eq. (14)

is component-wise. Sign restrictions on structural parameters are linear inequality constraints

on the columns of the matrix Q, so can also be accommodated. Stacking all the Sh,i matrices
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involving sign restrictions on qi at different horizons into a matrix Si, we have

Si(φ)qi ≥ 0. (15)

We represent the set of all sign restrictions by

S(φ,Q) ≥ 0. (16)

Admissible structural parameters and identified set

Given identifying restrictions of the form introduced above, we hereafter let R be the collection

of restrictions {F(φ,Q) = 0,S(φ,Q) ≥ 0, diag(Q′Σ−1
tr ) ≥ 0}, or R = (F, S) for short. We call

A = (A0, A+) admissible if it satisfies R. The set of all these admissible structural parameters

can be represented by

AR(φ) ≡ {(A0, A+) = (Q′Σ−1
tr , Q

′Σ−1
tr B) : Q ∈ O (n) , F(φ,Q) = 0, S(φ,Q) ≥ 0, diag (Q′Σ−1

tr ) ≥ 0}.

The projection of AR(φ) for A0 gives AR,0(φ) as defined in Eq. (5). The identified set for Q is

defined as the set of admissible orthogonal matrices given the reduced-form parameters:

QR(φ) ≡ {Q ∈ O (n) : F(φ,Q) = 0, S(φ,Q) ≥ 0, diag (Q′Σ−1
tr ) ≥ 0}.

The objects of interest may also include transformations of structural parameters such as

impulse response functions. We denote a scalar parameter of interest by η = η(φ,Q) and define

its identified set as

ISη(φ) ≡ {η(φ,Q) : Q ∈ QR(φ)},

When η(φ,Q) is a restriction on an impulse response

η(φ,Q) = IRh
ij = e′iCh(B)ΣtrQej ≡ c′ih(φ) qj,

where IRh
ij is the (i,j )-th element of IRh and c′ih(φ) is the i -th row of Ch(B)Σtr.

When A is globally identified, ISη(φ) is a singleton for almost every φ ∈ ΦR. If A is only

locally identified, ISη(φ) can be a set of multiple isolated points generated by observationally

equivalent structural parameters. Local identification can be certainly viewed as a special case

of set identification, although it is not covered by standard set identification analysis where the

identified set is typically an interval or a set with positive Lebesgue measure.
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II.3 Conditions for local identification

This section presents conditions for global and local identification when the identifying restric-

tions are equality restrictions in the form Eq. (13). In the case of local identification, we present

an analytical characterization of the number of observationally equivalent structural parameter

values.

We begin with the well known condition for global identification developed in Theorem 7

of RWZ and recently extended in Bacchiocchi and Kitagawa (2021).3 This condition for global

identification acts as a reference point in our discussion of local identification.

Proposition 1 (Necessary and sufficient condition for global identification, RWZ and Bacchioc-

chi and Kitagawa (2021)). Consider an SVAR with identifying restrictions of the form Eq. (7)

- Eq. (12) collected in F(φ,Q). Assume Fij(φ) = 0 for i 6= j, and c = 0. The SVAR is globally

identified at A = (A0, A+) ∈ AR if and only if the following conditions hold at φ implied by A:

1. It holds

rank
(
F11(φ)′, σ̃1

)
= n. (17)

2. Let q1 be a unit length vector satisfying F11(φ) q1 = 0 and the sign normalization restriction,

which is unique under Eq. (17). For i = 2, . . . , n

rank
(
Fii(φ)′, q1, . . . , qi−1, σ̃i

)
= n, (18)

hold, where the orthonormal vectors q2, . . . , qn solve(
Fii(φ)′, q1, . . . , qi−1

)′
qi = 0 (19)

sequentially, and satisfy the sign normalization restrictions.

This proposition characterizes a boundary separating cases where an SVAR is globally iden-

tified and cases where it is not guaranteed to be globally identified. In what follows, we consider

departures from this proposition’s conditions for global identification, and show implications for

local identification and the failure of global identification. In particular, we allow Fij(φ) to be

nonzero for some i 6= j and/or c 6= 0 by including restrictions of the form Eq. (11)- Eq. (12).

With this expanded set of identifying restrictions, Proposition 2 derives a rank condition that is

3Theorem 7 of Rubio-Ramirez et al. (2010) claims that under a set of regularity conditions, the exact identific-
ation of an SVAR holds if and only if fi = n− i for all i = 1, . . . , n. Bacchiocchi and Kitagawa (2021) show that
relaxing one of their regularity conditions, the condition of fi = n − i for all i = 1, . . . , n is no longer sufficient
and it needs to be augmented by rank conditions, which, in the current setting, is equivalent to Eq. (17) and Eq.
(18). See Bacchiocchi and Kitagawa (2021) for further detail.
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necessary and sufficient for local identification. Lütkepohl (2006) and Bacchiocchi and Lucchetti

(2018) provide similar conditions for local identification in a setting that is less general in terms

of the kind of restrictions that can be imposed. Their rank condition is expressed in terms of the

structural parameter matrices A, while our Proposition 2 presents the rank condition in terms of

the coefficient matrix of the equality restrictions F(φ) and the orthogonal matrix Q. We define

Chol(·) to be the Cholesky factor of (·) and g : R(n+m)n → Rn+n2p×Ω×O (n), to be the function

mapping structural to reduced-form parameters and the admissible orthogonal matrix.

Proposition 2 (Rank condition - necessary and sufficient condition for local identification).

Consider an SVAR with equality restrictions of the form Eq. (7) - Eq. (12) collected in F(φ,Q).

Let D̃n be the n2×n(n− 1)/2 full-column rank matrix such that for any n(n− 1)/2-dimensional

vector v, D̃n v ≡ vec (H) holds, where H is an n×n skew-symmetric matrix satisfying H = −H ′

(see Appendix D for the specific construction of D̃n for n = 2, 3, 4).

(i) The SVAR is locally identified at A = (A0, A+) ∈ AR if and only if

rank

[
F(φ)

(
In ⊗Q

)
D̃n

]
= n(n− 1)/2 (20)

holds, where the reduced-form parameters φ = (B, Σ) ∈ Φ and the orthogonal matrix Q ∈
O (n) are such that (B, Σ, Q) = g(A0, A+) = (A−1

0 A+, A
−1
0 A−1′

0 , Chol(A−1
0 A−1′

0 )′A′0). Hence, a

necessary condition for the rank condition Eq. (20) is f =
∑n

i=1 fi ≥ n(n− 1)/2.

(ii) Let K be the set of structural parameters in AR satisfying the rank condition of Eq. (20),

K ≡
{
A ∈ AR : rank

[
F(φ)

(
In ⊗Q

)
D̃n

]
= n(n− 1)/2

}
.

Either K is empty or the complement of K in AR is of measure zero.

Proof. See Appendix C.

Statement (i) of this proposition provides a necessary and sufficient condition for local iden-

tification at a given A ∈ AR in the form of a rank condition for a matrix that is a function of

A, i.e., (φ,Q) is a function of A. Eq. (20) as stated is of limited practical use since the true A

is generally unknown, which means that verifying Eq. (20) is infeasible.

Statement (ii) of this proposition makes the rank condition Eq. (20) useful by showing that it

holds either nowhere or almost everywhere in the parameter space AR. This means that, similar

to the proposals following Theorem 3 in RWZ and Theorem 1 in Bacchiocchi and Lucchetti

(2018), one can assess local identification by randomly generating structural parameters A ∈ AR
and checking whether the rank condition holds or not. Specifically, we can consider drawing
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reduced-form parameters φ ∈ ΦR from its prior or posterior and solving a constrained non-linear

optimization problem of the form4

arg min
Q∈ Rn2

(
F(φ)vecQ− c

)′(
F(φ)vecQ− c

)
s.t. diag (Q′Σ−1

tr ) ≥ 0, S(φ,Q) ≥ 0 and Q′Q = In.

(21)

If the value of the optimization is zero, then the obtained Q is an admissible orthogonal matrix

at the given φ. If such an admissible Q satisfies the rank condition in Eq. (20), then the SVAR is

locally identified at (φ,Q). If the rank condition is not met, the SVAR is not locally identified at

(φ,Q). Proposition 2 (ii) says that only one of the two possibilities occurs with positive measure,

while the other has zero measure. Hence, by checking the rank condition at a few parameter

values drawn from a probability distribution supporting AR or ΦR, we can learn whether the rank

condition holds nowhere or almost everywhere on the space of structural parameters. Confirming

the latter can be seen as a strong support for local identification holding at the true A, unless

the true structural parameter value is believed to belong to the null set in the parameter space.

In many empirical applications the interest is only on one single shock, or at most on a small

subset of them. The condition in Proposition 2 could be, thus, too stringent. The next result

allows to check whether a subset of shocks is locally identified. First of all, without loss of

generality, let the shock be ordered such that f1 ≤ f2 ≤ . . . ≤ fn. Conditional on this ordering,

let the shocks be partitioned into two groups such that: a) the shocks of interest belong to the

first group of s shocks, and b) the shocks in the former group do not present restrictions with

those of the latter. These features allow to write the restrictions as(
F11(φ) 0

0 F22(φ)

)(
q1

q2

)
−

(
c1

c2

)
= 0 (22)

where the orthogonal matrix Q has been partitioned as Q =
[
Q1 | Q2

]
, with q1 = vec Q1 and

q2 = vec Q2.

Corollary 1 (Rank condition - necessary and sufficient condition for local identification of

a subset of shocks). Consider an SVAR with equality restrictions of the form Eq. (7) - Eq.

(12) collected as in Eq. (22), where the shocks are ordered such that f1 ≤ f2 ≤ . . . ≤ fn. A

necessary and sufficient condition for the first s shocks to be locally identified at the parameter

4This minimization problem is constrained by the orthogonality constraints Q′Q = In, which is known as
Stiefel manifold following Stiefel (1935-1936). Edelman et al. (1998) develop algorithms for optimization in the
Stiefel manifold, while Boumal et al. (2014) propose a Matlab toolbox for optimization on manifolds including
the Stiefel one. A Matlab code for this optimization is available from the authors upon request.
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point A = (A0, A+) ∈ AR is that

rank

(
F11(φ)

Nns (In ⊗Q′1)

)
= ns (23)

where the completely known matrix Nns ≡ 1/2(Ins + Kns), with kns being the commutation

matrix.5

Proof. See Appendix C.

The implementation of the rank condition in Corollary 1 can be easily performed by a slight

modification of the procedure used for the general condition in Proposition 2. We first derive an

admissible matrix Q1 by solving a constrained non-linear optimization problem as in Eq. (21),

where Q1 substitutes the entire Q. The second step, thus, consists in checking the rank condition

in Eq. (23) using the obtained Q1 matrix.

Allowing only recursive identifying restrictions, the next proposition provides a simple ne-

cessary and sufficient condition for the rank condition of Proposition 2 (i). It extends, to local

identification, the condition for global identification presented in Proposition 1.

Proposition 3 (Necessary and sufficient condition for local identification in recursive SVARs).

Consider an SVAR with recursive identifying restrictions of the form Eq. (13). Let F̃ii(φ) =

F11(φ) for i = 1, and

F̃ii(φ) =
(
F ′ii(φ), q1, . . . , qi−1

)′
(24)

for i = 2, . . . , n, where q1, . . . , qi are the first i column vectors of Q ∈ O (n) satisfying the equality

restrictions F(φ)vecQ− c = 0 given φ ∈ ΦR. The rank condition of Eq. (20) holds at (φ,Q) if

and only if rank
(
F̃ii(φ)

)
= n− 1 holds for all i = 1, . . . , n.

Proof. See Appendix C.

Since the rank condition of Proposition 2 (i) is necessary and sufficient for local identification,

the condition shown in Proposition 3 is also necessary and sufficient for local identification for

SVARs under recursive identifying restrictions. Moreover, the claim of Proposition 2 (ii) carries

over to the setting of Proposition 3, so knowing that the condition shown in Proposition 3 holds

at a few φ ∈ ΦR drawn from its prior or posterior allows us to conclude local identification holds

almost everywhere in the parameter space. The condition in Proposition 3 exploits sequential

determination of qi, i = 1, . . . , n, given φ, so checking it does not require nonlinear optimization

for Q.

5A commutation matrix K is defined such that, given a generic matrix A, then K vec A = vec A′. See Magnus
and Neudecker (2007) for some properties of the commutation matrix.
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The proof of Proposition 3 leads to the following corollary showing a necessary and sufficient

condition for the local identification of impulse responses to a particular shock.

Corollary 2 (Sufficient condition for local identification of the j -th shock). Under the assump-

tions of Proposition 3, the impulse responses for the j-th structural shock, 1 ≤ j ≤ n, are locally

identified at the parameter point A = (A0, A+) ∈ AR if and only if rank(F̃ii(φ)) = n − 1 holds

for all i = 1, . . . , j.

II.4 The number of observationally equivalent parameter points

The results presented so far are silent about how many observationally equivalent structural

parameter points there are. As the next proposition shows, our constructive identification argu-

ment through the orthogonal matrix Q allows us to characterize the number of observationally

equivalent parameter points.

Proposition 4 (Number of locally identified points). Consider an SVAR with equality restric-

tions of the form Eq. (7)-Eq. (12) collected in F(φ,Q) = 0. Given φ ∈ Φ and provided that

the rank condition in Eq. (20) is met, the number of admissible Q matrices (Q matrices solving

F(φ,Q) = 0) is zero or finite. In particular, if the equality identifying restrictions are recursive,

the number of admissible Q matrices is at most 2n. If the equality identifying restrictions are

non-recursive, the number of admissible Q matrices is at most 2n(n+1)/2.

Proof. See Appendix C.

The proposition provides an upper bound for the number of locally identified observationally

equivalent parameter points. It corresponds to the maximal number of modes that the likeli-

hood of the structural parameters can have. The maximum number of observationally equivalent

structural parameters is considerably lower when the SVAR is identified through recursive equal-

ity restrictions rather than non-recursive restrictions. The intuition for this result is that, if the

identification of the columns of Q can be performed recursively, the equations concerning the

orthogonality conditions among the columns of Q are linear, rather than quadratic.

In comparison to the exact (global) identification case of RWZ and Proposition 1, Proposition

4 highlights that non-homogenous restrictions (c 6= 0) lead to the possibility that, given φ ∈ Φ,

(i) an admissible Q does not exist, or (ii) the admissible Q is no longer unique. Adding sign

restrictions to the sign normalization restrictions can reduce the number of admissible Q’s, but

cannot generally guarantee uniqueness of the admissible Q’s. Section II.5 below illustrates the

transition from exact global identification to local identification through a simple example.

18



The following corollary, instead, focuses on the identification of a subset of all the structural

shocks and derives the maximum number of solutions for this specific case. We consider, thus,

the same situation as in Corollary 1 and assume that the rank condition therein is met.

Corollary 3 (Number of locally identified points for a subset of shocks). Consider an SVAR

with equality restrictions of the form Eq. (7)-Eq. (12) collected as in Eq. (22). Given φ ∈ Φ
and provided that the rank condition in Eq. (23) is met, the number of admissible Q1 matrices

is zero or finite. In particular, the number of admissible Q1 matrices is at most 2s(s+1)/2.

Proof. The result is a by-product of Proposition 4 and can be easily derived from its proof.

II.5 The geometry of identification

We present an intuitive geometric exposition for why the introduction of nonhomogeneous re-

strictions Eq. (11) and/or across-shock restrictions Eq. (12) can lead to local identification.

This exposition also provides intuition for the number of local identified parameter points shown

in Proposition 4. Appendix A provides the algebraic analysis behind our geometric discussion.

To make exposition as simple as possible, consider a bivariate VAR with a single non-

homogeneous identifying restriction imposed on the structural parameters:

(A0)−1
[1,1] = c ⇐⇒ (e′1Σtr) q1 = c (25)

where c > 0 is a known (positive) scalar and e1 is the first column of I2. Denoting the first

column of Σ ′tr =

(
σ1,1 σ2,1

0 σ2,2

)
by σ1 = (σ1,1, 0)′, this identifying restriction can be written as

σ′1 q1 = c.

Hence, given φ, q1 must satisfy the two equations,{
σ′1 q1 = c

q′1 q1 = 1.

Figure 1 depicts these two constraints. Letting the x-axis correspond to the vector σ1, the set

of q1 vectors satisfying the first constraint is a vertical line whose location is determined by σ1

and c. The second constraint imposes that q1 lies on the unit circle. Points at the intersection

of the vertical line and the unit circle, if any exist, are solutions to this system of equations.

When the imposed restriction is a zero restriction (c = 0), the vertical line passes through

the origin and intersects the circle at two points. The two solutions for q1, q
(1)
1 and q

(2)
1 are

symmetric across the origin, and the sign normalization restriction Eq. (6) is guaranteed to rule

one of them out (see Appendix A for details). Thus, the first column of Q is globally identified.
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Figure 1: Identification of q1 in the bivariate SVAR with non-zero restriction.

q
(2)
1

q
(1)
1

Restriction

(A0)−1
[1,1] = c ⇐⇒ (e′1Σtr) q1 = c

Notes: The vertical red line represents the non-zero restriction (A0)−1
[1,1]

= c. The two black arrows represent the identified vectors

q
(1)
1 and q

(2)
1 .

The vertical line in Figure 1 corresponds to a non-zero restriction (c > 0). If the vertical line

is perfectly tangent to the unit circle, we continue to have global identification. Otherwise, there

are two distinct solutions for q1, as shown in Figure 1. Compared to the case where c = 0, a

crucial difference is that there are some values of φ and c where the sign normalization restriction

cannot rule out one solution. In this case, they are both admissible and the first column of Q is

locally- but not globally-identified.6

The second column of Q, i.e. the unit-length vector q2, can be pinned down through its

orthogonality with q1 {
q′2 q1 = 0

q′2 q2 = 1.
(26)

If q1 is only locally identified with two admissible vectors q
(1)
1 and q

(2)
1 , Eq. (26) needs to be

solved given both. Solving the system when q1 = q
(1)
1 provides two solutions for q2 that are

depicted in the left panel of Figure 2. As the two solutions mirror each other across the origin,

only one will satisfy the sign normalization restriction for the second shock. A similar picture

is obtained when q1 = q
(2)
1 (the right panel of Figure 2), and here too one of the solutions for q2

can be ruled out by the sign normalization restriction.

6For φ /∈ ΦF , the vertical line does not intersect the unit circle, and no real solution for q1 exists. If c 6= 0,
the identifying restriction becomes observationally restrictive, and the identifying restriction can be refuted by
the reduced-form models.
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To summarize, an equality restriction with c > 0 leads to local but non-global identification

for q1, and there are then two admissible Q matrices, Q1 = [q
(1)
1 , q

(1)
2 ] and Q2 = [q

(2)
1 , q

(2)
2 ] given

φ. This implies that both A0 = Q′1Σ
−1
tr and A0 = Q′2Σ

−1
tr are admissible. In this example, we

obtain two observationally equivalent Q matrices, which is consistent with the upper bound on

the number of observationally equivalent Q matrices in Proposition 4.

For a specific numerical illustration, let the bivariate VAR be characterized by constants that

are zero and a single lag with reduced-form parameters

B1 =

(
0.8 −0.2

0.1 0.6

)
, Σ =

(
0.49 −0.14

−0.14 0.13

)
, Σtr =

(
0.7 0

−0.2 0.3

)
,

and consider imposing restriction (A0)−1
[1,1] = 0.5 ⇐⇒ (e′1Σtr) q1 = 0.5. Following Eq. (55) and

Eq. (60) - Eq. (61) in Appendix A, we calculate the two admissible matrices Q1 and Q2

Q1 =

(
0.714 −0.700

0.700 0.714

)
and Q2 =

(
0.714 0.700

−0.700 0.714

)

with associated admissible A0 matrices

A
(1)
0 =

(
1.687 2.333

−0.320 2.381

)
and A

(2)
0 =

(
0.354 −2.333

1.680 2.381

)
.

Based on these structural parameter values, Figure 3 shows the impulse response of yt = (y1t, y2t)
′

to the structural shocks ε1t and ε2t. Despite the simplicity of this example, it clearly illustrates

the extent to which conclusions depend on the choice of observationally equivalent Q matrices.

III Locally identified SVARs: some examples

Hamilton et al. (2007) discuss local identification as a normalization problem. As shown in

the previous section, in the presence of non-homogeneous equality restrictions Eq. (11) and/or

across-shock restrictions Eq. (12), proper sign normalization restrictions are not enough to

resolve the issue of local identification in SVARs. The examples below illustrate that this issue

is of practical relevance.
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Figure 2: Identification of q2 in the bivariate SVAR with non-zero restriction.
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Notes: The left panel shows the identification of the q
(1)
2 and q

(2)
2 vectors (in blue), conditional on the identified q

(1)
1 (in black).

Similarly, the right panel shows the identification of the q
(1)
2 and q

(2)
2 vectors (in blue), conditional on the identified q

(2)
1 (in black).

III.1 Calibrated identifying restrictions and restrictions across shocks

or across equations

One strategy employed in the literature is to calibrate some parameters instead of estimating

them. Calibration can be viewed as imposing non-homogeneous restrictions and, as we have

shown in the simple example in Section II.5, this can lead to local identification. For example,

Blanchard and Perotti (2002) and Blanchard and Watson (1986) impose nonzero values for some

structural parameters in A0, based on external information. Abraham and Haltiwanger (1995),

Davis and Kilian (2011) and Kilian (2010), instead of imposing fixed values, explore a grid of

possible values for some structural parameters in order to provide robustness checks for their

main model specification.

Cross-equation restrictions have been investigated in the classical literature of simultaneous

equation systems (Fisher, 1966, and Kelly, 1975).7 Among others, examples in this direction

7In particular, Kelly (1975) presents cases in which economic theory might suggest imposing such restrictions.
However, constraining parameters across equations is conditional on the kind of normalization considered. In
simultaneous equation systems, normalization rules were generally based on imposing a unit coefficient for the
variable playing the role of endogenous variable in that specific equation. In the parametrization proposed by
RWZ for SVAR models the normalization rule instead consists of imposing unit variance on the uncorrelated
structural shock. In this case, imposing restrictions on elasticities across equations would involve non-linear
restrictions on the estimated coefficients. In fact, to obtain the elasticities, we need to normalize the coefficient
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Figure 3: Impulse response functions related to the locally identified SVAR discussed in Section
II.5.
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can be found in Deaton and Muellbauer (1980) and related papers on demand systems, where

cross-equation restrictions are imposed in order to test for the Slutsky symmetry assumptions.

See Kilian (2013) for a simple example on restrictions across equations in a bivariate SVAR.

Similar situations arise in SVARs when restrictions are imposed on impulse responses to different

structural shocks. In both approaches, such kinds of constraints involve restrictions across the

columns of the orthogonal matrix Q, as those reported in Eqs. (11)-(12). As for calibrated

parameters, this identification strategy can lead to local identification.

for the endogenous variable in each equation. See Hamilton et al. (2007) and Waggoner and Zha (2003) for
specific details on the normalization issue in SVAR models.
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III.2 Non-recursive SVAR models

RWZ provide an example of a locally- but not globally-identified SVAR where the sufficient

condition for local identification of Proposition 3 is not met. This example involves non-recursive

causal ordering restrictions and has practical importance, as we illustrate below.

Cochrane (2006) considers the following New-Keynesian model for inflation πt, output gap

xt, and the nominal interest rate it:

πt = βEt πt+1 + κxt + ust

xt = Et xt+1 − τ(it − Et πt+1) + udt (27)

it = φπ πt + umpt

with ust , t
d
t and umpt being, respectively, the independent supply, demand, and monetary policy

shocks with variances σ2
s , σ

2
d and σ2

mp. Fukac et al. (2007) show that this model can be written

as an SVAR of the form

A0 yt = εt

where yt = (πt, xt, it)
′ is the vector of observable variables, εt = (εst , ε

d
t , ε

mp
t ) collects the unit-

variance uncorrelated structural shocks and

A0 =

 a11 a12 0

0 a22 a23

a31 0 a33

 .

Note that there is a well-defined mapping between the parameters in A0 and those in the DSGE

representation Eq. (27).8

This model includes the following restrictions:

a13 = 0 ⇐⇒ (Σ−1
tr e3)′q1 = 0

a21 = 0 ⇐⇒ (Σ−1
tr e1)′q2 = 0 (28)

a32 = 0 ⇐⇒ (Σ−1
tr e2)′q3 = 0,

with f1 = f2 = f3 = 1. The sufficient condition for local identification in Proposition 3 is

clearly not satisfied, but it can be shown that the rank condition of Proposition 2 is satisfied.

Specifically, Rubio-Ramirez et al. (2008) show the existence of two orthogonal matrices Q1 and

Q2 transforming the reduced-form parameters into admissible structural parameters. The em-

8As pointed out by Canova (2005), zero restrictions implied by DSGE models do not match the recursive
identification schemes common in SVAR analyses.
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pirical application shown in Section VI performs estimation and inference for this model. Other

examples of non-recursive SVARs, among others, are Sims (1986), Bernanke (1986), Blanchard

and Watson (1986) and Sims and Zha (2006).

III.3 SVAR with breaks

Bacchiocchi and Fanelli (2015) consider SVARs with breaks in the structural error variances and

regime-dependent structural coefficients. They consider identifying assumptions that restrict

some structural parameters to being invariant across the regimes.

Suppose that the two regimes are characterized by two different reduced-form error covariance

matrices Σ1 and Σ2, which are related to the regime-dependent structural parameters through

Σ1 = A−1
01 A

−1′
01 and Σ2 = A−1

02 A
−1′
02 , (29)

where A01 and A02 are the matrices of regime-specific structural parameters. Let Q1 and Q2

be the regime specific orthogonal matrices mapping the reduced-form error variances to the

structural coefficients,

A01 = Q′1Σ
−1
1,tr and A02 = Q′2Σ

−1
2,tr (30)

with Qi = [q1(i), . . . , qn(i)], ∀ i, ∈ { 1, 2 }. We denote the j-th column vector of Σ ′i,tr by σj(i) for

j = 1, 2 and i = 1, 2.

For simplicity, consider a bivariate SVAR with two regimes. Impose the following identifying

restrictions:
(A01)−1

[1,2] = 0 ⇐⇒ (e′1Σ1,tr) q2(1) = 0

(A01)−1
[2,1] = (A02)−1

[2,1] ⇐⇒ (e′2Σ1,tr) q1(1) = (e′2Σ2,tr) q1(2).
(31)

The first zero restriction combined with the sign normalization pins down the orthogonal matrix

Q1 in the first regime. The second restriction in Eq. (31) gives rise to the following system of

equations: {
σ′1(2) q1(2) = c

q′1(2)q1(2) = 1
(32)

where c = σ′2(1)q1(1), which is a known constant once the Q1 for the first regime is identified.

Hence, the problem of identification for structural parameters in the second regime is reduced

to the example discussed in Section II.5, in which local identification holds with two distinct

solutions.
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III.4 Heteroskedastic SVAR

Rigobon (2003) proposes a specification of systems of simultaneous equations where the struc-

tural shocks present different volatility regimes. Lanne and Lütkepohl (2008) extends this ap-

proach to SVAR models. In synthesis, exploiting the presence of two or more volatility regimes

makes the SVAR model already identified without the need for any kind of restrictions. However,

Rigobon (2003) recognized that the identification of the model is obtained up to a permutation

of the equations or structural shocks. Bacchiocchi et al. (2022), among others, formalize this

statement by transforming the identification issue into an eigenvalue problem.

Suppose the data show, at time TB, a break in the covariance matrix, say Σ1 and Σ2. This

literature assumes the two different covariance matrices to be characterized by different variances

in the structural shock, i.e. the identity matrix in the first regime and a diagonal matrix Λ, with

strictly positive elements, in the second regime. This assumption leads to

E(utu
′
t) =

{
Σ1 = A−1

0 A−1′
0 if 1 ≤ t ≤ TB

Σ2 = A−1
0 ΛA−1′

0 if TB < t ≤ T.
(33)

Let Σ1,tr be the lower triangular Cholesky decomposition of Σ1 and, as before, let Q ∈ O(n).

Bacchiocchi et al. (2022) show that the identification issue reduces to

A−1
0 = Σ1,trQ

Σ−1
1,trΣ2Σ

−1′
1,tr = QΛQ′

(34)

that is an eigen-decomposition problem, where Λ collects the eigenvalues and the columns of Q

are the related eigenvectors. Now, let P be a permutation matrix. It becomes easy to see that

Q̃ = QP and Λ̃ = PΛP ′ are admissible solutions, too, but with different ordering of the columns

of Q and the elements in Λ. Although the heteroskedastic SVAR doesn’t require any kind of

restrictions, it can be only locally-identified. As we will see, the strategies for doing estimation

and inference in locally-identified SVARs that we propose in the next sections can be extremely

useful for heteroskedastic SVARs too, that are receiving increasing attention in the recent years.9

III.5 Proxy-SVAR

A set of identifying restrictions similar to the non-recursive zero restrictions discussed above can

appear when the identification strategy exploits proxy variables for the structural shocks.

Consider again a three-variable SVAR. Instead of imposing zero restrictions directly on any

9See, among many others, the recent contributions by Sims (2020), Brunnermeier et al. (2021), Lewis
(2021,2022) and all the references in Kilian and Lütkepohl (2017, Chapter 14).
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element of A0, we consider observable variables that proxy some of the underlying structural

shocks. The idea of using proxy variables to identify the structural impulse responses has been

considered in Stock and Watson (2012) and Mertens and Ravn (2013), amongst others. We

restrict our analysis to SVARs and focus on identification of the full system of SVARs rather

than subset identification of the impulse responses.10 To be specific, consider introducing the

external variables mt = (m1t,m2t,m3t)
′, each of which acts as a proxy for some contemporaneous

structural shocks. Following Angelini and Fanelli (2019), Arias et al. (2021), and Giacomini et al.

(2022), we augment mt into the original SVAR,(
A0 O

Γ1 Γ2

)(
yt

mt

)
=

(
εt

νt

)
, (εt, νt)

′ ∼ N (0, I6×6), (35)

where O is 3×3 matrix of zeros, Γ1 and Γ2 are 3×3 coefficient matrices in the augmented equa-

tions, and the shocks νt in the second block component of the augmented system are interpreted

as measurement errors in the proxy variables. Inverting Eq. (35) leads to

mt = −Γ−1
2 Γ1A

−1
0 εt + Γ−1

2 νt (36)

In the Proxy-SVAR approach, the identifying restrictions are zero restrictions on the covariance

matrix of mt and εt. Consider imposing the following restrictions:

E(mtε
′
t) =

 0 ρ12 ρ13

ρ21 0 ρ23

ρ31 ρ32 0

 (37)

where ρij is the (unconstrained) covariance of mit and εjt. The zero-covariance restrictions

represented in (37) imply that variable mit, i = 1, 2, 3, proxies a combination of the structural

shocks excluding εit. Combining eq. (36) with eq. (37) and substituting A−1
0 = ΣtrQ, Q =

[q1, q2, q3], the exogeneity restrictions of eq. (37) can be expressed as

(e′1Γ
−1
2 Γ1Σtr)q1 = 0,

(e′2Γ
−1
2 Γ1Σtr)q2 = 0, (38)

(e′3Γ
−1
2 Γ1Σtr)q3 = 0.

Since Γ−1
2 Γ1 can be identified by the covariance matrix of the reduced-form VAR errors in the

10The proxy-variable identification strategy has been shown to be useful for non-invertible structural MA
models. See Stock and Watson (2018) and Plagborg-Møller and Wolf (2022).
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augmented system Eq. (35), the zero restrictions of Eq. (38) have the same form as Eq. (28).

Hence, Proxy-SVAR identification under the exogeneity restrictions Eq. (37) delivers local but

non-global identification of the A0 matrix.

IV Computing identified sets of locally identified SVARs

A common approach to estimating SVAR structural parameters is constrained maximum likeli-

hood (Amisano and Giannini, 1997), with the maximization performed numerically given some

initial values. The standard gradient-based algorithm stops once it reaches a local maximum, and

does not check for the existence of other observationally equivalent parameter values. Hence,

the conventional maximum likelihood procedure applied to an SVAR that is locally but not

globally identified will select one of the observationally equivalent structural parameters in a

nonsystematic way, limiting the credibility of the resulting estimates and inference.

This section proposes computational methods that produce estimates of all the observation-

ally equivalent A matrices given the identifying restrictions. Our approach is first to obtain

φ̂ = (B̂, Σ̂), an estimate of the reduced-form parameters φ, and then compute the identified

set for A0 given φ̂, A0(φ̂|F, S), by solving a system of equations for the Q matrix given φ̂. For

estimators of φ, we consider (i) the unconstrained reduced-form VAR estimator for φ denoted

by φ̂u and (ii) the estimator for φ induced by a constrained maximum likelihood estimate of A

under the identifying restrictions (i.e., one of the locally identified structural parameter points

maximizing the likelihood), denoted by φ̂r. In the Bayesian inference methods considered in

Section V, we view φ̂ as a draw from the posterior of φ.

In what follows, we propose two procedures to compute A0(φ̂|F, S). The first procedure is

general and invokes a non-linear solver. The second procedure is more constructive and involves

only elementary calculus, but the allowed type of identifying restrictions is more limited. Both

algorithms deal with just identified SVARs, and we presume the rank condition in Proposition

2 or the sufficient condition in Proposition 3 are ensured or have been checked empirically prior

to implementation.

IV.1 A general computation procedure for locally identified SVARs

Given φ̂, this method computes the orthogonal matrices subject to the identifying restrictions by

solving a non-linear system of equations.11 If the model is locally identified, then it yields at most

2n(n+1)/2 solutions for Q. Some of these will be discarded by normalization and sign restrictions.

11Kociecki and Kolasa (2018) similarly check global identification of DSGE models by examining the solutions
of a non-linear system of equations.
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The remaining solutions for Q are then used to span the identified set for A0, A0(φ̂|F, S), and

its projection leads to the identified set of an impulse response ISη(φ̂). All these steps are stated

formally in the next algorithm.

Algorithm 1. Consider a SVAR with equality restrictions Eq. (13) and sign restrictions Eq.

(16), and assume f = n(n − 1)/2 equality restrictions are imposed. Let φ̂ be a given estimator

for φ such as φ̂u or φ̂r.

1. Solve the system of equations for Q:{
F(φ̂)vecQ− c = 0

Q′Q = In;
(39)

2. If the set of real solutions for Q is non-empty (which is guaranteed if φ̂ = φ̂r), then retain

only those satisfying the normalization and sign restrictions to obtain QR(φ̂). A0(φ̂|F, S)

is constructed accordingly by {A0 = Q′Σ̂−1
tr : Q ∈ QR(φ̂)}.

3. When φ̂ = φ̂u, it is possible that no real solution for Q exists in Step 1. If so, we return

Q(φ̂|F, S) = ∅, i.e., φ̂ is not compatible with the imposed identifying restrictions.

The crucial step in this algorithm is obtaining all the solutions to the equation system (39).

This is a system of polynomial equations consisting of linear and quadratic equations.12 Closed-

form solutions do not seem available, but numerical algorithms to compute all the roots of the

polynomial equations are. Matlab, for example, has the function vpasolve, an algorithm to find

all the solutions of a system of non-linear equations.13 According to the Matlab documentation,14

vpasolve returns the complete set of solutions in the case of polynomial equations. The strength

of this algorithm is its generality, but it is a black-box function.15

When non-homogeneous restrictions or cross-shock restrictions are imposed, the model be-

comes observationally restrictive. Hence, when φ̂ is obtained from the unconstrained reduced-

form VAR estimator φ̂u, if φ̂u happens to be outside of ΦR, then Step 3 of Algorithm 1 be-

comes relevant. When the algorithm returns QR(φ̂) = ∅, the maximum likelihood reduced-form

12Sturmfels (2002) provides a good overview of systems of polynomial equations with potential applications in
statistics and economics. As we saw in Section II.3, this system can be also seen as a minimization problem of the
quadratic objective function subject to the orthogonality constraints Q′Q = In. Noting that the orthogonality
constraints generate the Stiefel manifold, we can consider applying algorithms for optimization on the Stiefel
manifold. See Edelman et al. (1998) and Boumal et al. (2014).

13An alternative approach could be to solve the system analytically through the Matlab fuction solve, and then
approximate the roots numerically using the function vpa. For all cases investigated in our empirical analyses,
the two strategies lead to the same set of results.

14https://uk.mathworks.com/help/symbolic/vpasolve.html
15Matlab solvers are not open source, and we fail to uncover the precise numerical algorithm vpasolve uses to

find roots of nonlinear equation systems.
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model suggests that some of the imposed identifying restrictions are misspecified. One can

hence consider relaxing some of the imposed sign restrictions, or modify the value of c 6= 0 if

non-homogeneous restrictions are present. Alternatively, if we want to maintain the imposed re-

strictions, we can employ the constrained reduced-form estimate φ̂ = φ̂r instead, so that QR(φ̂)

is guaranteed to be nonempty.

IV.2 Computational procedure for locally identified SVARs with re-

cursive non-homogeneous restrictions

If the identifying restrictions imposed allow the sequential determination of the column vectors

of Q as exploited in the identification arguments in the previous sections, we can modify Al-

gorithm 1. In this section, we consider recursive SVARs with non-homogeneous and cross-shock

restrictions, as covered in Proposition 3.

Let Q1:i, 1 ≤ i ≤ n, be a n× i matrix whose column vectors are orthonormal (i.e. it consists

of the first i column vectors of Q). Given φ, define F̃11(φ) = F11(φ) and the following matrices

sequentially for i = 2, . . . , n,

F̃ii(φ) =

(
Fii(φ)

Q1:(i−1)(φ)′

)
, (40)

where Q1:(i−1)(φ) satisfies the identifying restrictions for the first (i− 1) orthogonal vectors, i.e.,

(Fj1(φ), . . . Fjj(φ))vecQ1:(i−1)(φ) = cj holds for j = 1, . . . , (i − 1). For i = 1, . . . , n, we define a

(n− 1)× 1 vector,

c̃i(φ) =


ci −

(
Fi1(φ), . . . , Fi(i−1)(φ)

)
vecQ1:(i−1)(φ)

0
...

0

 (41)

Then, for i = 1, . . . , n, define

di(φ) = F̃ii(φ)′
(
F̃ii(φ)F̃ii(φ)′

)−1

c̃i(φ), (42)

Bi(φ) =

(
In − F̃ii(φ)′

(
F̃ii(φ)F̃ii(φ)′

)−1

F̃ii(φ)

)
, (43)

and let αi(φ) be a n× 1 basis vector of the linear space spanned by the vectors in Bi(φ). Note

that Bi(φ) is the n× n matrix projecting onto the linear space orthogonal to the row vectors of
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F̃ii(φ). Hence, given the rank of F̃ii(φ) is n− 1, Bi(φ) has a rank of 1, so αi(φ) is unique up to

sign, and F̃ii(φ)αi(φ) = 0 holds.

Consider the n × 1 vector, x = di(φ) + zαi(φ), z ∈ R. Due to the way di(φ) and αi(φ) are

constructed, F̃ii(φ)x = c̃i holds. That is, by choosing z so that x is a unit-length vector, we can

obtain qi vectors satisfying F̃ii(φ)qi = c̃i. Solving for x is simple as it requires only finding the

roots of a quadratic equation (see Eq. (44) and Eq. (45) in Algorithm 2 below). Given φ, we

repeat this process for every i = 1, . . . , n to determine the qi vectors sequentially, and compute

all the Q matrices satisfying the equality restrictions F(φ,Q) = 0. A0(φ|F, S) and ISη(φ) can

then be obtained by retaining the Q that satisfy the normalization and sign restrictions. We

summarize this computational procedure in the next algorithm.

Algorithm 2. Consider a SVAR satisfying the normalization restrictions Eq. (6), the equality

restrictions Eq. (13), and the sign restrictions Eq. (16), where the imposed equality restrictions

satisfy the sufficient condition for local identification given in Proposition 3. Let φ̂ be a given

estimator for φ such as φ̂u or φ̂r. In the description of the algorithm below, we omit the argument

φ̂ as far as it does not give rise confusion.

Let b = (b1, . . . , bn) ∈ {0, 1}n be a bit vector which will be used to index each of the at most

2n possible solutions for the Q matrices. Beginning with B = {0, 1}n, we will map each b ∈ B

to a possible solution of Q, check if it is feasible or not, and refine B accordingly. The following

algorithm describes this process in detail:

1. Solve for z ∈ R in

d′1d1 + 2d′1α1z + α′1α1z
2 = 1, (44)

and denote the two solutions by zb11 , b1 ∈ {0, 1}.

(a) If they are real, then define qb11 = d1 +α1z
b1
1 , b1 ∈ {0, 1}. Let B1 ⊂ {0, 1} be the set of

b1 such that qb11 satisfies the sign normalization and sign restrictions for q1. If B1 is

empty (i.e., no qb11 satisfies the sign normalization and sign restrictions for q1), then

stop and conclude QR(φ̂) = ∅

(b) If the roots of Eq. (44) are not real, then stop and return QR(φ̂) = ∅.

2. This step iterates sequentially for i = 2, . . . , n, given Bi−1 ⊂ {0, 1}i−1.

(a) For each (b1, . . . , bi−1) ∈ Bi−1, construct Bi(b1b2 · · · bi−1) ⊂ {0, 1}i by performing the

following subroutines:

i. Construct F̃ii from Eq. (40) by setting Q1:i−1 = [qb11 , q
b1b2
2 , . . . , q

b1···bi−1

i−1 ], and obtain
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di and αi accordingly. Then,solve for z ∈ R in

d′idi + 2d′iαiz + α′iαiz
2 = 1, (45)

and denote the two solutions by zb1b2···bii , bi ∈ {0, 1}.
ii. If they are real, define qb1b2···bi1 = di + αiz

b1b2···bi
1 , bi ∈ {0, 1}. Let Bi(b1b2 · · · bi) be

the set of (b1, b2, . . . , bi) ∈ {0, 1}i such that qb1b2,···bii satisfies the sign normalization

and sign restrictions for the i-th column vector of Q. This can be empty if no

qb1b2,···bii satisfies them.

iii. If the roots of Eq. (45) are not real, return Bi(b1b2 · · · bi−1) = ∅.

(b) Construct Bi =
⋃

(b1,...,bi−1)∈Bi−1
Bi(b1 · · · bi−1). If Bi 6= ∅, go back to the beginning of

Step 2.

(c) If Bi = ∅, then stop and return QR(φ̂) = ∅.

3. We obtain

QR(φ̂) =
{(
qb11 , q

b1b2
2 , . . . , qb1b2···bnn

)
: b ∈ Bn

}
.

Algorithm 2 computes the set of all admissible Q ∈ QR(φ̂). In the description of the al-

gorithm, they are indexed by the bit vectors b ∈ Bn. The algorithm is constructive and guaran-

teed to compute all the admissible Q matrices. Projecting this set of admissible matrices onto

the impulse response of interest, we obtain a plug-in estimate of the identified set ISη(φ̂).

Algorithm 2 is more constructive than Algorithm 1, but it restricts the set of equality restric-

tions to be recursive. Algorithm 2 can be extended to a class of models involving non-recursive

identifying restrictions (e.g., examples in Sections III.2 and III.5) by incorporating steps that

solve a certain system of quadratic equations. Such an algorithm is rather involved to present,

so we do not include it in this paper. Algortihm 1 can be certainly applied to a general class of

models with nonrecursive identifying restrictions.

V Inference for locally identified SVARs

V.1 Bayesian inference

Standard Bayesian inference specifies a prior distribution for either the structural parameters

A (e.g., Baumeister and Hamilton, 2015), or the reduced-form parameters and rotation matrix

(φ,Q) as a reparametrization of A (e.g., Uhlig, 2005). When identification is local, the likelihood

for the joint parameter vector A can have multiple modes, which means that the posterior for
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the structural parameters and impulse responses may also have multiple modes. This leads to

computational challenges as commonly used Markov Chain Monte Carlo (MCMC) methods can

fail to adequately explore the posterior when it is multi-modal. For instance, in the standard

Metropolis-Hastings algorithm, the presence of multiple modes complicates the choice of proposal

distribution. If the proposal distribution in the Metropolis-Hastings algorithm does not support

some modes well, a lack of irreducibility of the Markov chain can lead it to fail to converge

to the posterior. Similarly, in the standard Gibbs sampler, the presence of multiple modes in

the posterior for A leads its support to be almost disconnected, which can then lead a break

down of irreducibility and the Gibbs sampler to fail to converge (see Example 10.7 in Robert

and Casella, 2004). By combining our constructive algorithms (either Algorithm 1 or Algorithm

2) for computing ISη(φ) with the posterior sampling algorithm for φ, we can overcome such

computational challenges.

We consider approximating the posterior for a scalar impulse response η(φ). Assume that

the reduced-form parameters yield nonempty QR(φ). Let ISη(φ) consist of M(φ) ≥ 1 distinct

points,

ISη(φ) =
{
η1(φ), η2(φ), . . . , ηM(φ)(φ)

}
, (46)

where we index the observationally equivalent impulse responses to satisfy η1(φ) < η2(φ) < · · · <
ηM(φ)(φ).

We follow the “agnostic” Bayesian approach of Uhlig (2005). The posterior for η is induced

by the posterior for φ, πφ|Y , which is supported on ΦR ≡ {φ : QR(φ) 6= ∅}, and Q has a uniform

prior supported only on the admissible set of rotation matrices QR(φ) given φ ∈ ΦR. Local

identification with the M(φ)-point identified set as in (46) can be obtained by projecting the

M(φ) admissible rotation matrices into the space of impulse responses if each of them leads to

distinct values of impulse response. Hence, the uniform weights assigned over these rotation

matrices imply that equal weights are assigned to the points in ISη(φ). As a result, for G ⊂ R,

the posterior for η can be expressed as

πη|Y (η ∈ G) ∝ Eφ|Y

M(φ)∑
m=1

1
{
ηm(φ) ∈ G

} . (47)

Since the reduced-form VAR likelihood is unimodal and concentrated around the maximum

likelihood estimate, MCMC algorithms will perform well when sampling from πφ|Y . Hence, the

posterior (47) can be approximated by combining a posterior sampler for φ with the algorithm

for computing
{
ηm(φ) : m = 1, . . . ,M(φ)

}
.
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V.2 Frequentist-valid inference

Bayesian inference as considered above can be sensitive to the choice of prior even in large

samples due to the lack of global identification. The standard Bayesian procedure (assuming

a unique prior for the structural parameters) specifies an allocation of the prior belief over

observationally equivalent impulse responses, ISη(φ), conditional on φ. This conditional belief

given φ is not updated by the data and, as a result, the shape and heights of the posterior around

the modes remain sensitive to its specification. In this section, we propose an asymptotically valid

frequentist inference procedure for the impulse response identified set that can draw inferential

statements which are robust to the choice of prior weights over the set of locally identified

parameter values.

Our approach is to project asymptotically valid frequentist confidence sets for the reduced-

form parameters φ through the identified set mapping ISη(φ). In standard set-identified models

where the identified set is a connected interval with positive width, the projection approach

to constructing the confidence set has appeared in the 2011 working paper version of Moon

and Schorfheide (2012), Norets and Tang (2014), Kline and Tamer (2016), among others. This

approach generally yields asymptotically valid (but conservative) confidence sets even when the

identified set consists of discrete points. However, a challenge unique to the discrete identified

set case is the computation of projection confidence sets for the impulse responses based on a

finite number of grid points or draws of φ from their confidence set. In what follows, we propose

methods to tackle this computational challenge.

Let CSφ,α be an asymptotically valid confidence set for φ with coverage probability α ∈ (0, 1).

If the maximum likelihood estimator φ̂ is
√
T -asymptotically normal, the likelihood contour set

CSφ,α is determined by the α-th quantiles of the χ2 distribution with the degree of freedom

dim(B)+n(n−1)/2. If the posterior for φ satisfies the Bernstein-von Mises property, that is the

posterior for
√
T (φ− φ̂) asymptotically coincides with the sampling distribution of the maximum

likelihood estimator, the Bayesian highest density posterior region with credibility α can be used

for CSφ,α. The MCMC confidence set procedure developed by Chen et al. (2018) can then be

used to obtain draws of φ from the highest density posterior region with credibility α. We follow

this procedure in our empirical application below. The inference procedures below allows for any

CSφ,α with asymptotically valid coverage, and takes draws or grids of φ from CSφ,α as given.

The projection confidence set is defined as

CSpη,α =
⋃

φ∈CSφ,α

ISη(φ). (48)
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We assume that CSφ,α is an asymptotically valid confidence set for φ in the sense that

lim
T→∞

pY T |φ0(φ0 ∈ CSφ,α) = α,

where pY T |φ0 is the sampling distribution of the data with sample size T and φ0 is the true value

of φ. Since {φ0 ∈ CSφ,α} implies {ISη(φ0) ⊂ CSpη,α}, CSpη,α (and any set including CSpη,α) is an

asymptotically-valid but potentially conservative confidence set for ISη(φ0),

lim
T→∞

pY T |φ0(ISη(φ0) ⊂ CSpη,α) ≥ α.

Let {φk : k = 1, . . . , K} be a finite number of Monte Carlo draws or grid points from

CSφ,α. A sample analogue of the projection confidence set,
⋃
k=1,...,K ISη(φk), is less useful in

approximating CSpη,α, because each ISη(φk) is a discrete set, whereas the underlying CSpη,α we

want to approximate can be a union of disconnected intervals with positive widths. In addition,

it is difficult to judge how many disconnected intervals ISpη,α has and where the possible gaps

lie within CSpη,α from a finite number of draws of ISη(φk), k = 1, . . . , K. Reporting the convex

hull of
⋃
k=1,...,K ISη(φk) is simple, but it can lead to a connected confidence set that obscures

the discrete feature of the identified set.

In what follows, we propose two different approaches for computing the projection confidence

set for an impulse response given a set of Monte Carlo draws for φ. We refer to the first as

switching-label projection confidence sets. It allows the labels indexing observationally equivalent

impulse responses to vary across the horizons, and produces confidence sets that can capture

multi-modality of the posterior distribution or the integrated likelihood for each impulse response

at each horizon. We refer to the second approach as fixed-label projection confidence set. It

maintains unique labels for observationally equivalent structural parameters across the impulse

responses and over horizons, i.e., the labels for observationally equivalent structural parameters

are defined in terms of the modes of the posterior for Q. This approach may produce confidence

sets that are wider than the switching-label projection confidence set, but it can better capture

and visualize dependence of the impulse responses over the horizons.

V.2.1 Switching-label projection confidence sets

The switching-label approach draws inference for each impulse response at each horizon one-by-

one. We hence set η(φ) to a particular scalar impulse response.

Maintaining the notation of the previous subsection, let ISη(φk) = {η1(φk), . . . , ηM(φk)(φk)},
where M(φk) is the number of distinct points in the identified set at φ = φk. We label these

points in increasing order, η1(φk) < · · · < ηM(φk)(φk). Let M̄ = maxkM(φk) be the largest
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cardinality of ISη(φk) among the draws of φk, k = 1, . . . , K. M̄ indicates the largest possible

number of disconnected intervals of CSpη,α. We view these intervals as clusters, each of which is

indexed by m̃ ∈ {1, . . . , M̄}. Let K̃ = |{φk : M(φk) = M̄}| be the number of φ draws that has

the maximal number of observationally equivalent impulse responses and define estimates of the

cluster-specific mean and variance by

µm̃ =
1

K̃

∑
φk:M(φk)=M̄

ηm̃(φk),

σ2
m̃ =

1

K̃ − 1

∑
φk:M(φk)=M̄

(
ηm̃(φk)− µm̃

)2
, (49)

for each m̃ = 1, . . . , M̄ .

For each φk, k = 1, . . . , K, we augment a binary vector of length M̄ , D(φk) =
(
Dm̃(φk) ∈

{0, 1} : m̃ = 1, . . . , M̄
)
, which indicates whether or not any one point of ISη(φk) can be associ-

ated with m̃-th cluster. The true D(φk) is not observed, so must be imputed by, for instance,

maximizing the Gaussian log-likelihood criterion in the following manner. Let ρφk be an increas-

ing injective map from {1, . . . ,M(φk)} to {1, . . . , M̄}, characterizing which cluster each ηm(φk),

m = 1, . . . ,M(φk), belongs to. Define

ρ̂φk ∈ arg min
ρφk

M(φk)∑
m=1

(
ηm(φk)− µρφk (m)

)2

σ2
ρφk (m)

, (50)

which minimizes the sum of variance-weighted squared distances to the cluster-specific means.

We then construct D(φk) = (Dm̃(φk) : m̃ = 1, . . . , M̄) ∈ {0, 1}M̄ from the indicators for whether

ρ̂φk maps any m ∈ {1, . . . ,M(φk)} to m̃, i.e., Dm̃(φk) = 1{∃ m s.t. ρφk(m) = m̃}. We then

construct an interval for each cluster m̃ ∈ {1, . . . , M̄} by

Cm̃ =

[
min

φk:Dm̃(φk)=1
ηρ̂−1

φk
(m̃)(φk), max

φk:Dm̃(φk)=1
ηρ̂−1

φk
(m̃)(φk)

]
. (51)

An approximation of the projection confidence set is then formed by taking the union of Cm̃:

ĈS
p

η,α ≡
M̄⋃
m̃=1

Cm̃. (52)

Note ĈS
p

η,α obtained in this way includes all the ISη(φk), k = 1, . . . , K, and at the same time,

can yield a collection of disconnected intervals. Moreover, if the maximum likelihood estimator
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for φ is consistent for φ0, ISη(φ) is a continuous correspondence at φ0 and M(φ) is constant in

an open neighborhood of φ0, it can be shown that ĈS
p

η,α converges to ISη(φ0) in the Hausdorff

metric. Hence, ĈS
p

η,α can consistently uncover the true identified set consisting of potentially

multiple points.

We construct ĈS
p

η,α separately for each impulse response at each horizon. Hence, the labeling

of the clusters m̃ = 1, . . . , M̄ defined for one impulse response does not correspond to the labeling

of the clusters defined for other impulse responses or horizons. For example, a particular impulse

response function labeled as m̃ = 1 in one horizon can be labeled as m̃ = 2 in another horizon.

We expect that switching-label projection confidence sets can visualize well the multi-modality

of the marginal posterior for each impulse response.

V.2.2 Fixed-label projection confidence sets

In contrast to switching-label projection confidence sets, fixed-label projection confidence sets

maintain fixed-labeling across impulse responses and over time horizons. For example, an impulse

response function labeled as m̃ = 1 at one horizon is labeled as m̃ = 1 at other horizons.

To implement this procedure, we need to anchor the labels to a particular impulse response,

say, the impulse response of i∗-th variable to j∗-th structural shock at a particular horizon h = h∗,

denoted hereafter by η∗(φ, qj∗) ≡ e′i∗Ch∗(φ)qj∗ . Given a Monte Carlo draw of the reduced-form

parameters, φk, k = 1, . . . , K, from CSφ,α, let qj∗,m(φk), m = 1, . . . ,M(φk) be observationally

equivalent qj∗ vectors labeled according to the ordering of η∗
(
φ, qj∗

)
, i.e., η∗

(
φk, qj∗,1(φk)

)
<

η∗
(
φk, qj∗,2(φk)

)
< · · · < η∗

(
φk, qj∗,M(φk)(φk)

)
. Similarly to the labeling procedure shown in Eq.

(50), we assign cluster identifier m̃ = 1, . . . , M̄ to qj∗,m(φk) by constructing ρ̂φk an increasing

injective map from {1, . . . ,M(φk)} to {1, . . . , M̄} ,

ρ̂φk ∈ arg min
ρφk

M(φk)∑
m=1

(
η∗(φk, qj∗,m)− µρφk (m)

)2

σ2
ρφk (m)

,

where µm̃ = 1
K̃

∑
φk:M(φk)=M̄ η∗(φk, qj∗,m̃) and σ2

m̃ = 1
K̃−1

∑
φk:M(φk)=M̄

(
η∗(φk, qj∗,m̃) − µm̃

)2
. We

then construct D(φk) in the same way as the switching-label projection confidence set.

For each impulse response η(φ, qj∗) = e′iCh(φ)qj∗ , i = 1, . . . , n, and h = 0, 1, . . . , we construct

Cm̃ =

[
min

φk:Dm̃(φk)=1
η(φk, qj∗,ρ̂−1

φk
(m̃)), max

φk:Dm̃(φk)=1
η(φk, qj∗,ρ̂−1

φk
(m̃))

]
and form confidence sets by taking the union over m̃ as in Eq. (52).

In contrast to the switching-label procedure, the fixed-label projection confidence sets keep
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the labeling of the observationally equivalent impulse responses ρ̂φk(m) fixed over variables

i = 1, . . . , n and different horizons h = 0, 1, . . . . If the impulse response η∗(φ, qj∗) chosen to

anchor the labels can tie the observationally equivalent impulse responses to different economic

models or hypotheses, the labels can be interpreted as indexing the underlying economic model

or hypothesis and kept invariant throughout the impulse response analysis. The fixed-label pro-

jection confidence set approach is suitable in such a case, and allows us to track and compare

the observationally equivalent impulse response functions across different models.

V.2.3 Robust Bayesian interpretation

If we obtain {φk : k = 1, . . . , K} as draws from the credible region of the posterior distribution

for φ, ĈS
p

η,α can be seen as an approximation of the set Cη,α satisfying

πφ|Y
(
ISη(φ) ⊂ Cη,α

)
≥ α.

In terms of the robust Bayesian procedure proposed in Giacomini and Kitagawa (2021), Cη,α

can be interpreted as a robust credible region with credibility α; a set of η on which a posterior

distribution for η assigns probability at least α irrespective of the choice of the unrevisable part

of the prior πQ|φ. Our construction of the robust credible region can be conservative and is not

guaranteed to provide the shortest one. We leave the construction of the shortest robust credible

region for future research.

This link to robust Bayes inference also suggests that the range of posterior probabilities

(lower and upper probabilities) spanned by arbitrary conditional priors for Q given φ can be

computed straightforwardly if we can draw φ from the posterior. Let {φ` : ` = 1, . . . , L} be

Monte Carlo draws from πφ|Y and H0 ⊂ R be a hypothesis of interest. By applying Corollary

A.1 of Giacomini and Kitagawa (2021), the range of posterior probabilities for {η ∈ H0} is given

by the convex interval:

.πη|Y (H0) ∈
[
πη|Y ∗(H0), π∗η|Y (H0)

]
≡
[
πφ|Y

(
ISη(φ) ⊂ H0

)
, πφ|Y

(
ISη(φ) ∩H0 6= ∅

)]
(53)

Since the algorithms given in Section IV exhaust all the locally identified parameter values in

ISη(φ), we can approximate the lower and upper bounds of the posterior probabilities in Eq.

(53) for each hypothesis of interest by the Monte Carlo frequencies for
{
ISη(φ) ⊂ A

}
and{

ISη(φ) ∩ A 6= ∅
}

, respectively,

[
π̂η|Y ∗(H0), π̂∗η|Y (H0)

]
≡

[
1

L

L∑
`=1

1
{
ISη(φ`) ⊂ H0

}
,

1

L

L∑
`=1

1
{
ISη(φ`) ∩H0 6= ∅

}]
.
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For a scalar impulse response, it is also straightforward to compute the range of posterior

means. Let η(φ) = min
{
η ∈ ISη(φ)

}
and η̄(φ) = max

{
η ∈ ISη(φ)

}
. Theorem 2 in Giacomini

and Kitagawa (2021) shows that the range of posterior means is given by the connected interval[
Eφ|Y

(
η(φ)

)
, Eφ|Y

(
η̄(φ)

)]
, which can be approximated by Monte Carlo analogues based on draws

{φ` : ` = 1, . . . , L} from πφ|Y .

VI Empirical application

We illustrate how our approach works with an empirical application to the non-recursive New-

Keynesian SVAR shown in Section III.2. We consider the small scale DSGE model presented in

Eq. (27), which has the SVAR representation with sign normalizations and the zero restrictions

Eq. (28). The vector of observables is inflation as measured by the GDP deflator (πt), real GDP

per capita as a deviation from a linear trend (xt) and the federal funds rate (it).
16 The data are

quarterly from 1965:1 to 2006:1.

As discussed in Section III.2, the imposed restrictions deliver local identification and, given

the reduced form parameters, they can yield up to two admissible matrices, Q1 and Q2. To

compute them, we apply Algorithm 1 at every draw of φ from its posterior, using the Matlab

command vpasolve to solve the system of quadratic equations.

We specify the Jeffreys’ prior for the reduced-form parameters. Its density function is pro-

portional to |Σ|− 3+1
2 . We draw from the posterior 2,000 times and, considering uniquely the

zero restrictions in Eq. (28), obtain 2,000 realizations of QR(φ̂), each of which is nonempty and

consists of two orthogonal matrices Q1 and Q2. We label them by Q1 and Q2 according to the

ordering of the contemporaneous inflation impulse response.

Figure 4 reports the impulse response to a contractionary monetary policy shock for the

output gap (left panel) and inflation (right panel). It shows the posterior means and the highest

posterior density regions with credibility 90% that would be obtained if the conditional prior

for Q given φ assigned all probability mass to either Q1 or Q2. That is, reporting one of the

inference outputs corresponds to the Bayesian approach that focuses only on one of the posterior

modes, ignoring the other.17

The inference result based on Q1 shows evidence for both price and output puzzles in the short

run. In the medium term, on the other hand, a contractionary monetary policy shock triggers

16The data are used in Aruoba and Schorfheide (2011) and downloaded from Frank Schorfheide’s website:
https://web.sas.upenn.edu/schorf/. For details on the construction of the series, see Appendix D from Granziera
et al. (2018) and Footnote 5 of Aruoba and Schorfheide (2011).

17Although not reported for saving space, the Bayesian credible intervals of Figure 4 are nearly identical to
those obtained by the frequentist bootstrap-after-bootstrap approach of Kilian (1998)
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a contraction of the output gap, leaving the price dynamics mostly unaffected. Inference based

on the other orthogonal matrix Q2, however, leads to a contrasting conclusion. The reaction

of prices to the monetary policy shock is significantly negative, while the output gap responds

positively and significantly, particularly in the medium-long run.

This example illustrates that different locally-identified observationally equivalent parameter

values can lead to strikingly different conclusions, and ignoring this distorts the information

contained in the data. A standard off-the-shelf econometric package could uncover just one of

the two results. For instance, Gretl and Eviews both return results in line with those obtained

through Q1. These packages rely on algorithms that maximize the likelihood starting from

some initial value without checking other local maxima. Thus, we recommend checking for the

existence of other local maxima and, if any exist, addressing how the conclusions change among

them by applying the methods proposed in this paper.

The inference approaches proposed in Section V produce the results reported in Figure 5.

The left panels plot results for the output gap while the right panels plot those for inflation.

The top panels show the draws of the impulse responses obtained based on the draws of φ from

its posterior. For each draw, we highlight the two observationally equivalent impulse responses

corresponding to admissible Q1 (blue) and Q2 (red) that are coherent with the zero restrictions in

Eq. (28). The labels of Q1 and Q2 in the plots of impulse responses for inflation are maintained

in the plots for output.

The middle and bottom panels present interval estimates based on the Bayesian and frequentist-

valid inference procedures of Sections V.1 and V.2. The Bayesian posterior (whose highest dens-

ity regions are reported both in the middle and bottom panels) is obtained by specifying the

uniform conditional prior for Q given φ, i.e., equal weights are assigned to Q1 and Q2 conditional

on φ. The highest posterior density regions are plotted with gradation in gray scale, where the

credibility levels vary over 90%, 75%, 50%, 25%, and 10%, from the lightest to darkest.18

The middle left panel of Figure 5 shows the marginal posterior distributions for the output

gap impulse response. These are unimodal up to h = 4, but become bimodal for longer horizons.

While there is evidence for output gap puzzle at the shortest horizons, the probability density

is tighter and higher for the negative impulse responses in the medium-long run: the darkest

gray region (highest 25% and 10% of the distribution) appears mostly for the negative part of

the responses. The middle right panel of Figure 5 shows the marginal posterior distribution for

the inflation impulse response. This is bimodal up to h = 10 and becomes unimodal at longer

horizons. Similarly to the output gap, for the horizons with bimodal distributions, the negative

impulse responses have tighter and higher densities than the positive ones.

18The highest posterior density regions are computed by slicing the posterior density approximated through
kernel smoothing of the posterior draws of the impulse responses.
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For both the output gap and inflation, we also present the frequentist-valid confidence inter-

vals (in dotted-circle lines) proposed in Section V.2. These are obtained by retaining 90% of the

draws of the reduced-form parameters with the highest value of the posterior density function.

The middle panels show the fixed-label projection confidence sets of Section V.2.2, while the

bottom panels show the switching-label projection confidence sets of Section V.2.1. In addition,

for both the output gap and inflation, we show the range of posterior means obtained by the

robust Bayesian approach (dotted lines). It is evident that the Bayesian approach gives the nar-

rowest interval estimates, and the highest posterior density regions well visualize the bi-modal

nature of the posterior distributions at some horizons. The wider confidence intervals of the

frequentist-valid approach reflect a couple of their features. First, they are agnostic over the

observationally equivalent parameters in the sense that they do not assign any weights over the

observationally equivalent impulse responses. Second, our proposed frequentist-valid procedures

rely on projecting the joint confidence intervals for the reduced-form parameters and do not

optimize the width of the interval estimates for impulse responses. Concerning the results of

the robust Bayesian approach, the bounds of the set of posterior means are in line with the two

modes of the posterior distributions.

A useful strategy for reducing the number of locally-identified admissible solutions is to

introduce sign restrictions. To refine the results reported in Figure 5, consider assuming no

price puzzle by restricting the inflation responses to be non-positive for (a) the contemporaneous

period, or (b) for the four quarters following a contractionary monetary policy shock. The results

are reported in Figures 6 and 7, respectively.

The results with the contemporaneous non-positivity restriction (Figure 6) appear similar to

those in Figure 5. A notable difference is in the upper bound of the frequentist-valid confidence

intervals for the inflation response, which now excludes the positive responses shown in Figure 5

(top-right panel). For the first few quarters, both switching- and fixed-label projection confidence

sets exclude a region between the two modes of the distribution.

Imposing the four sign restrictions (Figure 7), allows us to eliminate one of the admissible Q

matrices for most of the draws of φ. In the top panels of Figure 7, the impulse responses plotted

in black have a unique admissible Q under the imposed sign restrictions. Comparing Figure

5 and Figure 7 shows that in this latter the sign restrictions rule out the impulse responses

corresponding to Q1 matrices. The fixed-label and switching-label confidence intervals produce

similar results. The only notable difference appears in the response of output gap, where the

switching-label confidence intervals in the bottom-left panel have narrow “gaps” from h = 11 to

h = 18, while the fixed-label confidence intervals in the middle-left panel do not.
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Figure 4: Impulse response functions for the New-Keynesian non-recursive SVAR.

(a) Output gap to εmp
t : Single admissible

Qi.
(b) Inflation to εmp

t : Single admissible Qi.

Notes: In the left column we report the impulse responses for the output gap obtained as the Bayesian posterior means with the
upper and lower bounds of the highest posterior density regions with credibility 90% obtained through the admissible Q1 and Q2

matrices, considered separately. Similarly, in the right column we report the impulse responses for inflation.

VII Conclusion

This paper analyzes SVARs that attain local identification but may fail to attain global iden-

tification. We identify the class of identifying restrictions that delivers local but non-global

identification. This is characterized by non-homogeneous, non-recursive, and/or across-shock

equality restrictions. Similar situations might appear also in SVARs identified through hetero-

skedasticity, non-normality or through external instruments. Exploiting the geometric structure

of the identification problem, we propose a novel way to analyze and exhaustively compute the

observationally equivalent impulse responses. The novel analytical and computational insights

also contribute to the development of a posterior sampling algorithm for Bayesian inference and

projection-based frequentist-valid inference in the presence of locally identified parameters.

Since local identification appears in other macroeconometric frameworks, among which the

dynamic stochastic general equilibrium models, extending our computational and inference ap-

proaches to these models is a promising avenue for future research.
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Figure 5: New-Keynesian non-recursive SVAR with zero restrictions only

(a) Output gap to εmp
t : impulse re-

sponse draws

(b) Inflation to εmp
t : impulse response

draws

(c) Credible regions and fixed-label pro-

jection confidence sets

(d) Credible regions and fixed-label pro-

jection confidence sets.

(e) Credible regions and switching-label

projection confidence sets

(f) Credible regions and switching-label

projection confidence sets

Notes: The left column reports the output gap impulse responses and the right column reports the inflation impulse responses, both

to a contractionary monetary policy shock. The middle and bottom panels report the posterior highest density regions at 90%, 75%,

50%, 25% and 10% in gray scale. The upper and loser bounds of the frequentist confidence sets are plotted by the dotted-circle lines.

The dotted lines in the middle panels plot the set of posterior means.
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Figure 6: New-Keynesian non-recursive SVAR with zero restrictions and one sign restriction

(a) Output gap to εmp
t : impulse re-

sponse draws

(b) Inflation to εmp
t : impulse response

draws

(c) Credible regions and fixed-label pro-

jection confidence sets

(d) Credible regions and fixed-label pro-

jection confidence sets.

(e) Credible regions and switching-label

projection confidence sets

(f) Credible regions and switching-label

projection confidence sets

Notes: The left column reports the output gap impulse responses and the right column reports the inflation impulse responses, both

to a contractionary monetary policy shock. The middle and bottom panels report the posterior highest density regions at 90%, 75%,

50%, 25% and 10% in gray scale. The upper and loser bounds of the frequentist confidence sets are plotted by the dotted-circle lines.

The dotted lines in the middle panels plot the set of posterior means.
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Figure 7: New-Keynesian non-recursive SVAR with zero and additional four sign restrictions

(a) Output gap to εmp
t : impulse re-

sponse draws

(b) Inflation to εmp
t : impulse response

draws

(c) Credible regions and fixed-label pro-

jection confidence sets

(d) Credible regions and fixed-label pro-

jection confidence sets.

(e) Credible regions and switching-label

projection confidence sets

(f) Credible regions and switching-label

projection confidence sets

Notes: The left column reports the output gap impulse responses and the right column reports the inflation impulse responses, both

to a contractionary monetary policy shock. The middle and bottom panels report the posterior highest density regions at 90%, 75%,

50%, 25% and 10% in gray scale. The upper and loser bounds of the frequentist confidence sets are plotted by the dotted-circle lines.

The dotted lines in the middle panels plot the set of posterior means.
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A Appendix: Some analytical results on the geometry of

identification

Let the data generating process be the bivariate VAR defined in Section II.5 with the identifying
restriction

(A0)−1
[1,1] = c ⇐⇒ (e′1Σtr) q1 = c (54)

where c > 0 is a known (positive) scalar and e1 is the first column of the (2× 2) identity matrix.
The non-homogeneous restriction in Eq. (54) affects the orthogonal matrix Q as σ′1 q1 = c, with

σ1 denoting the first column of Σ ′tr =

(
σ1,1 σ2,1

0 σ2,2

)
.

The vector q1 must satisfy the two equations{
σ′1 q1 = c

q′1 q1 = 1

By simple algebra, the two solutions are

q
(1)
1 =


c/σ1,1

+

√
σ2
1,1−c2

σ2
1,1

 and q
(2)
1 =


c/σ1,1

−
√

σ2
1,1−c2

σ2
1,1

 . (55)

These two possible solutions are represented in Figure 1. If (σ2
1,1 < c2), the straight (vertical)

line does not intersect the unit circle, and no real solution is admissible. The SVAR, although
identified, does not admit any real solution given the reduced-form parameters φ. If, instead,
(σ2

1,1 = c2), i.e. the vertical red line is tangent to the unit circle, we continue to have global
identification, although the imposed restriction is not coherent with those derived by RWZ. In
all other situations, there will be two solutions that, a priori, can be admissible despite the sign
normalization restriction. This is the case depicted in Figure 1.

Concerning the sign normalization restriction, for the first equation, the definition in Eq.

(6) reduces to q′1 σ̃1 ≥ 0, where σ̃1 is the first column of Σ−1
tr = 1/(σ1,1σ2,2)

(
σ2,2 0

−σ2,1 σ1,1

)
.

Through elementary algebra, we obtain that

q′1 σ̃1 ≥ 0 ⇐⇒ q1,1

σ1,1

≥ q1,2σ2,1

σ1,1σ2,2

(56)

where q1,1 and q1,2 are the two generic elements of q1, i.e. q1 = (q1,1 , q1,2)′. Suppose, first, that
from the data we have σ2,1 < 0. In this case, if we substitute in the values of q1,1 and q1,2

obtained for q
(1)
1 in the left-hand side of Eq. (55), the sign normalization condition for the first
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equation becomes

c

σ2
1,1

≥ σ2,1

σ1,1σ2,2

√
σ2

1,1 − c2

σ2
1,1

(57)

As the left-hand side is always positive and the right-hand side always negative, this is always

satisfied. If, instead, we substitute the values q1,1 and q1,2 obtained for q
(2)
1 in the right-hand side

of Eq. (55), the sign normalization condition for the first equation becomes

c

σ2
1,1

≥ − σ2,1

σ1,1σ2,2

√
σ2

1,1 − c2

σ2
1,1

(58)

that is also satisfied when c2 ≥ 1
2

σ2
1,1σ

2
2,1

σ2
2,2

. If this is the case, both solutions q
(1)
1 and q

(2)
1 are

admissible, leading to local identification. The situation is very similar when σ2,1 > 0.
If, instead, c = 0 as in the standard RWZ setup, the two q1 vectors in Eq. (55) become

q
(1)
1 = (0 , 1)′ and q

(2)
1 = (0 , −1)′. If, as before, we suppose σ2,1 < 0, the sign normalization for

q
(1)
1 in Eq. (57) reduces to 0 ≥ σ2,1/(σ1,1σ2,2), which is always true. The sign normalization for

q
(2)
1 in Eq. (58) is 0 ≥ −σ2,1/(σ1,1σ2,2) which, in contrast, is never true. The case where σ2,1 > 0,

is exactly the same, but with inverted results. One of the two solutions, thus, will be always
ruled out by the sign normalization, and global identification is guaranteed.

The second column of Q, the unit-length vector q2, although not restricted, can be pinned
down through the its orthogonality to q1{

q′2 q1 = 0

q′2 q2 = 1.
(59)

However, given that there are two admissible vectors q
(1)
1 and q

(2)
1 , the system Eq. (59) must be

solved for both. This can be done with simple algebra, yielding the two solutions

q
(1)
2 =

 +

√
(σ2

1,1−c2)(2c2−σ2
1,1)

c4

−
√

2c2−σ2
1,1

c2

 and q
(1)
2 =

 −
√

(σ2
1,1−c2)(2c2−σ2

1,1)

c4

+

√
2c2−σ2

1,1

c2

 (60)

One of the two, precisely which depends on the reduced-form parameters, will be eliminated by
the sign normalization restriction. This case is represented in the left panel of Figure 2, together

with q
(1)
1 .

The other possibility, represented in the right panel of Figure 2, is when we solve the system

52



conditional on q
(2)
1 , obtaining

q
(2)
2 =

 +

√
(σ2

1,1−c2)(2c2−σ2
1,1)

c4

+

√
2c2−σ2

1,1

c2

 and q
(2)
2 =

 −
√

(σ2
1,1−c2)(2c2−σ2

1,1)

c4

−
√

2c2−σ2
1,1

c2

 (61)

where, as before, one of the two solutions is ruled out by the sign normalization restriction.

B Appendix: Further results on local identification

In this appendix we provide a new result on local identification for SVAR models. We consider
a set of equality restrictions F(φ,Q) satisfying the recursive identification scheme in Definition
3.

Proposition 5 (RWZ sufficient condition for checking local identification). Consider an SVAR
with recursive identifying restrictions of the form Eq. (13). The SVAR is locally identified at
A = (A0, A+) ∈ AR if, for i = 1, . . . , n,

Mi(Q) ≡

 Fii(φ)
(n−i)×n

· Q
n×n(

Ii
i×i

0
i×(n−i)

)
 (62)

is of rank n.

Proof. See Appendix C.

Proposition 5 reconciles our condition for local identification of recursive SVARs with the
general rank condition for global identification provided by RWZ (their Theorem 1). In par-
ticular, under a recursive identification scheme, the RWZ condition for global identification
developed for the case of homogeneous restrictions implies local identification, even though we
allow non-homogeneous and across shock restrictions.

C Appendix: Proofs

This appendix collects proofs for all propositions reported in this paper. We make use of the
following matrices. Kn is the n2 × n2 commutation matrix as defined in Magnus and Neudecker
(2007) and Nn = 1/2(In2 + Kn). Let D̃n be the n2 × n(n − 1)/2 full-column rank matrix D̃n

defined in Magnus (1988) such that for any n(n − 1)/2-dimensional vector v,D̃n v ≡ vec (H)
holds, where H is an n × n skew-symmetric matrix (H = −H ′). See Appendix D for explicit
constructions of D̃n for n = 2, 3, 4.
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Proof of Proposition 2: necessary and sufficient condition for local

identification

Fixing φ, a matrix Q satisfies the identifying restrictions if:

F(φ) vec Q = c (63)

Q′Q = In (64)

which is a system of quadratic equations. Eq. (63) consists of f = f1 + · · · + fn linear and
non-homogeneous equations. Eq. (64) is a set of quadratic equations stating that the columns
of Q, the vectors (q1, . . . , qn), must be orthogonal and of unit length.

The system can be solved locally as:

F(φ) vec dQ = 0

dQ′Q+Q′dQ = 0,

which, using the Kronecker product and its properties, becomes

F(φ) vec dQ = 0[
(Q′ ⊗ In) + (In ⊗Q′)

]
vec dQ = 0.

Moreover, using the commutation matrix Kn we have

F(φ) vec dQ = 0[
Kn(In ⊗Q′) + (In ⊗Q′)

]
vec dQ = 0,

and recalling Nn = 1/2(In2 +Kn), we obtain

F(φ) vec dQ = 0

2Nn(In ⊗Q′)vec dQ = 0.

The Jacobian matrix can, thus, be defined as

J(Q) =

(
F(φ)

2Nn(In ⊗Q′)

)
(65)

Following Magnus and Neudecker (2007), a sufficient condition for local identification of Q at
the point Q = Q0 is that J(Q0) has full column rank. If there exists an admissible neighborhood
of Q0 such that J(Q0) is of full column rank, this condition becomes necessary too.

The condition regarding the rank of Eq. (65) can be further simplified. Given that Q is
invertible (it is orthogonal), the rank of J(Q) is unchanged if we post-multiply Eq. (65) by
(In ⊗ Q−1′) = In ⊗ Q. Checking whether J(Q) is of full column rank, thus, corresponds to
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checking whether the system of equations

F(φ)(In ⊗Q)x = 0
2Nn x = 0

admits the null vector x as the unique solution. However, as in Magnus (1988), the second
equation, can be solved as x = D̃nz, with z a n(n− 1)/2× 1 vector. Substituting this solution
into the first equation leads to the rank condition in Eq. (20) of Proposition 2. Since D̃n is a
matrix of full column rank n(n− 1)/2, a necessary condition for the rank condition Eq. (20) is
that the number of rows of F (φ), f , is greater than or equal to n(n− 1)/2. This completes the
proof of (i).

To show claim (ii), let F̄ be the set of matrices of dimension f × n(n− 1)/2 and denote by
X a generic element of F̄ . Viewing the space spanning the j -th column of X as Vj in Lemma
3 of RWZ, and defining the set S in Lemma 3 of RWZ to be the set of matrices with deficient
rank S = {X ∈ F̄ : rank(X) < n(n− 1)/2}, Lemma 3 in RWZ shows that either S = F̄ , or S is
a set of measure zero in F̄ .

Define
F ≡ {F(φ)(In ⊗Q)D̃n : F(φ)vec (Q) = c, (φ,Q) ∈ Φ×O(n)}. (66)

Since F ⊂ F̄ , S∩F is either equal to F or is a set of measure zero in F . Let g : A → Φ×O(n) be
the function that reparametrizes the structural parameters A to (φ,Q), and h : (Φ×O(n))→ F̄

be the function that maps (φ,Q) to

[
F(φ)(In ⊗ Q)D̃n

]
∈ F . By applying Lemma 2 in RWZ

(proved in Spivak, 1965) to the chain of inverse maps h−1 and g−1, we conclude that either
(g−1 ◦ h−1)(F) = AR or it is of measure zero in AR. The conclusion then follows by noting
(g−1 ◦ h−1)(F) = Kc. �

Proof of Corollary 1: necessary and sufficient condition for local iden-

tification of a subset of shocks

Fixing φ, a matrix Q =
[
Q1 |Q2

]
satisfies the identifying restrictions if:

F11(φ) q1 = c1

F22(φ) q2 = c2

Q′1Q1 = Is
Q′2Q2 = In−s
Q′1Q2 = 0s×(n−s)

which is a system of quadratic equations, with q1 = vec Q1 and q2 = vec Q2. Similarly to the
steps followed in the proof of Proposition 2, differentiating and using a bit of algebra, we obtain
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the system of equations
F11(φ) 0

2Nns (In ⊗Q′1)

Ks(n−s) (Is ⊗Q′2) (I(n−s) ⊗Q′1)

0 F11(φ)

0 2Nn(n−s) (In ⊗Q′2)


(
dq1

dq2

)
= 0. (67)

However, as the interest is only on q1, the part of the Jacobian that matters is

J1(Q1) =

(
F11(φ)

2Nns (In ⊗Q′1)

)

that, in order for q1 to be locally identified, must have full column rank equal to ns. �

Proof of Proposition 3: local identification in recursive SVARs

Assume that the rank condition of Proposition 2 holds at parameter point A = (A0, A+) ∈ AR,
and let φ be the corresponding reduced-form parameter. Since local identification holds at A,
there is no observationally equivalent parameter point in a neighborhood of A. In other words,
no infinitesimal rotation of the orthogonal matrix Q generates observationally equivalent and
admissible structural parameters in the neighborhood of A. Any infinitesimal rotation can be
represented by (In+H), where H is an n×n skew-symmetric matrix (see Lucchetti 2006) whose
i -th column we denote by hi.

Projecting on q1, an admissible structural parameter lying in a local neighborhood of A has
to satisfy

F11(φ)

[
Q (In +H)

]
e1 = c1 =⇒ F11(φ)q1 + F11QHe1 = c1 =⇒ F11(φ)Qh1 = 0,

where ei is the i -th column of the identity matrix In, and the last equation follows from the
fact that F11(φ)q1 = c1. The system F11(φ)Qh1 = 0 is characterized by n− 1 equations and an
n-dimensional vector of unknowns h1. The first element of h1 is zero by definition (the elements
on the main diagonal of a skew-symmetric matrix are equal to zero). Hence, we have(

F11(φ)Q

e′1

)
h1 = 0. (68)

This linear equation system has h1 = 0 as its unique solution if and only if

(
F11(φ)Q

e′1

)
is

of rank n, or, equivalently, F11(φ)(q2 . . . qn) is of full rank (equal to n − 1). Since the model
is locally identified by assumption, h1 = 0 has to be the only solution of Eq. (68). Hence,
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rank

(
F11(φ)(q2 . . . qn)

)
= n− 1 must hold, implying that rank(F11(φ)) = n− 1.

For q2, given a q1 vector solving F11(φ)q1 = 0, we have the following system:{
F21(φ)q1 + F22(φ)q2 = c2

q′1q2 = 0,

Considering again an infinitesimal rotation{
F21(φ)q1 + F22(φ)Q(In +H)e2 = c2

q′1Q(In +H)e2 = 0
=⇒

{
F21(φ)q1 + F22(φ)Qe2 + F22(φ)Qh2 = c2

q′1Qh2 = 0
,

but, given the restrictions, F21(φ)q1 + F22(φ)q2 = c2 =⇒ F22(φ)Qh2 = 0, which allows the
system to be written as{

F22(φ)Qh2 = 0

q′1Qh2 = 0
=⇒

(
F22(φ)Q

q′1Q

)
h2 = 0. (69)

Similarly to the argument for h1 above, and noting that the first two entries of h2 are zero, we
can represent the linear equations as

F22(φ)Q

q′1Q

e′2
e′1

h2 = 0.

Since q′1Q = e′1, the last equation in this system is redundant. Thus, in order for h2 = 0 to be

the unique solution,

(
F22(φ)

q′1

)
must have full raw rank (equal to n− 1).

To obtain the sequential rank conditions of Proposition 3, we repeat this argument further
for i = 3, 4

Next, we show the reverse implication. For each column of Q, we consider a system of
equations of the form, {

F̃ii(φ) qi = (c′i, 0, . . . , 0)′

q′i qi = 1,

sequentially for i = 1, . . . , n, where F̃ii(φ) is as defined in the statement of Proposition 3. If

rank

(
F̃ii(φ)

)
= n − 1, the system of equations represents the intersection between a straight

line and the unit circle in Rn, which has at most two distinct solutions. Hence, any admissible
Q matrices are isolated points, so the SVAR is locally identified. The rank condition of Eq. (20)
follows by Proposition 2. �
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Proof of Proposition 4: number of admissible Q’s

We split the proof into five cases based on the type of equality restrictions. The first three cases
are recursive identification schemes. The remaining two are non-recursive.

We first consider cases with recursive restrictions. That is, the variables are ordered to satisfy

f1 ≥ f2 ≥ . . . ≥ fn. (70)

Case 1: Recursive and homogeneous restrictions but no restrictions across shocks

Under recursive restrictions, we have shown in Proposition 3 that the rank condition of Eq.
(20) is equivalent to the sequential rank conditions of Eq. (24). If the sign normalization restric-
tions select either the admissible qi or −qi at every i = 1, . . . , n, the sequential determination
procedure of RWZ pins down an admissible Q matrix. The sequential rank conditions do not
guarantee that the sign normalizations select a unique Q matrix, but the number of solutions
for each qi is at most two. Hence, the number of admissible Q matrices is at most equal to the
number of distinct selections of two vectors {qi,−qi} over i = 1, . . . , n, which amounts to 2n.

Case 2: Recursive non-homogeneous restrictions but no restrictions across shocks

Under recursive and non-homogeneous restrictions, consider solving for the admissible Q
matrices column by column by exploiting the sequential rank conditions Eq. (24). For the first
column q1, we have {

F11(φ) q1 = c1

q′1 q1 = 1
(71)

Given that F11(φ) has full row rank, the set of solutions of q1 for the first equations can be
spanned by any n× 1 vector t1 ∈ R,

q1 = F11(φ)′
(
F11(φ)F11(φ)′

)−1

c1 +

(
In − F11(φ)′

(
F11(φ)F11(φ)′

)−1

F11(φ)

)
t1

≡ d1 +B1 t1 (72)

Since the (n × n) matrix B1 has rank n − f1 = 1, it can be decomposed as B1 = α1β
′
1, where

α1 is a basis for span (B1), i.e. the column space of B1, and both α1 and β1 are non-zero n× 1
vectors. We can hence write

q1 = d1 + α1 z1 (73)

with z1 = β′1 t1, being any scalar. The second (quadratic) equation in system Eq. (71) becomes

q′1q1 = (d1 + α1 z1)′ (d1 + α1 z1)

= d′1d1 + 2d′1α1z1 + α′1α1z
2
1 = 1

⇒ λ1 + 2ξ1z1 + ω1z
2
1 = 0

where λ1 = d′1d1− 1, ξ1 = d′1α1 and ω1 = α′1α1 are all functions of the reduced form parameters.
There are hence three possibilities:

1. If ξ2
1 − λ1ω1 > 0, we have two real solutions. It may be that none, one, or both satisfy the

sign normalization restriction for q1.
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2. If ξ2
1 − λ1ω1 = 0, we have a single real solution. It may or may not satisfy the sign

normalization restriciton.

3. If ξ2
1 − λ1ω1 < 0, we have no real solution, implying that φ is not compatible with the

imposed restrictions.

In summary, at most there are two admissible q1’s. Denote them by q
(1)
1 and q

(2)
1 (allowing

q
(1)
1 = q

(2)
1 ).

Given an admissible q1 ∈ {q(1)
1 , q

(2)
1 }, consider obtaining an admissible second column vector

q2 by solving 
F22(φ) q2 = c2

q′1 q2 = 0

q′2 q2 = 1

(74)

with rank ((F22(φ)′, q1)) = n− 1. This system can be transformed as
F22(φ) q2 = c2

q′1 q2 = 0

q′2 q2 = 1

=⇒


(
F22(φ)

q′1

)
q2 =

(
c2

0

)
q′2 q2 = 1

=⇒

{
F̃22(φ) q2 = c̃2

q′2 q2 = 1
(75)

where F̃22(φ) = (F ′22(φ), q1)′ and c̃2 = (c′2, 0)′. Given the assumption rank (F̃22(φ)) = n− 1, Eq.
(75) can be solved in the same way as the system for q1. We can hence obtain at most two

admissible q2 vectors for each of q1 = q
(1)
1 and q1 = q

(2)
1 . So far there are at most four admissible

vectors for the first two columns of Q.
We repeat this argument for i = 3, . . . , n. Given that there are at most 2i−1 admissible

constructions of (q1, . . . , qi−1), and at each admissible (q1, . . . , qi−1), we solve for qi{
F̃ii(φ) qi = c̃i

q′i qi = 1,
(76)

where
F̃ii(φ) = (Fii(φ)′, q1, . . . , qi−1)′ and c̃i = (c′i, 0, . . . , 0).

Again, finding an admissible qi given (q1, . . . , qi−1) boils down to solving a quadratic equation, so
there are at most two solutions for qi, implying that there are at most 2i admissible constructions
of (q1, . . . , qi−1, qi). At i = n, we obtain at most 2n admissible Q matrices.

Case 3: Recursive non-homogeneous restrictions and restrictions across shocks

The recursive restrictions imply that F(φ) is lower block-triangular, i.e. Fij = 0 for j > i,
and fi = n− i for all i = 1, . . . , n. The case where i = 1 is identical to the initial step in Case 2
above, so we have at most two admissible q1 vectors. For i > 1 we exploit the sequential structure
of the restrictions and obtain each admissible qi sequentially given (q1, . . . , qi−1) obtained in the
preceding steps. The only difference with respect to case 2 is that, once (q1, . . . , qi−1) is given,
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the system of equations in Eq. (76), will be characterized by

F̃ii(φ) = (F ′ii(φ), q1, . . . , qi−1)′, and c̃i = ((ci−Fi1(φ)q1−· · ·−Fi,i−1(φ)qi−1)′, 0, . . . , 0)′. (77)

Repeating the argument of Case 2, we conclude there are at most 2n admissible Q ∈ O (n).

We now move to the cases with non-recursive identifying restrictions.

Case 4: Non-recursive restrictions and no restrictions across shocks

If f1 = n − 1, we can proceed as in Case 2 and globally or locally identify q1, depending
on the restrictions at hand. If, instead, f1 < n − 1, we can only identify the basis spanning a
subspace in Rn of dimension n− f1 containing q1. The system of equations characterizing q1 is
given by {

F11(φ) q1 = c1

q′1 q1 = 1.
(78)

Following the analysis of Case 2, we can represent an admissible q1 by q1 = d1 + α1z1, where
z1 = β′1 t1 ∈ Rn−f1 , α1 is a nonzero n× (n− f1) matrix, β1 is a nonzero (n− f1)× n matrix, and
t1 ∈ Rn. Given this representation of q1, the second (quadratic) equation in system Eq. (78)
becomes

q′1q1 = d′1d1 + 2d′1α1z1 + z′1α
′
1α1z1 = 1

⇒ λ1 + 2ξ′1z1 + z′1ω1z1 = 0,

where λ1 = d′1d1−1, ξ1 = α′1d1, and ω1 = α′1α1. The set of real roots of this quadratic equation in
z1, if nonempty, is a singleton or a hyper-ellipsoid in Rn−f1 with its radius given by the constant
term in the completion of squares (if nonnegative).

Assuming an admissible q1 exists, consider the equation system for q2,{
q2 = d2 + α2 z2

q′2 q2 = 1,
(79)

whose set of roots, if nonempty, is again a singleton or a n− f2-dimensional hyper-ellipsoid. In
addition, we have the following orthogonality restriction between q1 and q2,

q′1q2 = d′1d2 + d′1α2z2 + z′1α
′
1d2 + z′1α

′
1α2z2

≡ λ1,2 + ξ′1,2z2 + z′1ξ2,1 + z′1ω1,2z2 = 0.
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Enumerating these equations for all i = 1, . . . , n, we obtain the following system of equations:

z′1ω1z1 + 2ξ′1z1 + λ1 = 0

z′2ω2z2 + 2ξ′2z2 + λ2 = 0
...

z′nωnzn + 2ξ′nzn + λn = 0

z′1ω1,2z2 + ξ′1,2z2 + z′1ξ2,1 + λ1,2 = 0

z′1ω1,3z3 + ξ′1,3z3 + z′1ξ3,1 + λ1,3 = 0
...

z′n−1ωn−1,nzn + ξ′n−1,nzn + z′n−1ξn,n−1 + λn−1,n = 0.

(80)

The number of equations is n+ n(n− 1)/2 = n(n+ 1)/2. The number of unknowns, contained
in z1, z2, . . . , zn, is

(n− f1) + (n− f2) + . . .+ (n− fn) ≤ n2 − n(n− 1)/2 = n(n+ 1)/2, (81)

where the inquality follows by the order condition stated in Proposition 2,
∑n

i=1 fi ≥ n(n−1)/2.
Hence, we have a system of n(n+ 1)/2 equations with at most n(n+ 1)/2 unknowns. Moreover,
each one is a quadratic equation and, importantly, given the rank condition for local identification
is satisfied, each of the solutions has to be an isolated point. Bézout’s theorem gives that the
maximum number of solutions is the product of the polynomial degree of all the equations, so
the number of solutions is at most 2n(n+1)/2.

Case 5: Non-recursive and across-shocks restrictions

In this case analysis of identification requires considering all equations jointly. We will have
a system of equations of the form 

F(φ)vecQ = c

q′1 q1 = 1

q′2 q2 = 1
...

q′n qn = 1

q′1 q2 = 0
...

q′n−1 qn = 0.

(82)

This system consists of n2 equations with n2 unknowns (the elements in Q). The first n(n−1)/2
equations are linear and the latter n(n+ 1)/2 equations are all quadratic. By Bézout’s theorem,
the maximum number of solutions is 2n(n+1)/2.�
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Proof of Proposition 5: RWZ sufficient condition for checking local

identification

The result is a by-product of Proposition 3. As observed in Eq. (68), the first column q1 is

locally identified if and only if

(
F11(φ)Q

e′1

)
has full column rank equal to n. When moving to

the identification of q2, from the system Eq. (69), and recalling that the first two elements of h2

are zero, we have no admissible infinitesimal rotation (i.e. h2 = 0) if

rank

 F22(φ)
(n−2)×n

· Q
n×n(

I2
2×2

0
2×(n−2)

)
 = n.

Repeating this argument for the remaining of columns of Q, we obtain the proposition. �

D Appendix: The D̃n matrix

A skew-symmetric (square) matrix A satisfies A′ = −A. Let ṽ(A) be a vector containing the
n(n − 1)/2 essential elements of A. When A is skew-symmetric, it is possible to expand the
elements of ṽ(A) to obtain vecA. D̃n, thus, can be defined to be the n2 × n(n − 1/2) matrix
with the property that

D̃n ṽ(A) = vecA

for any skew symmetric n×n matrix A. For a formal definition and properties of D̃n, see Magnus
(1988). Here, we present D̃n for n = 2, n = 3 and n = 4:
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D̃2 =


0

1

−1

0

 , D̃3 =



0 0 0

1 0 0

0 1 0

−1 0 0

0 0 0

0 0 1

0 −1 0

0 0 −1

0 0 0


, D̃4 =



0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

−1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 −1 0 0 0 0

0 0 0 −1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 −1 0 0 0

0 0 0 0 −1 0

0 0 0 0 0 −1

0 0 0 0 0 0



,

where we have circled the elements selecting the last n− i columns, i = 1, . . . , n, of the Fii(φ)Q
matrix in the proof of Proposition 5.

Finally, as can be seen from D̃2, D̃3 and D̃4, the matrix D̃n is always of full column rank
n(n− 1)/2.
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