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Abstract

Income inequality estimators are biased in small samples, leading generally to an
underestimation. This aspect deserves particular attention when estimating in-
equality in small domains. After investigating the nature of the bias, we propose a
bias correction framework for a large class of inequality measures comprising Gini
Index, Generalized Entropy and Atkinson index families by accounting for complex
survey designs. The proposed methodology is based on Taylor’s expansions and
does not require any parametric assumption on income distribution, being very
flexible. Design-based performance evaluation of our proposal has been carried out
using data taken from the EU-SILC survey, showing a noticeable bias reduction for
all the measures. Lastly, a small area estimation exercise shows the risks of ignoring
prior bias correction in a basic area-level model, determining model misspecifica-
tion.

Keywords — Bias Correction, Complex Surveys, Income Inequality, Small Sample In-
ference

1 Introduction

Inequality estimators are known to be biased in small samples (Breunig and Hutchinson,
2008; Deltas, 2003). The bias may depend on the dispersion of the variable of interest
and, for some specific measures, also on the skewness of its distribution (Breunig, 2001).
This aspect deserves attention given that estimates of inequality measures are used for
comparisons across time and location. Neglecting such bias may bring out discrepancies
that, rather than being true inequality gaps, are completely due to not comparable sample
sizes or to different underlying distributions of the variable of interest (Breunig and
Hutchinson, 2008).

The problem of observations scarcity arises when dealing with inequality in specific
sub-populations, such as age-sex-race groups, as well as in case of inequality mapping at
great geographical levels of disaggregation. The interest in reliable economic inequality
estimates is growing due to the observed increment in the income gap and social exclusion
among regions and to their potential contribution to policies planning and regional studies

∗silvia.denicolo@unibo.it
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(Cavanaugh and Breau, 2018). In this context, the small area estimation is the main
field of application: consider that small area models specified at ”area” or ”domain” level
require the assumption of (approximate) unbiasedness of survey estimators. Avoiding
such an issue in case of inequality estimators may lead to model misspecification, resulting
in misleading inference.

When measuring economic inequality, disposable income is generally adopted as the
variable of interest. Income data are collected through household surveys with a complex
sampling design, involving stratification and selection of sampling units in more than one
stage. Thus, the sample selection process, together with ex-post treatment procedures
such as calibration and imputation, invariably introduces a complex correlation structure
in the data that has to be taken into account. This makes the development of a theoret-
ically valid bias correction challenging, in contrast to classical iid settings. Furthermore,
the bias issue is even exacerbated in income data applications, traditionally affected by
extreme values (Van Kerm, 2007), since inequality measures are known to be unrobust
to outliers (Cowell and Victoria-Feser, 1996). This aspect depends clearly on the type of
measure we are dealing with and it becomes even more cumbersome to handle in case of
small samples.

The inequality concept does not have a unique definition but diverse ones, spanning
from objective to subjective viewpoints. The statistical indicators used for inequality
measurement are several, incorporating diverse properties and sensitivities to income
transfers. In light of this, the concurrent estimation of various indicators, alternative to
the most common Gini index, may enable a wider picture on inequality phenomenon.

Concerning the Gini index, a large body of literature faces the small sample bias is-
sue, such as Jasso (1979), Lerman and Yitzhaki (1989), Deltas (2003), Davidson (2009),
Van Ourti and Clarke (2011) in iid samples. The application context is large, spanning
from economic inequality to crime (Mohler et al., 2019) or scholar citations concentration
(Kim et al., 2020). Fabrizi and Trivisano (2016) tackle it in the complex survey case and
their correction is indeed considered within a small area estimation framework. However,
concerning alternative measures such as Atkinson Indexes and the Generalized Entropy
(GE) measures, the literature on bias is very scarce even in the iid case: some contribu-
tions are provided by Giles (2005), Schluter and van Garderen (2009) and Breunig and
Hutchinson (2008) by adopting different methodological approaches of correction.

The aim of the paper is to investigate the nature of the bias and to propose a method-
ological framework for bias correction in the specific setting of finite populations and
complex sampling design. We consider a large set of measures, from the Gini index to
two parametric families of measures: the Atkinson and the Generalized Entropy family.
This may foster further studies to focus on alternative inequality measures and to provide
a concurrent estimation of diverse indicators in small domains. To our purpose, we take
advantage from the methodology based on Taylor’s expansions, we show that the same
analytical results can be obtained through other types of linearization, such as the one
proposed by Graf (2011). An advantage of our proposal is that any parametric assump-
tion on income distribution is not required, providing a very flexible framework. Our bias
correction proposal is evaluated via simulations showing a noticeable bias reduction for
all the measures and leading, in some cases, to approximately unbiased estimators. An
in-depth analysis of measure sensitivities confirms the great impact outliers have on the
magnitude of estimators bias and error.

The paper is organized as follows. The considered inequality measures are defined in
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Section 2, while the bias correction strategy is set out in Section 3 and the bias-correction
estimation steps are detailed in Section 4. A design-based simulation study involving the
European Survey of Income and Living Condition (EU-SILC) income data (Guio, 2005)
is provided in Section 5 to evaluate the magnitude of the bias and the efficacy of our
proposal. Lastly, a small area estimation exercise is carried out in Section 6, in order to
highlight the utility of our proposal in practice. Conclusions are drawn in Section 7.

2 Inequality Measures

The most famous inequality measure is, indeed, the Gini concentration index, employed
in social sciences for measuring concentration in the distribution of a positive random
variable. There are several equivalent definitions of Gini index (Ceriani and Verme,
2015), we will use the formulation of Sen (1997). Suppose we have a finite population
U of N(< ∞) elements labelled as {1, . . . , N}. Let yi be a characteristic of interest, in
our case income, for the i-th unit of the finite population, where yi ∈ R+, i = 1, . . . , N ,
and a sample siid of size niid is picked through simple random sampling. The Gini index
estimator is defined as

θG =
2

µ̂n2
iid

∑
i∈siid

niyi −
niid + 1

niid

,

with ni denoting the rank of i-th unit and µ̂ the sample mean.
However, the estimation of alternative measures, in addition to the Gini index, may

enable a more meaningful assessment of different aspects of economic inequality. Gini in-
dex does not allow the decomposition of inequality in within groups and between groups
components, moreover, it is positional (weakly) transfer sensitive, namely index vari-
ations induced by income transfers between individuals depend on the ranks of donor
and recipient. Lastly, it constitutes a stochastic dominance measure based on a partial
ordering of probability distributions: two very different distributions - one having more
inequality amongst the poor, the other amongst the rich can have the same index value.

When the distributional dominance fails, welfare-based measures, such as Atkinson
Indexes, may provide for a complete ranking among alternative distributions at the ex-
pense of more stringent assumptions as to how to represent social welfare (Bellu and
Liberati, 2006). Atkinson index has support [0,1] and is defined as

θA(ε) =

1− 1
µ̂

(
1

niid

∑
i∈siid y

1−ε
i

)1/(1−ε)

for ε ̸= 1

1− 1
µ̂

(∏
i∈siid yi

)1/niid for ε = 1.

The parameter ε expresses the level of inequality aversion: as ε increases, the index
becomes more sensitive to changes at the lower end of the income distribution.

Besides, an additive decomposable family of inequality measures is the Generalized
Entropy class. As opposed to the measures seen before, this class has the advantage to
be strongly transfer-sensitive, meaning that it reacts to transfers depending on donor and
recipient income levels. It is based on the concept of entropy which applied to income
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distributions has the meaning of deviations from perfect equality:

θGE(α) =


1

niidα(α−1)

∑
i∈siid

[(
yi
µ̂

)α

− 1
]

α ̸= 0, 1,

1
niid

∑
i∈siid

yi
µ̂
ln yi

µ̂
α → 1,

− 1
niid

∑
i∈siid ln

yi
µ̂

α → 0.

The parameter α sets the sensitivity of the index: a large α induces the index to be more
sensitive to the upper tail, and vice versa a small α to the lower tail. θGE(0) is the Mean
Log Deviation, while θGE(1) is the well known Theil index. Atkinson and Generalized
Entropy are two interrelated parametric families of measures, as a transformation of the
Atkinson Index is a member of the GE class:

θA(ε) = 1− [ε(ε− 1) · θGE(1− ε) + 1]1/(1−ε).

In this paper, we consider the estimation of both classes separately, since common param-
eter values used in one family do not correspond deterministically to parameter values
commonly used for the other family. Lastly, we consider as inequality measure the co-
efficient of variation (CV), which is linked with a member of the GE family, namely
θGE(2) =CV2/2. Its square has been used in some income distribution analyses, includ-
ing OECD (2011), even though it seems to be very sensitive to top outliers (Atkinson,
2015).

3 Bias Correction Proposal

The bias of inequality estimators in small samples can be due to the structure of inequality
measures as a non-linear function of estimators. The bias can be either positive or
negative, depending on the characteristics of the reference variable distribution, except
for the Mean Log Deviation which has structurally negative bias; this aspect is made
clearer in the following. Among the measures with non-predictable bias direction, Breunig
(2001) shows that the bias of CV and GE(2) is negatively related to income skewness.
This aspect could be analyzed in-depth by imposing a distributional assumption on the
income variable, but this is out of scope. For GE and Atkinson measures, the limiting
behavior of their bias is described in the following proposition.

Proposition 1. For the measures belonging to the GE and Atkinson families, the ex-
pectation of their sample estimator θ̂, considering its true population value as θ, can be
expressed as:

E[θ̂] = θ +O

(
1

niid

)
,

with niid denoting the sample size in the iid case.

Proof. In appendix.

Our bias-correction proposal constitutes a generalization of the framework of Bre-
unig and Hutchinson (2008), developed for iid observations, to the finite population and
full design-based setting. At the same time, we extend the proposal to a wider set of
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measures comprising Gini Index. We provide a closed-form bias correction for complex
designs which allows us to avoid the use of resampling techniques and can be applied in
a distribution-free setting at once. This generalization has been developed considering
Horvitz-Thompson type estimators, and the ultimate clusters technique for variances and
covariances estimation.

We are interested in a variety of non-linear functions of income values as inequality
measures are. Let denote with s a sample of size n, drawn using a complex sampling
design, with p(s) the probability of selecting the particular sample s ⊂ U out of the set
of all possible samples Q, thus p(s) ≥ 0 and

∑
s∈Q p(s) = 1 . The inclusion probability of

unit k is denoted with πk, being πk =
∑

s∈Qk
p(s) with Qk the set of all possible samples

including unit k.
We consider the generic inequality measure written as a function of the mean µ and

γ = E[g(y)], with g(·) a generic monotone transformation of the income variable. The
population value for the generic inequality measure is

θ = f(µ, γ), (1)

with f(·) a twice-differentiable function. The related estimator in our complex survey
framework is θ̂ = f(µ̂, γ̂) in which Horvitz-Thompson estimators of µ and γ are plugged
in, i.e.

µ̂ =

∑
i∈s wiyi

N
and γ̂ =

∑
i∈s wig(yi, wi)

N
, (2)

where wi = 1/πi or a treated and calibrated version of it and N is the population size.
Note that results in this section hold also when employing Hájek type estimator, i.e. with
denominator N̂ =

∑n
i=1wi, since it is approximately unbiased (Särndal et al., 2003, pg.

182). Kakwani (1990) uses a similar approach to express inequality indices to derive their
asymptotic standard error. By simply applying a second order Taylor’s series expansion
of the sample estimator around the population values and evaluating its expected value,
the bias can be expressed as

E[θ̂ − θ] =
∂f(γ, µ)

∂γ
E[γ̂ − γ] +

1

2

∂2f(γ, µ)

∂γ2
(V[γ̂] + E2[γ̂ − γ])+

+
∂2f(γ, µ)

∂γ∂µ
(Cov[γ̂, µ̂]− µE[γ̂ − γ]) +

1

2

∂2f(γ, µ)

∂µ2
V[µ̂] +O(n−2), (3)

notice that µ̂ is unbiased.
We detail the design-based estimators for each inequality measure and we provide

their explicit bias formulation based on Equation 3, defining all the relevant quantities,
in Table 1. The complex survey estimators of Atkinson and Generalized Entropy measures
come from Biewen and Jenkins (2006), while as regards the Gini index, we employ the
alternative formulation defined by Sen (1997) and the complex survey estimator proposed
by Langel and Tillé (2013). Let denote with

√
n/(n− 1) the standard bias-correction

adjustment for the weighted variance; F (·) denotes the cumulative distribution function
of the variable of interest and lastly consider N̂i =

∑
k∈swk1(nk ≤ ni). The notation

1(A) defines an indicator function, assuming value 1 if A is observed and 0 otherwise.
Notice that the bias expression results of Table 1 can be reached also in a different

way, by applying the linearization proposed by Graf (2011) and extended by Vallée and
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Tillé (2019), as made explicit in the Appendix. However, the methodology we adopted
allows to explicit the bias in closed form for a generic inequality measure that comprises
the entire set of considered measures, as in Equation 3, isolating its components and
easing a general interpretation. In contrast, the methodology of Graf (2011) requires a
separate derivation for each measure, not enabling a general formulation.

Concerning the Gini index estimator θ̂G, let us consider γ and γ̂ defined in Table 1
for Gini, the approximate bias in small sample is

E[θ̂G − θG] ≈
2

µ
E[γ̂ − γ] +

2γ

µ3
V[µ̂]− 2

µ2
(Cov[µ̂, γ̂]− µE[γ̂ − γ]) (4)

=
4

µ
E[γ̂ − γ] +

2γ

µ3
V[µ̂]− 2

µ2
Cov[µ̂, γ̂],

where θG is the true value. The derivation of the approximate bias related to the weighted
estimator γ̂ is not trivial. As explained by Langel and Tillé (2013), its numerator is not
composed of two simple sums. Indeed the quantity N̂k, an estimator of the rank of unit
k, is random since its value depends on the selected sample. A solution is to consider the
approximate bias of the corresponding iid estimator, i.e. E[γ̂ − γ] = −1/n(γ − µ/2) as
derived by Davidson (2009), so that:

E[θ̂G − θG] =
−2θG
n

+
2γ

µ3
V(µ̂)− 2

µ2
Cov(µ̂, γ̂). (5)

This correction is in line with Davidson (2009) and Fabrizi and Trivisano (2016) propos-
als. However these are based on a first-order Taylor’s expansions and thus limited to the
first term of the right-hand side equation (4), ours extends it to a second-order expan-
sion. This translates into the fact that, while Jasso (1979), Deltas (2003) and Davidson
(2009) proposals identify the adjusted Gini in iid context as n(n− 1)−1θ̂G, our correction
reconsiders the shape of the adjusted estimator with a further order of approximation as

n

n− 2
(θ̂G − a), (6)

with a equals the sum of the second and third terms of (5).
As clear from Table 1, the bias correction of GE(2) does not include the coefficient

of skewness of the income distribution, as showed by Breunig (2001). Actually, a reliable
estimation of that quantity, while being straightforward in the iid case, appears cumber-
some in case of weighted data being defined on a discrete grid of values. This leads to
the non-applicability of the bias formula derived by Breunig (2001) in our case.

4 Bias Estimation

In this section, we detail the estimation of the approximate bias defined in Table 1 for
each measure. Such estimation is not trivial considering that the mentioned expres-
sions depend on design variances and covariances V[µ̂], V[γ̂] and Cov[µ̂, γ̂]. We consider
a complex survey design involving stratification and multi-stage selection, with both
Self-Representing (SR), included at the first stage with probability one, and Non-Self-
Representing (NSR) strata. This design is consistent with the majority of income survey
designs and, in general, with official statistics household surveys.
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We define the shape of an unbiased estimator for the variance of Horvitz-Thompson
estimators, such as µ̂ =

∑
i∈swiyi/N , when wi = 1/πi, as stated by Arnab (2017, pg. 30)

V̂[µ̂] =
1

N2

(∑
i∈s

y2i
1− πi

π2
i

+
∑
i∈s

∑
k∈s,i ̸=k

yiyk
πik − πiπk

πik

)
, (7)

with πik, ∀i, k ∈ U , i ̸= k denoting the second-order inclusion probabilities i.e. the
probability that the sample includes both i-th and k-th units. However generally (a)
wi ̸= 1/πi and (b) πik, ∀i, k ∈ U , i ̸= k are difficult to calculate under complex sampling
designs.

Therefore, the variance estimator to be considered constitutes an approximation re-
lying on simplified assumptions. Firstly, we assume that Primary Sampling Units (PSU)
are sampled with replacement, and secondly we reduce multi-stage sampling into a single-
stage process by relying on the Ultimate Clusters technique (Kalton, 1979). Moreover,
we take into account the hybrid nature of the probability scheme, blending a variance
estimator for stratified design associated with the SR strata, including a finite popula-
tion correction factor, and a typical Ultimate Cluster variance estimator for multi-stage
schemes associated with the NSR strata. The latter one is widely used in official statis-
tics, see Osier et al. (2013) for Eurostat procedures. Therefore, without loss of generality,
consider a two-stage scheme, let µ̂ =

∑
h

∑
d

∑
i w̃hdiyhdi and w̃hdi = whdi/N with h stra-

tum indicator, d Primary Sampling Unit (PSU) indicator and i Secondary Sampling Unit
indicator (SSU), be a linear estimator for µ, its standard error estimate is as follows:

V̂[µ̂] =
HSR∑
h=1

V[µ̂h] +

HNSR∑
h=1

V[µ̂h]

=

HSR∑
h=1

M2
h(1− fh)

s2h
mh

+

HNSR∑
h=1

nhs
2
µ̂h

(8)

=

HSR∑
h=1

Mh
Mh −mh

mh(mh − 1)

mh∑
i=1

(yhi − ȳh)
2 +

HNSR∑
h=1

nh

nh − 1

nh∑
d=1

(µ̂hd − µ̄h)
2,

with HSR self-representative and HNSR non self-representative strata, Mh the number
of resident households in strata h, mh the number of sample households in strata h,
fh = mh/Mh a finite population correction factor, nh the number of PSUs in strata
h. Consider, moreover, that ȳh =

∑mh

i=1 yhi/mh, µ̂hd =
∑md

i=1 w̃hdiyhdi with i denoting
the household label and md the number of sample households in PSU d, lastly µ̄h =∑nh

d=1 µ̂hd/nh, with nh being the number of PSU in stratum h. Obviously if nh = 1 for
some strata, the estimator (8) cannot be used. A solution is to collapse strata to create
“pseudo-strata” so that each pseudo-stratum has at least two PSUs. Common practice is
to collapse a stratum with another one that is similar with respect to some survey target
variables (Rust and Kalton, 1987).

An estimator of V[γ̂] can be obtained by adopting the same strategy used for V[µ̂] in
(8). Whereas, as regards the estimation of the design covariance, consider that

Cov[γ̂, µ̂] =
1

2

(
V[γ̂ + µ̂]− V[γ̂]− V[µ̂]

)
. (9)

Thus, a possible estimator ˆCov[γ̂, µ̂] would be simply obtained by plugging in the variance
estimators previously mentioned, while V[γ̂+µ̂] could be estimated by considering γ̂+µ̂ =
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∑
i∈s wi(g(yi)+ yi)/N . The estimation procedure is completed by replacing µ and γ with

µ̂ and γ̂.

5 Design-Based Simulation

A design-based simulation study has been carried out to evaluate our bias correction
proposal. In this simulation, the cross-section Italian EU-SILC sample (2017 wave) has
been assumed as pseudo-population and the 21 NUTS-2 regions have been considered
as target domains. The study is based on real income data, in order to check whether
this specific framework can work with close-to-reality data, affected by peculiar problems
(e.g. extreme values, skewness).

For comparison purposes, two simulation scenarios have been carried out. In the
first one, the original income data are employed as pseudo-population. In the second
one, an extreme values treatment is performed, with reference to both upper and lower
tails, to circumvent non-robustness problems and the resulting dataset is specified as an
alternative pseudo-population. Subsequently, we compare the results obtained after the
treatment with the ones before treatment to isolate the effect of outliers when evaluating
bias-correction performances (Table 2).

The issue of robust estimation of economic indicators based on a semi-parametric
Pareto upper tail model is well-established in literature. See Brzezinski (2016) for a re-
view and Alfons et al. (2013) for a specification suitable for survey data. On the contrary,
the issue of robust treatment of outliers in the lower tail of income distribution appears
less established (Masseran et al., 2019; Van Kerm, 2007). Concerning the upper tail, we
operated a semi-parametric Pareto-tail modelling procedure using the Probability Inte-
gral Transform Statistic Estimator (PITSE) proposed by Finkelstein et al. (2006), which
blends very good performances in small samples and fast computational implementation,
as suggested by Brzezinski (2016). As regards the lower tail, we used an inverse Pareto
modification of the PITSE estimator, suggested by Masseran et al. (2019). In our simu-
lations, the treatment has been done at a regional level to the original EU-SILC sample
and the detection of outliers has been carried out following Safari et al. (2018) by using
a Generalized Boxplot outlier detection procedure. We expect that, when outlying ob-
servations are representative, this procedure would highly bias the outcome and thus we
do not recommend it.

From the pseudo-populations, we repeatedly select 1,000 two-stage stratified samples,
mimicking the sampling strategy adopted in the survey itself: in the first stage, SR
strata are always included in the sample, while a stratified sample of PSU in NSR strata
is selected; in the second stage, a systematic sample of households is drawn from each
PSU included at the first stage. We repeated the drawing for both scenarios involving
different sampling rates, 1,5% and 3% respectively. The Relative Bias (RB) and the
Absolute Relative Error (ARE) in percentage has been calculated for each region r using
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Figure 1: Relative Bias of non-corrected measures (grey line), and of corrected measures
(blue line) in 3% samples after extreme value treatment versus the (average) sample size.

the 1,000 iterations as:

RBr =
1

1, 000

1,000∑
p=1

(
θ̂p,r
θr

− 1

)
,

AREr =
1

1, 000

( 1,000∑
p=1

∣∣∣∣ θ̂p,rθr
− 1

∣∣∣∣),
where θr is the population value for region r and θ̂i,r is its estimate for the generic iteration
p. In our simulation setting, the regional sample size ranges from 6 to 96 individuals (from
6 to 32 households) for the 1,5% sampling rate, and from 11 to 196 individuals (10 to 74
households) for the 3% sampling rate.

Concerning the treated pseudo-population scenario, Figure 1 illustrates the relative
bias for each domain of non-corrected measures (gray line) of corrected measures (blue
line) in 3% samples versus the (average) sample size. The negative relation between
sample size and average relative bias is clear for both the design-based estimator θ̂ and the
bias corrected estimator θ̂corr. This confirm the nature of the bias as a small sample bias
and shows the effectiveness of the correction, even if based on Taylor’s expansion, known
to be a large-n approximation. The bias reduction is noticeable for all measures, leading
to slightly biased estimates depending on the measure. Notice that the bias correction
works well for measures not particularly sensitive to extreme observations such as Gini
index, GE(0), Atk(0.5) and Atk(1). In case of CV and GE(2), the correction provides
good results, but it seems, however, not to capture all the bias components. This may
confirm the results of Breunig (2001), suggesting that the coefficient of variation squared
and GE(2) bias depends on the coefficient of skewness of the income distribution, not
considered in our bias correction.
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CV GE(0) GE(1) GE(2) A(0.5) A(1) A(2) Gini

with Extreme Value treatment

1.5%
R̄B -11.9 -13.9 -16.0 -17.6 -14.9 -15.0 -19.0 -14.6

θ̂ ¯ARE 25.8 44.1 42.9 47.9 41.9 40.9 38.7 24.5

R̄B -5.6 -4.1 -6.8 -9.0 -5.4 -5.2 -9.4 0.5

θ̂corr ¯ARE 25.9 46.4 44.9 50.2 43.9 42.8 39.6 34.3

3.0%
R̄B -7.4 -6.6 -8.6 -10.6 -7.6 -7.3 -9.7 -7.2

θ̂ ¯ARE 19.8 32.0 32.0 38.0 30.6 29.6 28.2 16.6

R̄B -2.8 -0.6 -2.3 -3.6 -1.5 -1.2 -2.9 0.3
R̄B (n ≥ 20) -1.4 -0.4 -1.2 -1.6 -0.8 -0.6 -1.4 -0.9

θ̂corr ¯ARE 20.4 33.4 33.7 40.6 32.0 30.4 29.6 19.7

without Extreme Value treatment

1.5%
R̄B -18.2 -12.7 -17.5 -23.3 -15.3 -15.6 -48.0 -14.9

θ̂ ¯ARE 30.0 52.9 46.4 53.5 45.9 47.4 56.8 25.5

R̄B -12.1 -3.9 -8.7 -15.0 -6.3 -5.9 -41.6 0.04

θ̂corr ¯ARE 29.3 54.4 48.0 55.7 47.5 49.4 54.6 34.7

3.0%
R̄B -12.7 -6.8 -10.5 -15.8 -8.7 -8.4 -38.1 -7.9

θ̂ ¯ARE 24.5 39.4 36.0 46.2 34.3 35.6 49.0 17.7

R̄B -7.8 -1.2 -3.9 -8.0 -2.5 -2.0 -32.4 0.06
R̄B (n ≥ 20) -8.3 -1.2 -3.6 -8.7 -2.3 -1.7 -30.0 -1.2

θ̂corr ¯ARE 24.8 40.4 37.9 49.4 35.7 37.0 48.2 20.9

Table 2: Percentage RB and ARE averaged on the 21 regions explicited for each inequality
estimator and scenario.
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Bias and error averaged across all areas for each scenario, sampling rate and estimator
are shown in Table 2. By focusing again on treated population results, the correction
induces a reduction of the RB spanning from 5% (CV, 3% rate) to 14% (Gini, 1.5%
rate) approximately by considering both sampling rates. When the sample size is greater
than 20 individuals (n ≥ 20), the bias-corrected estimators seems to be approximately
unbiased. Furthermore, the bias correction induces a slight but negligible error (ARE)
increase on average, except for the Gini index case which presents a relevant increase.
This is due to the shape of the unbiased estimators, as described by (6), where a sum of
estimators is multiplied by a factor n/(n − 2), which inherently inflates the variance by
its square.

Moving to the non-treated population results, the bias and error increase dramatically
both for θ̂ and for θ̂corr. In particular, the bias is high for some measures estimated on
non-treated data due to the non-robustness properties to extreme values. It is the case of
Atk (ε = 2), extremely sensitive to low-income values (under 100 euro per year) which is
-48% biased on average for the scenario with the smallest sample sizes. Also GE with α
equal to 1 and 2 are highly sensitive to high-income values being -18% and -23% biased.
Moreover, the bias correction seems not to change in magnitude depending on the sample
size and the presence of extreme values and no relevant changes in the comparison of θ̂
and θ̂corr are recorded.

Summarizing, in case of population not affected by income extreme values, the bias
correction may provide approximately unbiased estimates for a large class of measures.
Vice versa, it becomes necessary to restrict the attention to the most robust measures
such as GE with α = 0, Atkinson index with ε = 1 and Gini Index. Another important
aspect to point out is that, in certain countries, the EU-SILC is based on registers that
better capture top incomes, thus, a cross-country comparison of income inequality by
effects on a tail-sensitive measure must be another reason for caution (Atkinson, 2015).
Such results may constitute a reference when measuring inequality in small samples,
however, since the simulation scenario uses very specific data, reflections that has been
drawn cannot be general or conclusive.

5.1 Monte Carlo Distributions of Corrected Estimators

Lastly, a brief analysis of the distribution of inequality estimators is carried out, consid-
ering samples of increasing size, in order to evaluate how quickly their distribution tends
to become symmetric. We consider regions as target domains and we keep the same
simulation setting with different sampling rates, i.e. 10% (from 36 to 607 individuals, 28
to 254 households), 5% (from 16 to 337 individuals, 14 to 131 households) and 3% (from
11 to 196 individuals, 10 to 74 households). The coefficient of skewness η3 and excess
kurtosis η4 empirical values are set out in Table 3 while such empirical distributions are
depicted for each region in Figure 2. As clear from Table 3 and Figure 2, the empirical
distributions tend to become more positively skewed and leptokurtic at decreasing sample
sizes. This is quite evident for the General Entropy measures, similarly but to a lesser
extent for the other measures.

12



CV GE(0) GE(1) GE(2) A(0.5) A(1) A(2) Gini

10% θ̂corr η̂3 0.81 0.66 0.88 1.30 0.71 0.54 0.26 0.38
η̂4 1.16 0.91 1.60 2.87 1.06 0.57 -0.01 0.34

5% θ̂corr η̂3 1.00 0.94 1.19 1.80 0.96 0.74 0.40 0.54
η̂4 1.88 1.73 2.81 6.09 1.81 1.01 0.08 0.56

3% θ̂corr η̂3 1.00 1.07 1.27 1.90 1.04 0.83 0.49 0.58
η̂4 1.66 1.94 2.87 6.13 1.87 1.03 0.03 0.60

Table 3: Coefficients of skewness and excess kurtosis of the Monte Carlo distributions
related to corrected inequality estimators.
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Figure 2: Monte Carlo distributions of corrected inequality measure with 3% sampling
rate.
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6 A Small Area Estimation Exercise

In the previous sections, we propose a method to correct small sample bias of inequality
estimators in complex surveys. Even if bias-corrected, such estimators are still unreliable
due to the high variability induced by the small sample size: this means that their
estimates cannot be released or used for further inference. As a consequence, when
measuring inequality at a fine-grained level, it becomes necessary to rely on Small Area
Estimation (SAE) techniques. Such estimation techniques exploit available auxiliary
information to produce estimates with acceptable uncertainty. In particular, the model-
based techniques employ hierarchical models which can be defined both at area level,
linking area-defined survey estimates with areal covariates, or at unit (individual) level,
linking individual income data with individual covariates. See Tzavidis et al. (2018) for
an up-to-date review.

In this context, area level models appear to be less demanding in terms of data
requirement as they exploit only areal covariates, whereas unit level models may require
individual observations pertaining to the whole population. Moreover, area level models
enable the incorporation of design-based properties. Such models constitute a typical
framework of application of our bias-correction proposal, as they assume unbiasedness
of the survey estimators used as input. As a consequence, their applicability to the
estimation of inequality measures is inevitably tied to a preliminary bias correction, in
contrast with unit level models that do not handle survey estimators.

In this section, we perform a SAE exercise by using the sample related to the first
iteration of the simulation detailed in Section 5. The purpose is not to propose a small
area estimation strategy nor to provide a real application of inequality mapping, but
rather to illustrate the framework of application of our bias-correction proposal and,
especially, to underline the risk of avoiding bias-correction when estimating inequality
in small domains. Such exercise is carried out by applying the well known Fay-Herriot
model, implemented through the package sae (Molina and Marhuenda, 2015) to both the
uncorrected and corrected survey estimators of a selected subset of measures: the Theil
index (Generalized Entropy with α = 1), the Atkinson index with ε = 1 and the Gini
index.

Specifically, let us consider θ̂1, . . . , θ̂M as the set of survey estimators referring to
a generic inequality measure in M small areas, with corresponding population values
θ1, . . . , θM , and xm the set of p areal covariates for area m, m = 1, . . . ,M . The classical
area-level model is the Fay and Herriot (1979) one, with the following assumptions:

θ̂m ∼ N (θm, Dm), (10)

θm ∼ N (xT
mβ, σ

2), m = 1, . . . ,M. (11)

where Dm denotes the sampling variance of the survey estimator, usually assumed to be
known in order to allow for identifiability, β the set of regression coefficients and σ2 the
model variance. This clearly implies E(θ̂m) = θm ∀m, i.e. the unbiasedness of survey
estimators. As a consequence, neglecting bias correction of survey estimators effectively
leads to model misspecification.

As mentioned above, the sampling variance is separately estimated from the data
and given as input to the small area model. Since our exercise is merely illustrative, we
adopt the Monte Carlo variances of the design-based simulation in Section 5 as sampling
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variances and simulated covariates for both estimators. However, in real application,
variance estimation is the crux of a SAE procedure. In the case of raw inequality estima-
tors, it may be easily carried out via linearization. Linearized variables for each measure
could be derived consistently with Langel and Tillé (2013) for Gini index and Biewen and
Jenkins (2006) for Generalized Entropy and Atkinson indexes. On the other hand, the
variance of bias corrected estimators adds a new level of complexity since the estimator
formula is no longer the classical one. Indeed, it comprises a bias correction component
that appears cumbersome to estimate via linearization since it is inherently a result of
several linearizations. Therefore, in real applications, we recommend relying on resam-
pling methods, an example is the design-aware bootstrap procedure developed before by
Fabrizi et al. (2011, 2020). A comprehensive review on the use of bootstrap methods
for survey data can be found in Lahiri (2003) and an interesting comparison between
variance estimation techniques for poverty and inequality measures has been carried out
by De Santis et al. (2020).

The comparison between raw and corrected survey estimates for all the three measures
is displayed in Figure 3. Raw estimates show lower values of inequality in comparison
with the corrected ones for all areas and all the measures considered. This is in accordance
with the underestimation highlighted by simulation results of Section 5. The sampling
coefficient of variations of both estimators are high, ranging from 0.24 to 3.48 for the Theil
index, from 0.18 to 4.45 for the Atkinson index and, lastly from 0.11 to 0.92 for the Gini
index, with slightly higher values in case of corrected estimators, as the bias correction
induces mild variance inflation. Such values point out the need for SAE techniques.

The model-based (or EBLUP) estimates in both cases are compared in Figure 4, the
inequality levels estimated by the misspecified model shows noticeable lower values, re-
sulting in a misleading inference. In particular, this is quite evident for the Gini index
case, where the divergence seems to increase at increasing levels of inequality. By fo-
cusing only on the EBLUP results based on corrected estimates, the decrease in terms
of estimates error induced by the model is depicted in Figure 5. The reduction is great
and testifies that the variance reduction procedure, put in place by the SAE model, is
effective. As a consequence, model-based estimates result to be reliable and ready to be
used for further analysis or mapping.

Figure 3: Bias corrected survey estimates versus raw survey estimates. Bisector line in
black.

15



Figure 4: Model-based estimates based on bias corrected survey estimates versus model-
based estimates based on raw survey estimates. Bisector line in black.

Figure 5: MSE of bias corrected survey estimators versus their related model-based esti-
mators.

7 Conclusions

A strategy based on Taylor’s expansion has been proposed to correct the small sample
bias of inequality estimators. The sets of inequality measures considered is large, as the
comparison of diverse measures may enable to enlighten the peculiar point of view each
measure provides, as single tiles in a mosaic. Indeed, the well-known Gini and Theil
indexes are widely applied in several fields for inequality and concentration estimation.

A sensitivity analysis and simulation has also been conducted to study the estimator
behaviour to extreme values and the magnitude of the proposed correction. Results
show that survey-based estimator may be biased in small samples, inducing often an
underestimation of inequality. Such underestimation is greater in case of populations
affected by extreme values. Moreover, simulation results validate the correction proposal
as effective, consistently reducing the bias and leading in some cases to approximately
unbiased estimators.

An underlined heterogeneity of sensitivities and bias is recorded across measures. As
a consequence, our results may help in choosing the most suitable inequality measure
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depending on the context. The measures that are structurally more sensible to extreme
values on the tails appear to be more biased, in particular GE(α = 2) and Atkinson(ϵ =
2). Therefore, in case of samples without extreme income values, the bias correction
may provide approximately unbiased estimates. On the other hand, if extreme values are
observed, it becomes necessary to focus on the most robust measures such as Mean Log
Deviation, Atkinson index with ε = 1 and Gini Index to be corrected. Furthermore, the
estimator distributions show increasing positive skewness and lepto-kurtosis at decreasing
sample sizes.

An illustrative small area application has been carried out. The results obtained shows
that neglecting the bias issue translates into a misleading inference. This is particularly
evident for the popular Gini index. In such an application, we use a basic area level model,
the Gaussian one. Indeed, the skewed distribution of inequality estimators and the unit-
interval support of Gini and Atkinson estimators might urge a more refined model, which
may lead to model-based estimators with increased performances: this constitutes an
interesting future direction of research. Further directions include also the extension of
this framework to other widely used inequality measures, such as those based on quintiles.
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Appendix

Proof of Proposition 1

Proof. Let us consider a sample with iid elements {y1, . . . , yniid
}, drawn from a population

via simple random sampling, where yi is the variable for the i-th unit with expected value
µ and variance σ2. Let us consider also {g(y1), . . . , g(yniid

)} with g(y) a generic monotone
transformation of the income variable, induced by g(·) : R+ → R, that changes for each
measure, having expected value γ and variance ϕ2. Considering that a generic inequality
measure can be expressed as θ = f(µ, γ) with f(·) a twice-differentiable function, µ̂ =∑niid

i=1 yi/niid and γ̂ =
∑niid

i=1 g(yi)/niid, we can easily obtain estimator moments as µ̂ ∼
[µ, σ2/niid] and γ̂ ∼ [γ, ϕ2/niid]. Consider moreover that

Cov[µ̂, γ̂] = E[µ̂γ̂]− µγ =
1

niid

(E[y · g(y)]− µγ) =
Cov[y, g(y)]

niid

.

Let us define the population value of a generic inequality measure θ as f(µ, γ), with f(·)
a generic twice-differentiable function. By expanding the inequality measure estimator
θ̂ as f(µ̂, γ̂), via Taylor’s expansion around the population values and considering its
expected value:

E[θ̂] = θ +
1

2
fγ,γ(γ, µ)V[γ̂] + fγ,µ(γ, µ)Cov[γ̂, µ̂] +

1

2
fµ,µ(γ, µ)V[µ̂] +O(n−2

iid)

= θ +O(n−1
iid) +O(n−1

iid) +O(n−1
iid) +O(n−2

iid)

= θ +O(n−1
iid),

where fγ = ∂f(γ,µ)
∂γ

and fγµ = ∂2f(γ,µ)
∂γ∂µ

.

Reaching results of Table 1 in a different way

By considering the linearization proposed by Graf (2011) and extended by Vallée and
Tillé (2019), we can easily reach the same results set out in Table 1 in a different way.

Let us recall the notation as U denoting a finite population of N(< ∞) elements. Let
yi be the income of the i-th unit, where yi ∈ R+, ∀i = 1, . . . , N and y = (y1, . . . , yN)
its population vector. A sample s of size n is drawn with a complex sampling design
with probability of selection p(s) such that p(s) ≥ 0 and

∑
s⊂U p(s) = 1. Let us define

1 = (11, . . . ,1N) the vector of sampling indicator of unit i, taking value 1 if unit i is in
the sample and 0 otherwise. The first order inclusion probability of unit i is πi, where
πi = E(1i), i.e. the expectation with respect to the sampling design and its population
vector π = (π1, . . . , πN). πij denotes the second order inclusion probability for i ̸= j.

Consider θ̂ = θ̂(1,y) an estimator of θ = θ(y) with θ̂(1,y) twice differentiable with
respect to 1. Graf (2011) shows that an approximation for θ̂ is

θ̂ ≈ θ +
∑
i∈U

(1i − πi)
∂θ̂

∂1i

∣∣∣
1=π

+
1

2

∑
i∈U

∑
j∈U

(1i − πi)(1j − πj)
∂2θ̂

∂1i∂1j

∣∣∣
1=π

.

We can derive the approximation of the bias as

E[θ̂] ≈ θ + 0 +
1

2

∑
i∈U

∑
j∈U

(πij − πiπj)
∂2θ̂

∂1i∂1j

∣∣∣
1=π

. (12)
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In the following, we derive the bias for GE(α) with α ̸= 0, 1 but such result can be
extended to all the measures pertaining to Generalized Entropy and Atkinson indexes
families.

Let us recall from the manuscript the survey estimator of GE(α) as a function of two
Horvitz-Thompson type estimators which, under the assumption of wi = 1/πi, can be
rewritten as

µ̂ =
1

N

∑
i∈U

1iyi
πi

and γ̂ =
1

N

∑
i∈U

1iy
α
i

πi

,

with GE(α) estimator explicited as

θ̂GE(α) =
n(n− 1)−1

α(α− 1)

(
γ̂

µ̂α
− 1

)
.

By applying (12), its bias may be expressed with an approximate result as

E[θ̂GE(α)]− θGE(α) ≈
n(n− 1)−1

2µα+1(α− 1)

1

N2

∑
i∈U

∑
j∈U

(
πij

πiπj

− 1

)(
yiyj

γ(α + 1)

µ
− yiy

α
j − yαi yj

)
.

(13)

Considering that variance and covariance of Horvitz-Thompson estimator in population
are defined as

V[µ̂] =
1

N2

∑
i∈U

∑
j∈U

yiyj

(
πij

πiπj

− 1

)
, (14)

Cov[µ̂, γ̂] =
1

N2

∑
i∈U

∑
j∈U

yiy
α
j

(
πij

πiπj

− 1

)
, (15)

as stated by Arnab (2017, pg. 30), (13) can be easily rewritten as

E[θ̂GE(α)]− θGE(α) ≈
n(n− 1)−1

µα+1(α− 1)

(
V[µ̂]

γ(α + 1)

2µ
− Cov[µ̂, γ̂]

)
. (16)

Such analytical result coincides with the corresponding formula in Table 1 of the manuscript.
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