

Mod.01P.5.5

Rev.01 24.5.08

Silvia De Nicolò, Aldo Gardini

The R package tipsae: Tools for Mapping

Proportions and Indicators on the Unit

Interval

Dipartimento di Scienze Statistiche “Paolo Fortunati”

Quaderni di Dipartimento

Serie Ricerche 2022, n. 4

ISSN 1973-9346

The R Package tipsae: Tools for Mapping
Proportions and Indicators on the Unit Interval

Silvia De Nicolò Aldo Gardini

Università di Bologna

Abstract
The tipsae package implements a set of small area estimation tools for map-

ping proportions and indicators defined on the unit interval. It provides for
small area models defined at area level, including the classical Beta regression,
Zero and/or One Inflated Beta and Flexible Beta ones, possibly accounting for
spatial and/or temporal dependency structures. The models, developed within a
Bayesian framework, are estimated through Stan language, allowing fast estima-
tion and customized parallel computing. The additional features of the tipsae
package, such as diagnostics, visualization and exporting functions as well as
variance smoothing and benchmarking functions, improve the user experience
through the entire process of estimation, validation and outcome presentation.A
Shiny application with a user-friendly interface further eases the implementa-
tion of Bayesian models for small area analysis.

Keywords: Bayesian inference, Beta regression models, small area estimation, Shiny,
Stan.

1 Introduction
The growing demand for timely and reliable statistical estimates leads to extensive ex-
ploitation of survey data at an increasingly greater level of disaggregation. However,
domains or areas of study are often different from the ones for which the survey was
originally planned, leading to possibly unreliable direct estimates due to observations-
poor samples. Small area estimation (SAE) tackles this problem by providing a set of
indirect estimation techniques, relying on external information, which borrow strength
across areas and increase the efficiency of the estimates. Indirect estimators based on
explicit regression models are labelled model-based estimators and assume a relation-
ship between the target variable and explanatory variables, which remains constant
across areas. Classical small area models embrace two basic linear mixed models: the
Fay-Herriot model and the Battese-Harter-Fuller model, which are foundational for
the strand of area-level models and unit-level models, respectively (Rao and Molina,
2015). While the former relates area-specific target quantities to area covariates, the
second one relates individual observations of the underlying variables of interest to
individual covariates.

Hereafter, we focus on area-level models due to their practical convenience. They
require, in fact, only data aggregated at the area-level, avoiding both computational

1

and data disclosure issues. In area-level contexts, a well-established body of literature
is concentrated on Gaussian models. However, many quantities of interest have specific
features that are not considered in the Gaussian setting and need to be accounted for,
such as a bounded or double bounded support and distributions markedly skewed
or heavy-tailed. Specifically, we focus on unit interval responses, common in SAE
modelling because of the growing need for rates and proportions releases in official
statistics, such as Head-Count Ratio for poverty mapping or Health Insurance Coverage
rates. Not to mention the treatment of other measures of interest defined in (0,1) or
[0,1], such as some inequality measures (e.g., Gini index).

In this regard, two different bodies of literature revolve around linear mixed models
with suitable transformations (Rao and Molina, 2015) and Beta regression models
(Janicki, 2020). For the first approach, we recall the works by Marhuenda et al.
(2013, 2014), Morales et al. (2015), and Esteban et al. (2012, 2020) that provide Fay-
Herriot extensions to deal with proportions. The second strand focus on classical
Beta regression, both in the univariate case (Liu et al., 2007; Bauder et al., 2015;
Fabrizi and Trivisano, 2016; Giovinazzi and Cocchi, 2021) and in the multivariate
ones (Fabrizi et al., 2011; Souza and Moura, 2016), considering also zero and/or one
inflated extensions (Wieczorek et al., 2012; Fabrizi et al., 2016, 2020). Lastly, a Beta
mixture approach in SAE has been proposed by De Nicolò et al. (2022).

By considering the SAE field as a whole, there is a clear imbalance between a
plethora of methodological proposals defined in academic literature and the tight circle
of methods actually used in official statistics and applied researches. A bridge-building
process between methodological and applied fields is needed, involving collaboration,
dissemination, and development of user-friendly tools to facilitate tough steps. With
the latter aim, several routines for SAE have been released by developer teams of R (R
Core Team, 2021), SAS (SAS Institute Inc., 2003), SPSS (IBM Corporation, 2010),
and STATA (Stata Corporation, 2007). Our focus is on R routines due to flexibility
and availability reasons as well as for the equipment of complementary tools. Several
R packages have been developed to implement SAE tools, and in the following, we
attempt to provide a clear overview focusing on model-based methods.

In general, the most complete released packages are:
• sae (Molina and Marhuenda, 2015). It implements a wide range of small area

methods from a frequentist perspective, including both area-level and unit-level
models.

• emdi (Kreutzmann et al., 2019). It allows making inference on both area-level
and unit-level models in a frequentist framework, providing model diagnostics,
plots, and exporting tools.

• mcmcsae (Boonstra, 2021). It comprises hierarchical area and unit-level mod-
els estimated via Markov chain Monte Carlo (MCMC) simulation, allowing for
spatial and temporal dependencies. It includes different prior settings, model
diagnostics, and posterior predictive checks functions.

Among listed packages, only the emdi package (Schmid et al., 2017) directly accounts
for unit interval responses at area-level by providing the arc-sin transformation in a
Gaussian setting. Thus, while a Fay-Herriot model for unit interval responses may be
implemented via existing packages, Beta-based small area models lack proper imple-
mentations.

2

The tipsae package (De Nicolò and Gardini, 2022) aims at filling this gap by
implementing Beta-based small area models specified at the area-level on measures
that can assume values in (0, 1), [0, 1), (0, 1], and [0, 1] intervals. We decided to oper-
ate in a Bayesian fashion in order to exploit the advantages brought by approaching
this inferential framework via MCMC methods. For instance, it is possible to eas-
ily manage non-Gaussian assumptions, incorporate structured random effects, obtain
straightforward estimates for out-of-sample areas, and capture the uncertainty about
all target parameters through posterior inference. Nowadays, several tools are avail-
able to implement Bayesian models with probabilistic languages: our choice falls on
Stan (Carpenter et al., 2017), that can be easily employed to fit statistical models
within R packages thanks to the tools provided by the rstantools package (Gabry
et al., 2020).

The main features of the tipsae package are listed in the following:
• It includes a variety of area-level models based on the Beta likelihood. Besides

the standard Beta-regression model, Zero and/or One Inflated Beta (ZOIB) and
Flexible Beta models can be chosen. Moreover, particular dependence structures
can be modelled, including spatial and/or temporal random effects.

• It implements an efficient Hamiltonian Monte Carlo (HMC) fitting algorithm
and customized parallel computing imported from rstan (Stan Development
Team, 2020). We also tested other languages that build MCMC samplers, and
Stan turned out to be the most efficient one for Beta regression models, which
are particularly tricky to handle due to the non-orthogonality between location
and scale parameters.

• The ‘stanfit’ S4 object produced by the rstan package can be exploited to check
convergence, monitor sampler diagnostics, and, lastly, perform an exhaustive
posterior analysis, relying on existing tools such as loo (Vehtari et al., 2020) and
bayesplot (Gabry and Mahr, 2021) packages. In this way, users familiar with
posterior predictive checks can carefully assess the model performance.

• Specific diagnostics for small area models are produced by ad-hoc functions,
facing the most relevant aspects to deepen within the SAE framework. We
implemented both visualization tools for graphical assessments and functions
that easily export the final results. Moreover, variance smoothing routines and
benchmarking procedures are also provided, remarking that, to the best of our
knowledge, the first tool is not available in any existing SAE package.

• To further facilitate the workflow for non-expert users of R, a Shiny application
(Chang et al., 2021) with an intuitive graphical user interface can be launched
through the runShiny tipsae() function. The application assists the user in
carrying out a complete SAE analysis, exploiting all the main features of the
tipsae package.

The paper is organized as follows: covered models and implemented methodology
are set out in Section 2, the datasets made available in the package are presented in
Section 3, while Section 4 provides a step-by-step description of inputs and outputs of
the available functions. Section 5 outlines the features of the Shiny application and,
eventually, Section 6 contains some concluding remarks, discussing possible extensions
that could be supplied.

3

2 Methodology
In this section, the theory behind the statistical methods implemented in the tipsae
package is summarized. The main aspects are those related to the area-level models
for indices and proportions that can be estimated using the function fit sae().

From now on, we consider a finite population of size N that is partitioned into
D small areas having sizes N1, . . . , ND. We are interested in estimating a generic
measure defined on the unit interval that we denote as θd, d = 1, . . . , D. To this
aim, a random sample of size n is drawn from the whole population using a possibly
complex survey design, obtaining sub-samples of sizes n1, . . . , nD, specified for each
domain. Among them, we define the first D̃ domains, with D̃ ≤ D as the ones
actually observed, i.e., with nd > 0. The observations recorded at the individual level
are aggregated to produce the direct estimates yd, that are stored in the vector y and
are the observed determinations of the direct estimator Yd for a quantity of interest
θd, with d = 1, . . . D̃. The Bayesian area-level model is specified for Yd, including also
a set of auxiliary variables xd, which are assumed to be available for each domain.

The details about the statistical models that can be set through the argument
likelihood are discussed in Section 2.1. Furthermore, a small area model usually
includes also random effects in the linear predictor. The random effect part, hereafter
indicated with ed, can incorporate either a temporal and/or a spatial dependency
structure, as will be discussed in Section 2.2, devoted to the prior specification settings.
In addition, different prior assumptions can be specified for the unstructured random
effects, allowing for robust and shrinking priors.

In small area models, the dispersion parameters are generally assumed as given and
previously estimated from the data. Separate estimation could involve a smoothing
procedure to refine the sampling variances estimates and reduce their errors. Sec-
tion 2.3 describes the proposed algorithms to carry out this step if required. Eventu-
ally, Section 2.4 outlines the main aspects of posterior inference: we will mainly focus
on the out-of-sample treatment, diagnostics, and goodness-of-fit tools employed to val-
idate or select the models and, lastly, the benchmarking procedures complementing
SAE analysis.

2.1 Area-level models: Likelihoods
The statistical models available in tipsae are set out in the following sections, whereas
a comprehensive overview of the key quantities under each model is provided in Ta-
ble 1. In particular, we specify the response support, the conditional expectation,
constituting the predictor for θd, the conditional variance, allowed parametrizations,
and the out-of-sample predictor (denoted with θoosd). From now on, η indicates the
vector of all the model parameters.

2.1.1 The Beta model

Let us consider the mean-precision parametrization of the Beta random variable (Fer-
rari and Cribari-Neto, 2004): in this case, if Y ∼ Beta(µφ, (1 − µ)φ), then its proba-
bility density function is

fB(y;µ, φ) = Γ (φ)
Γ (µφ) Γ ((1− µ)φ)y

µφ−1(1− y)(1−µ)φ−1, y ∈ (0, 1),

4

M
od

el
Su

pp
or

t
θ d

=
E

[Y
d
|η

]
V

[Y
d
|η

]
A

dm
itt

ed
ty

pe
di

sp
Pr

ed
ic

to
r

fo
r
θo
o
s

d

"b
et

a"
(0

;1
)

µ
d

µ
d
(1
−
µ

d
)

φ
d
+

1
Bo

th
lo

gi
t−

1 (
x
> d
β

+
e d

)

"f
le

xb
et

a"
(0

;1
)

pλ
1d

+
(1
−
p)
λ

2d
θ d

(1
−
θ d

)+
p
(1
−
p
)φ

d
(λ

1d
−
λ

2d
)2

φ
d
+

1
"v

ar
"

-

"I
nf

be
ta

0"
[0

;1
)

(1
−
pz d

)µ
d

(1
−
p0 d

)[µ
d
(1
−
µ

d
)

φ
d
+

1
+
p0 d
µ

2 d]
"n

ef
f"

(1
−
p0 d

)lo
gi

t−
1 (x

> d
β

+
e d

)

"I
nf

be
ta

1"
(0

;1
]

po d
+

(1
−
po d

)µ
d

(1
−
p1 d

)[µ
d
(1
−
µ

d
)

φ
d
+

1
+
p1 d

(1
−
µ
d
)2] "n

ef
f"

p1 d
+

(1
−
p1 d

)lo
gi

t−
1 (x

> d
β

+
e d

)

"I
nf

be
ta

01
"

[0
;1

]
po d

+
(1
−
pz d
−
po d

)µ
d

po d
(1
−
ζ d

)+
(1
−
α
d
)×

×
[µ

d
(1
−
µ

d
)

φ
d
+

1
+
α
d
(ζ
d
−
µ
d
)2]

"n
ef

f"
p1 d

+
(1
−
p0 d
−
p1 d

)×
×

lo
gi

t−
1 (x

> d
β

+
e d

)

Ta
bl

e
1:

R
el

ev
an

t
qu

an
tit

ie
s

fo
r

ea
ch

m
od

el
im

pl
em

en
te

d
in

ti
ps

ae
.

5

where µ ∈ (0, 1) is the location parameter and φ ∈ (0,+∞) is the dispersion one. In
SAE context, the Beta regression area-level model is usually specified as

Yd|µd, φd
ind∼ Beta (µdφd, (1− µd)φd) ,

logit (µd) = x>d β + ed, d = 1, . . . , D;

where β is the vector of regression coefficients and φd is the area specific dispersion
parameter, usually assumed to be known to guarantee identifiability. Recalling the
expression of V [Yd|η] from Table 1, it can be shown that, when the target response
is a proportion, the parameter φd is related to the effective sample size, i.e., the
corresponding sample size under simple random sampling (Janicki, 2020). For a more
complete explanation of those aspects, we refer to the discussion in Section 2.3. On
the other hand, if a generic indicator (e.g., Gini index) is considered, the meaning of φd
becomes less clear. For this reason, we let the user specify the model parametrization
(argument type disp), choosing between:

• "neff" option, namely an estimate of the effective sample size φd+1 is provided;

• "var" option, in which an estimate of the sampling variance of the direct esti-
mator i.e., V̂[Yd], is used. In this case, the parameters φd are retrieved using the
relations in Table 1, replacing V [Yd|η] with V̂[Yd], and substantially changing
model parameterization.

2.1.2 The Flexible Beta model

When the distribution of the response is characterized by heavy tails and/or high
skewness, the standard Beta regression could fail in properly modelling Yd (Bayes et al.,
2012; Migliorati et al., 2018). To improve the model performances in these conditions,
the standard Beta distribution can be replaced by the Flexible Beta distribution. The
Flexible Beta small area model has been proposed by De Nicolò et al. (2022). It
is defined as a mixture of two Beta random variables having a common dispersion
parameter φd:

Yd|λ1d, λ2d, φd, p
ind∼ p Beta (λ1dφd, (1− λ1d)φd) +

+ (1− p) Beta (λ2dφd, (1− λ2d)φd) ,
logit (λ2d) = x>d β + ed, d = 1, . . . , D.

In this case, only the direct estimator variance (i.e., disp type = "var") can be used
as input to determine the dispersion parameter of the model. Therefore, φd is ex-
pressed as a function of the sampling variances and other model parameters (see the
expression of V [Yd|η] in Table 1). The Flexible Beta distribution is characterized by
four parameters: this enhances the model flexibility, if compared to the standard Beta
distribution, leading to better performances in modelling not well-behaved measures
and, consequently, reducing the bias of model-based estimators.

2.1.3 The Zero/One Inflated Beta model

The supports of Beta and Flexible Beta models do not include the extremes 0 and 1.
However, in some applications, zero and one values are observed, and a model able to

6

encompass them is required. Therefore, following Wieczorek et al. (2012), we include
in the package the ZOIB model, specified as:

Yd|µd, φd, pzd, pod
ind∼ pzd1{Yd = 0}+ pod1{Yd = 1}+

+ (1− pzd − pod)Beta (µdφd, (1− µd)φd)1{0 < Yd < 1}
logit (pzd) = x>d β

z
p, logit (pod) = x>d β

o
p,

logit (µd) = x>d β + ed, d = 1, . . . , D;

where pzd and pod denote the probabilities of observing zero and one values, respectively.
They are modelled by means of a logit regression model having coefficients βzp and βop.
The notation 1{A} defines the indicator function that assumes value 1 if the event A is
observed, and 0 otherwise. The user can specify a model that accounts both for zeroes
and ones setting likelihood = "Infbeta01"; however, simpler versions inflating only
the ones or the zeroes are also available ("Infbeta1" and "Infbeta0", respectively).
Relevant quantities for each version of the ZOIB model are listed in Table 1, having
defined αd = pzd + pod and ζd = pod/αd. For further details, see Ospina and Ferrari
(2010).

2.2 Prior distributions
To facilitate practitioners, standard wide-range prior distributions are assumed for the
parameters included in the model. Starting from the priors for the regression coef-
ficients, we decided to follow the default prior specification strategy of the popular
rstanarm package (Goodrich et al., 2020). Firstly, auxiliary variables are standard-
ized in order to avoid issues related to possibly different magnitudes. Thus, posterior
results for the regression coefficients must be interpreted accordingly. A weakly infor-
mative prior for the intercept β0 is specified:

β0 ∼ N (0, 2.52),

and independent normal priors are also assigned to the coefficients related to stan-
dardized covariates:

βj
ind∼ N (0, 2.52), j = 1, . . . , p.

Note that the same prior setting is also assumed for coefficients βzp and βop involved in
ZOIB models.

As regards the Flexible Beta model, we additionally specify the following priors for
the mixing probability p and the differences between the means of mixture components:

p ∼ Beta(2, 2),

λ1d − λ2d|p, λ2d ∼ Unif
0,min

1− λ2d

p
,

√√√√V(Yd|η)
p(1− p)


 ,

following De Nicolò et al. (2022).
The priors for the random effects are discussed in the following: the case of un-

structured random effects is faced in Section 2.2.1, spatially structured random effects
are described in Section 2.2.2, and temporal random effects in Section 2.2.3.

7

2.2.1 Unstructured random effects

The basic assumption on the random effect is ed = vd, where vd is an unstructured
area-specific random effect accounting for deviations from the synthetic predictor. We
propose three different strategies to specify its prior distribution, that can be chosen
through the prior reff argument of fit sae(). Firstly, a zero-mean normal prior
with scale σv is considered ("normal" option, default), putting a half-normal prior for
σv, in line with Gelman (2006):

vd|σv
ind∼ N

(
0, σ2

v

)
, d = 1, . . . , D;

σv ∼ Half-N (0, 2.52).

The choice of such half-normal prior is usually weakly informative if compared to the
scale of the random effects.

When covariates have poor explanatory power, in some domains, it is possible to
observe large deviations of the predicted value from the observed one, requiring more
flexible handling of random effect through a robust prior. Among those proposed in
the literature, we implement the one introduced by Figueroa-Zúñiga et al. (2013), and
previously considered in the small area framework by Fabrizi and Trivisano (2016). It
consists of a Student’s t prior with exponential hyperprior for degrees of freedom ν
and half-normal hyperprior for the scale σv ("t" option):

vd|ν, σv
ind∼ t (ν, 0, σv) , d = 1, . . . , D;

ν ∼ Exponential(0.1);
σv ∼ Half-N (0, 2.52).

The notation t (ν, 0, σv) indicates a Student’s t distribution with ν degrees of freedom,
location parameter equal to 0, and scale σv.

In other cases, the variability of the small area parameters may not require the
inclusion of a random effect term in presence of very informative covariates (Datta
et al., 2011b). Therefore, the variance gamma shrinkage prior introduced by Brown
and Griffin (2010) and implemented in a small area application by Fabrizi et al. (2018)
is included as a prior choice for vd ("VG" option). This option enables for shrinking to
0 the random effects related to a subset of the areas by mimicking the behaviour of
a spike-and-slab prior. Following Fabrizi et al. (2018), we propose a general hyperpa-
rameters choice that induces a prior variance of the random effects equal to 0.5:

vd|ψd, λ
ind∼ N

(
0, ψd
λ

)
, d = 1, . . . , D;

ψd
ind∼ Gamma(0.5, 1), d = 1, . . . , D;

λ ∼ Gamma(2, 1).

It can be noted that the independent ψd are local scales, whereas λ is a global precision
hyperparameter.

2.2.2 Spatially structured random effects

Setting the argument spatial error equal to TRUE, we let the user add a spatially
structured effect sd to the linear predictor, leading to the formulation ed = vd+sd. For

8

the vector s = (s1, . . . , sD), we assume an intrinsic conditional autoregressive (ICAR)
prior (Besag et al., 1991), i.e., an improper prior whose density is proportional to:

f (s|σs) ∝ exp
{
− 1

2σ2
s

s>K̃−s s
}
,

where K̃− is the generalized inverse of a singular precision matrix. To describe its
structure, we first define K = D −W, where D is a diagonal matrix containing the
number of connections for each area and W is the adjacency matrix (the generic entry
[w]ij is 1 if area i and j are adjacent and 0 otherwise). Following Freni-Sterrantino
et al. (2018), the actual precision matrix K̃ is obtained with a scaling procedure
aimed at reducing the impact of the structure on the prior variability, keeping into
consideration the possible presence of G ≥ 1 disconnected graphs in the model (e.g.,
islands). Note that G− 1 dummy variables are added to the linear predictor in order
to obtain island-specific means, placing a sum-to-zero constraint on the random effects
related to the same island. Islands defined by singleton areas are also allowed, even if
they do not constitute a graph counted in G. Lastly, a half-normal prior is fixed for
the hyperparameter σs. For further details on the implementation of ICAR priors in
Stan, see Morris et al. (2019).

To include a spatially structured random effect, an object of class ‘SpatialPolygo-
nsDataFrame’ (from the sp package, Bivand et al., 2013) is required as input of the
spatial df argument, carefully checking that the order of its rows and the order of
the data input are coherent.

2.2.3 Temporally structured random effects

If multiple observations of the target indicator are available for different time periods,
a suitable model can be specified, in order to borrow strength from time repetitions.
In this framework, a second subscript must be added in the notation: Ydt indicates
the direct estimator for area d at time t = 1, . . . , T , whereas edt is the random effect
component in the linear predictor. The user can choose to add a temporal random
effect udt to the unstructured one (edt = vd + udt) setting spatial error = TRUE. If
both temporal and spatial random effects are declared in fit sae(), then a spatio-
temporal model is fitted, removing the unstructured random effect (edt = sd + udt).

As prior for the sequence of random effects {udt}t, we specify a random walk prior of
order 1, assuming independence among the areas (Rao and Molina, 2015). It represents
a flexible prior that can be defined recursively as:

udt|ud,t−1, σu ∼ N
(
ud,t−1, σ

2
u

)
, t = 2, . . . , T ;

implicitly assuming a uniform improper prior on ud1. Sum-to-zero constraints are
placed for each area-specific time sequences, to guarantee the identifiability of all
the parameters in the linear predictor. Even then, a half-normal prior is fixed for
the hyperparameter σu and the contribution of the correlation structure to the prior
variability is mitigated by adopting a scaling procedure (Riebler et al., 2016).

2.3 Data pre-processing
Before stepping into estimation, we propose an elective function for refining raw vari-
ance estimates, which are inputs of our models. It can be useful both for reducing

9

their sampling error and estimating the effective sample size parameter φd + 1. The
smoothing() function implements three methods, all yielding refined estimates of ei-
ther variance or φd+1, to account for indicators with different variance functions. The
output estimates are ready to be used as known parameters in an area-level model,
and they need to be added to the analysed ‘data.frame’ object.

Let us consider that, under simple random sampling, a general variance function
has the following structure:

Vsrs [Yd] = f(θd)
nd

,

where nd is the sample size. Note that if the target quantity is a proportion, then
f(θd) = θd(1− θd). However, when dealing with complex survey designs, the selection
process invariably introduces a correlation structure in the data. In this way, the
information actually available may be lower than the one provided by a sample of
the same size under simple random sampling. In order to formalize this concept, we
need to introduce the effective sample size ñd. It can be estimated as ñd = nd/deff,
where deff is the design effect, defined as the ratio between the complex design-based
variance Vcd [Yd] and Vsrs [Yd]. Clearly, under simple random sampling ñd equals nd.

All three implemented methods enable the estimation of the effective sample sizes,
whereas "ols" and "gls" also perform a variance smoothing procedure. The argument
method allows to choose among:

• "kish", implementing an area-specific design effect estimation proposed by Kish
(1992). It employs solely the design weights and requires an additional data
frame as input of the survey data argument, whose structure is specified in
Section 4.3. The specific design effect is estimated as:

deffd = nd ·
∑
h∈d

W 2
dh

ndh

where h refers to a generic sampling unit in area d (e.g., the household). In-
dicating with subscript c the generic individual in sampling unit h, we define
Wdh = N̂dh/N̂d, N̂dh = ∑

c∈hwdhc, N̂d = ∑
h∈dwdh and nd = ∑

h∈d ndh. We de-
note with wdh and ndh the design weight and the sample size of unit h in area d,
respectively; while wdhc is the individual design weight. Thus, the design-based
variance can be defined as

Vcd [Yd] = f(θd)
nd

deffd, (1)

while φd + 1 = ñd = nd/deffd. This method has already been used in small area
context by Wieczorek and Hawala (2011) and Liu et al. (2007). Kalton et al.
(2005) found this approximation accurate for proportions ranging between 0.2
and 0.8.

• "ols", implementing a variance smoothing model using a Generalized Variance
Function approach, as in Fabrizi et al. (2011) and Fabrizi and Trivisano (2016).
Considering the design-based variance as

Vcd [Yd] = f(θd)
nd

deff,

10

the smoothing procedure is based on the assumption that the design effect does
not vary across areas. By assuming V̂raw[Yd] as a raw estimator of complex
survey variance with large error, let us specify the following smoothing equation:

f(Yd)
V̂raw[Yd]

= ψnd + εd,

where ψ = 1/deff and εd are zero-mean and homoscedastic residuals. The model
is estimated using ordinary least squares via the gls() function from nlme
package (Pinheiro et al., 2021), providing the smoothed dispersion parameters
defined as φ̂d + 1 = ψ̂nd and the refined estimate as V̂[Yd] = f(yd)/(φ̂d + 1).

• "gls", extending the "ols" method in case of heteroskedasticity of the error
component εd of Equation 1. The default method assumes only heteroskedastic
error with a power variance function on absolute fitted values (see Pinheiro et al.,
2021, for further details).

2.4 Posterior inference
We are interested in making posterior inference on θd. Since we are not dealing with
conjugate models, not even conditionally, the posterior inference is carried out through
MCMC draws. As a point estimate, the optimal Bayes estimator of θd under quadratic
loss is considered, i.e., the posterior mean. We indicate it with the notation:

θ̂HBd = E[θd|y] d = 1, . . . D. (2)

where HB states for hierarchical Bayes. The point estimates can be complemented with
uncertain measures like the posterior standard deviation and credible intervals, deter-
mined by the quantiles of the posterior distribution. The generic method summary()
applied on as S3 object of class ‘fitsae’ produces by default point estimates (posterior
mean and median) and credible intervals (at 95% and 50% levels) for predictors, basic
model parameters, and random effects.

2.4.1 Out-of-sample treatment

The package provides an automatic out-of-sample prediction. This feature is available
for all considered likelihood, except for Flexible Beta, since in this specific case, θd
depends on its sampling variance, which is not available in case of out-of-samples.

Recalling that θoosd , d = D̃, . . . , D denotes the out-of-sample target quantity, their
predictors are reported in Table 1. Note that they depend on ed: when spatial and
temporal dependencies are defined, sd and udt gain information from the assumed
correlation structure, whereas vd is always drawn from a zero-mean distribution, con-
tributing only to the posterior variability of θoosd . Exploiting the MCMC estimation
framework, it is possible to obtain a sample from the posterior of θoosd by combining the
samples drawn from the posterior of the involved parameters. Eventually, the point
predictor defined in (2) holds also for out-of-sample observations, together with the
other posterior summaries.

11

2.4.2 Diagnostics and goodness-of-fit tools

The method summary() returns, in addition, goodness-of-fit and model validation
diagnostics, as well as SAE-specific diagnostics. In the following, we provide a brief
theoretical overview of such measures.

One of the main advantages of estimating models within the Bayesian framework
is the plethora of tools that allow investigating model performances. Among the most
relevant ones, we can find those relying on the posterior predictive distribution, that
we denote with Y •d |y, d = 1, . . . , D. Area-specific Bayesian p values (BPd) under the
following discrepancy measure (You and Rao, 2002; Fabrizi et al., 2011) are computed:

BPd = P [Y •d > yd|y] , d = 1, . . . , D. (3)
In absence of systematic deviations, the expected Bayesian p value is 0.5, whereas
values near 0 or 1 highlight issues of over-estimation and under-estimation, respectively.

Information criteria are widely used in Bayesian inference to compare models with
different specifications, e.g., diverse distributional assumptions, random effects struc-
tures, or covariates. Following Vehtari et al. (2017), we consider the approximate
leave-one-out cross-validation information criterion (LOOIC) computed using Pareto-
smoothed importance sampling. It can be retrieved through the loo package and
is provided together with the approximate standard errors for estimated predictive
errors.

Stepping into SAE-specific diagnostics, the standard deviation reduction (SDRd)
indicator is commonly used to assess the decrease of uncertainty associated with the
employment of a small area model. It is obtained evaluating

SDRd = 1−

√√√√ V [θd|y]
E[V [Yd|η] |y] , d = 1, . . . , D, (4)

where the denominator is defined in this way when type disp = "neff", taking into
account the fact that V [Yd|η] has a posterior distribution to be summarized. Con-
versely, if type disp = "var", the denominator is replaced by V̂ [Yd]. This diagnostic
has to be considered with caution when performing model selection since it does not
account for the design bias of different model-based estimators, which could be relevant
even when the model is correct.

Lastly, the shrinkage bound rate (SBR) is computed:

SBR = 1
D̃

D̃∑
d=1

1{θ̂HBd ∈ (p∗d, Yd)}, (5)

where p∗d = exp(x>d β)/
[
1 + exp(x>d β)

]
is the synthetic estimate of θd. In fact, in the

standard Fay-Herriot model, the shrinking process is clearly identified by the shape of
the best linear unbiased predictor, for known values of β and σ2

v such as

γdYd + (1− γd)p∗d with γd = σ2
v

σ2
v + V[Yd|η] .

Beta regression models do not provide a closed form predictor, since the conditional
distribution of θd, ∀d = 1, . . . , D does not belong to a standard family. Janicki (2020)

12

shows that, in a Beta regression model with standard diffuse priors, θ̂HBd converges to
the direct estimate as V(Yd|η) −→ 0 and the synthetic estimates as σ2

v −→ 0. The first
property has also been proved by Fabrizi et al. (2020). However, θ̂HBd is not bounded
by its convergence limits, conjecturing Yd < θ̂HBd < p∗d will hold only for V(Yd|η)
sufficiently small (Janicki, 2020). Thus, checking whether model estimates fit inside
the bound, could yield important insights into the shrinking process and estimators
consistency.

2.4.3 Benchmarking procedure

The benchmark() function gives the chance to perform a benchmarking procedure on
model-based estimates. The need for benchmarking arises since model-based estimates
may widely differ from direct estimates and, consequently, model estimates aggregates
may widely differ from corresponding direct estimates. However, latter quantities
refer to a larger geographical area or a larger socio-demographic group whose target
domains are a subset of, and, therefore. are considered to be reliable. This feature may
introduce drawbacks in many situations (e.g., when small area estimates are used to
allocate funding), and exact benchmarking is required to avoid surpluses or shortfalls
(Zhang and Bryant, 2020). When adopting a benchmarking approach, model-based
estimates are constrained to direct estimates of supra-domain sets.

Existing methods generally address the benchmark issue as a constraint to be im-
posed. The differences among various methods are in the way such constraints are
interpreted and incorporated into the estimation. Some methods estimate the small
area models and then modify the resulting point estimators to satisfy the benchmark-
ing constraints as a two-step procedure (Datta et al., 2011a). Other methods treat
benchmarks as vincula on the underlying small area parameters or on their point esti-
mators which are directly incorporated into the probabilistic structure of the small area
model, either in a revised likelihood or in the prior distributions (Pfeffermann et al.,
2014; Ranalli et al., 2018; Zhang and Bryant, 2020). By considering only Bayesian
benchmarking methods, when models yield a full posterior distribution for all un-
known quantities after benchmarking, they end up being categorized as fully Bayesian.
While, methods such as the one we adopted, which derive posterior distributions with-
out benchmarking and separately benchmark point estimates, do not fall within this
definition. An up-to-date review can be found in Zhang and Bryant (2020).

In our non-fully Bayesian approach, widely explained by Datta et al. (2011a), point
estimates from a Bayesian model, estimated via the fit sae() function, are adjusted
to obtain a new set of estimates that satisfies the constraints. Benchmarking could
solely target the point estimators (single benchmarking) or, alternatively, also ensemble
variability (double benchmarking). Furthermore, an estimate of the overall posterior
risk is provided, aggregated for all areas. This value is only yielded when in-sample
areas are treated and a single benchmarking is performed.

The considered benchmarking procedures require the definition of a set of area-
specific weights, which in the case of proportions are defined as wd = Nd/

∑D
j=1 Nj,

where Nd is the population size for area d. The benchmark is indicated with B, and it
could be the reliable direct estimate referring to a larger area or a prespecified value
from another data source or, eventually, B = ∑D

d=1 wdYd, if the aim is to perform
internal benchmarking. The function allows performing three different benchmarking
methods, according to the argument method.

13

• The "ratio" method provides benchmarked estimates θ̂BMd that minimize the
posterior expectation of the weighted squared error loss. The benchmarked esti-
mates are

θ̂BMd = θ̂HBd + B −∑dwdθ̂
HB
d

s
rd, (6)

where rd = θ̂HBd , and s = ∑
dwdθ̂

HB
d . Datta et al. (2011a) provide also the

posterior risk for the whole set of benchmarked estimates:

∑
d

wd
rd

[
V[θd|y] + (B −∑dwdYd)2

s2 r2
d

]
. (7)

• The "raking" method provides the benchmarked estimate in Equation 6 and
the posterior risk in Equation 7 with rd = 1 and s = 1.

• The "double" method extends this procedure accounting for a further bench-
mark on the weighted ensemble variability. The simultaneous constraints are∑
dwdθ̂

BM
d = B and ∑

dwd(θ̂BMd − B)2 = H, where H is a prespecified value
of the estimators variability taken from other sources. The expression of the
resulting benchmarked estimate is:

θ̂BMd = B +
√√√√√ H∑

dwd
(
θ̂HBd −∑dwdθ̂

HB
d

)2

(
θ̂HBd −

∑
d

wdθ̂
HB
d

)
.

Note that the benchmarking procedure can be performed in case of temporal or spatio-
temporal models by specifying multiple time-period benchmarks.

3 Datasets
In SAE field, data typically come from multiple sources. Direct estimators and their
sampling variances typically result from survey data, aggregated at area-level, while
covariates come from census and/or administrative/register sources. As a consequence,
explanatory variables, aggregated at area level, are required to be defined at population
level i.e., without error, and potentially correlated with the target variable. In order
to outline the workflow of tipsae package, its functions are illustrated in Section 4
and applied to an example dataset, released within the package. The whole dataset is
named emilia and consists of a panel on poverty mapping concerning 38 health dis-
tricts within the Emilia-Romagna region, located in North-East of Italy, with annual
observations recorded from 2014 to 2018. We built it starting from model-based esti-
mates and related coefficients of variation freely available on Emilia-Romagna region
website 1. Since it is used for illustrative purposes only, such estimates are assumed
to be unreliable direct estimates, requiring an SAE procedure.

We considered the Head-Count Ratio estimates as direct ($hcr) and its associated
variance as sampling variance ($vars). A fake standardized covariate $x has been

1https://statistica.regione.emilia-romagna.it/documentazione/pubblicazioni/
documenti_catalogati/stima-poverta-2009-2018-distretti-sociosanitari-province-emilia-romagna

14

https://statistica.regione.emilia-romagna.it/documentazione/pubblicazioni/documenti_catalogati/stima-poverta-2009-2018-distretti-sociosanitari-province-emilia-romagna
https://statistica.regione.emilia-romagna.it/documentazione/pubblicazioni/documenti_catalogati/stima-poverta-2009-2018-distretti-sociosanitari-province-emilia-romagna

generated. We also provide area sample sizes ($n), population sizes ($pop), province
identification ($prov), years ($year) and health district name ($id). The emilia
dataset can be loaded as follows.

R> library("tipsae")
R> data("emilia")
R> head(emilia)

id prov year hcr vars n x pop
1 CASALECCHIO DI RENO BO 2014 0.0404 9.090478e-05 42 -0.2624 108261
2 CITTA’ DI BOLOGNA BO 2014 0.0825 6.404001e-05 285 -0.0008 371151
3 IMOLA BO 2014 0.1033 3.120275e-04 49 -0.0522 130007
4 PIANURA EST BO 2014 0.0633 1.025764e-04 190 -0.4007 154213
5 PIANURA OVEST BO 2014 0.0625 1.562500e-04 10 -0.2277 80951
6 PORRETTA TERME BO 2014 0.1276 6.643609e-04 26 -0.4434 56428

A cross-sectional subset concerning a single year (2016) is taken from emilia, for non-
temporal models illustration purpose: it is named emilia cs and can be loaded as
follows.

R> data("emilia_cs")

4 Workflow
In this section, a typical flow of an SAE analysis is outlined with step-by-step in-
structions, showing the potential of tipsae tools. As illustrated with a flowchart in
Figure 1, the package is structured into three parts that relate to: model building
and fitting (, Section 4.1), diagnostics and results displaying (, Section 4.2), and
complementary tools for SAE analysis (, Section 4.3). Figure 1 displays also the pos-
sible connections with external functions, drawn with dashed arrows, useful to further
exploit the produced objects.

4.1 Model building and fitting
The first step of the workflow represents the core of our package, concerning the estima-
tion of models with the diverse extensions and parametrizations defined in Section 2.
The sole function fit sae() allows users to construct personalized models and fit them
using Stan routines, called up through the sampling() function of rstan package. It
also allows customized parallel computing when the model runs on multiple chains. A
simple parallelization can be set out using the following command, which imposes a
number of R processes equal to the number of CPU cores.

R> options(mc.cores = parallel::detectCores())

The function setDefaultClusterOptions() from parallel package can be used to
change the default options for parallelization. For further details, see rstan guidelines.

A complete list of the input arguments of the fit sae() function is specified in
Table 2, and a first example of model fitting on the emilia cs dataset is provided.
Firstly, we consider model default options: a Beta likelihood and a Gaussian prior for

15

data

fit sae() summary()

density()

plot()

map()

extract()

rstan
bayesplot loo

$s
ta

nf
it

$l
oo

smoothing()

nlme

$g
ls

benchmark()

export()

Figure 1: Flowchart that describe the structure of the tools implemented in tipsae
package.

unstructured random effects. Since emilia cs dataset contains the sampling variance
as a measure of dispersion, disp direct must be fixed equal to "var", setting a mean-
variance parametrization. Moreover, argument domains size has to be specified for
having visual design consistency diagnostics in the subsequent plotting function.

The estimation can be done in practice by running the fit sae() function as
follows. For the sake of reproducibility, we set seed=0.

R> fit_beta <- fit_sae(formula_fixed = hcr ˜ x,
+ data = emilia_cs,
+ domains = "id",
+ type_disp = "var",
+ disp_direct = "vars",
+ domain_size = "n",
+ seed = 0)

Note that further arguments, concerning rstan::sampling() function options, can
be additionally specified. In particular, we mention those related to HMC algorithm
setting such as iter, allowing to set the number of iterations per chain (default equal
to 2000), warmup, determining the number of iterations per chain to be discarded as
warm-up period (default iter/2), chains, fixing the number of independent Markov
chains (default 4).

Different models can be estimated relying on diverse assumptions, being subse-
quently compared with each other. For example, we assume a Flexible Beta likelihood
and a variance gamma shrinking prior for the unstructured random effect, in order to
propose a more flexible model for the data. Given the increasing complexity of model
assumptions, more HMC iterations are required, together with a higher proposal ac-
ceptance probability (adapt delta).

R> fit_FB <- fit_sae(formula_fixed = hcr ˜ x,

16

Argument Short description Default

formula fixed formula object specifying the fixed regression part. -
data data.frame containing all relevant quantities. -
domains data column name displaying domains names. If

NULL (default) the domains are denoted with a pro-
gressive number.

NULL

type disp Parametrization of the dispersion parameter. The
choices are variance ("var") or φd + 1 ("neff") pa-
rameter.

"neff"

disp direct data column name displaying given values of sam-
pling dispersion for each domain. In out-of-sample
areas, dispersion must be NA.

-

domain size data column name indicating domain sizes (op-
tional). In out-of-sample areas, sizes must be NA.

NULL

likelihood Sampling likelihood to be used. The choices
are "beta", "flexbeta", "Infbeta0", "Infbeta1"
and "Infbeta01".

"beta"

prior reff Prior distribution of the unstructured random ef-
fect. The choices are: "normal", "t", "VG".

"normal"

spatial error Logical indicating whether to include a spatially
structured random effect.

FALSE

spatial df Object of class SpatialPolygonsDataFrame with
the shapefile of the studied region. Required if
spatial error = TRUE.

NULL

temporal error Logical indicating whether to include a temporally
structured random effect.

FALSE

temporal variable data column name indicating temporal variable.
Required if temporal error = TRUE.

NULL

adapt delta HMC option: target average proposal acceptance
probability. See Stan documentation.

0.95

max treedepth HMC option: maximum allowed tree depth for each
transition. See Stan documentation.

10

init HMC option: initial values setting. The choices are:
"0", "random", or manual setup via list or function.
See Stan documentation.

"0"

... Further inputs for the sampling function.

Table 2: Input arguments for function fit sae().

17

Position Name Short description

1 model settings List summarizing all the assumptions of the model:
sampling likelihood, presence of intercept, dispersion
parametrization, random effects priors and possible
structures.

2 data obj List containing input objects including in-sample and
out-of-sample relevant quantities.

3 stanfit ‘stanfit’ object, outcome of sampling() function con-
taining full posterior draws. For details, see rstan doc-
umentation.

4 pars interest Vector containing the names of parameters whose poste-
rior samples are stored.

5 call Image of the function call that produced the ‘fitsae’
object.

Table 3: Components of ‘fitsae’ objects.

+ data = emilia_cs,
+ domains = "id",
+ type_disp = "var",
+ disp_direct = "vars",
+ domain_size = "n",
+ likelihood = "flexbeta",
+ prior_reff = "VG",
+ adapt_delta = 0.99,
+ iter = 8000,
+ seed = 0)

Warnings:
1: There were 10 divergent transitions after warmup. See
http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
to find out why this is a problem and how to eliminate them.
2: Examine the pairs() plot to diagnose sampling problems

The fit sae() function returns an S3 object of class ‘fitsae’, being a list of
relevant items that are listed in Table 3. The core element is the $stanfit object,
incorporating posterior draws and raw MCMC information to be extracted, whereas
the remaining elements only provide details about the function call and model settings.

4.2 Diagnostics and results displaying
After the MCMC drawing, a careful check on algorithm convergence is required, in or-
der to validate posterior results. With this aim, our suggestion is to exploit the plethora
of diagnostic methods implemented for ‘stanfit’ objects within the bayesplot pack-
age. For example, the following code generates the trace-plots related to the fit beta

18

beta0[1] beta[1]

0 200 400 600 800 1000 0 200 400 600 800 1000

0.0

0.1

0.2

0.3

0.4

0.5

-2.6

-2.5

-2.4

-2.3

-2.2

Chain

1

2

3

4

Figure 2: Traceplots of the parameters β0 and β1 of the Beta regression model.

model, as in Figure 2, useful to visually inspect the convergence of the chains to a
unique stationary distribution.

R> library("bayesplot")
R> post_beta <- as.array(fit_beta$stanfit, pars = c("beta0", "beta"))
R> mcmc_trace(x = post_beta)

The ‘stanfit’ object also provides useful visual diagnostics to deepen the warnings
printed by Stan, such as those about the maximum tree depth and divergent transi-
tions after the warm-up period.

However, small area diagnostics are required at this stage, in order to check whether
results meet specific properties which turn out to be desirable in such context. Peculiar
diagnostic measures can be obtained through summary() method applied on ‘fitsae’
objects. Besides the printed output, the method produces an object of class ‘summary -
fitsae’ which contains relevant information for posterior inference. Argument probs
allows specifying the quantiles of interest to be visualized as posterior summary mea-
sures. The logical argument compute loo allows deciding whether LOOIC should be
computed or not.

R> summ_beta <- summary(fit_beta)

Warnings:
Some Pareto k diagnostic values are too high.
See help(’pareto-k-diagnostic’) for details.

R> summ_beta

Summary for the SAE model call:
fit_sae(formula_fixed = hcr ˜ x, domains = "id", disp_direct = "vars",

type_disp = "var", domain_size = "n", data = emilia_cs, seed = 0)

----- S.D. of the random effects: posterior summaries -----

mean sd 2.5% 25% 50% 75% 97.5%
sigma_v 0.267 0.055 0.168 0.23 0.263 0.299 0.388

----- Fixed effects coefficients: posterior summaries -----

19

mean sd 2.5% 25% 50% 75% 97.5%
(Intercept) -2.428 0.060 -2.550 -2.467 -2.428 -2.387 -2.309
x 0.253 0.061 0.135 0.213 0.253 0.293 0.372

--------------- Model diagnostics summaries ---------------

Min. 1st Qu. Median Mean 3rd Qu. Max.
Residuals -0.016 -0.004 0.002 0.004 0.011 0.032
S.D. Reduction -0.100 0.197 0.254 0.240 0.318 0.390
Bayesian p-value 0.172 0.339 0.459 0.461 0.555 0.785

Shrinkage Bound Rate: 100 %

LOO Information Criterion:
Estimate SE

elpd_loo 87.719 3.629
p_loo 17.787 2.546
looic -175.439 7.259

If printed, the produced summary displays:

• Posterior summaries about the fixed effect coefficients and the scale parameters
related to unstructured and possible structured random effects.

• Model diagnostics summaries of (a) model residuals; (b) standard deviation re-
ductions computed using Equation 4; (c) Bayesian p values obtained approxi-
mating the Equation 3 with the MCMC samples.

• Shrinkage bound rate, defined in Equation 5.

• LOOIC and related diagnostics from the loo package.

4.2.1 What can accidentally be done with a ‘summary fitsae’ object

The ‘summary fitsae’ object contains additional valuable elements for further explo-
ration. For instance, the $loo element consists of the whole object of class ‘loo’ which
may be employed in external functions, such as the ones provided by loo package e.g.,
for model comparison, as follows.

R> summ_FB <- summary(fit_FB)

Warnings:
Some Pareto k diagnostic values are too high.
See help(’pareto-k-diagnostic’) for details.

R> library("loo")
R> loo_compare(list("beta" = summ_beta$loo, "flexbeta" = summ_FB$loo))

elpd_diff se_diff
flexbeta 0.0 0.0
beta -6.9 2.9

20

The output shows that the Flexible Beta model has a significantly higher expected
log pointwise predictive density for a new dataset, gaining in prediction power with
respect to the default model.

Another element that can be employed in external functions to assess model good-
ness of fit is $y rep, an array with values generated from the posterior predictive
distribution, enabling the implementation of posterior predictive checks through the
bayesplot package. The observed data, required for the checks, can be extracted
through $direct est element. The following code allows comparing the empirical
densities of generated samples under the considered models, reported in Figure 3.
R> library("ggplot2")
R> ppc_dens_overlay(y = summ_beta$direct_est,
+ yrep = summ_beta$y_rep[1:100,]) + ggtitle("Beta likelihood")
R> ppc_dens_overlay(y = summ_FB$direct_est,
+ yrep = summ_FB$y_rep[1:100,]) + ggtitle("Flexible Beta likelihood")

0.05 0.10 0.15 0.20

y

yrep

Beta likelihood

0.05 0.10 0.15 0.20

y

yrep

Flexible Beta likelihood

Figure 3: The empirical densities from posterior predictive samples (yrep) versus the
observed data one (y).

Lastly, all the posterior summaries related to random effects are stored in the
$raneff element, being a list of ‘data.frame’ objects, one for each type: $unstructured,
$temporal, and $spatial. Such outputs may be exploited to produce meaningful
plots, e.g., the caterpillar plot of Figure 4, created via the following code.
R> ggplot(summ_beta$raneff$unstructured, aes(x = reorder(Domains, mean))) +
+ geom_point(aes(y = mean)) +
+ geom_linerange(aes(ymin = ‘2.5%‘, ymax = ‘97.5%‘)) +
+ geom_hline(yintercept = 0, lty = 2) +
+ ylab("Random effect") + xlab("") +
+ theme_bw(base_size = 12) +
+ theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust = 1))

4.2.2 Ad-hoc plot functions

Our package comes equipped with ad-hoc functions for visual diagnostic tools. The
S3 object ‘summary fitsae’ can be used as input for plot() and density() visual
methods as well as for map() function.

21

-0.5

0.0

0.5

C
E

N
T

R
O

-N
O

R
D

P
A

R
M

A

V
IG

N
O

L
A

S
U

D
 E

S
T

L
E

V
A

N
T

E

S
A

S
S

U
O

L
O

P
IA

N
U

R
A

 O
V

E
S

T

C
A

S
A

L
E

C
C

H
IO

 D
I
R

E
N

O

S
A

N
 L

A
Z

Z
A

R
O

 D
I
S

A
V

E
N

A

F
ID

E
N

Z
A

P
IA

N
U

R
A

 E
S

T

L
U

G
O

P
A

V
U

L
L

O
 N

E
L

 F
R

IG
N

A
N

O

M
O

D
E

N
A

S
U

D
-E

S
T

R
A

V
E

N
N

A

S
C

A
N

D
IA

N
O

M
IR

A
N

D
O

L
A

O
V

E
S

T

IM
O

L
A

C
O

R
R

E
G

G
IO

C
IT

T
A

' D
I
B

O
L

O
G

N
A

C
A

S
T

E
L

N
U

O
V

O
 N

E
' M

O
N

T
I

P
O

N
E

N
T

E

R
IC

C
IO

N
E

C
A

S
T

E
L

F
R

A
N

C
O

 E
M

IL
IA

C
IT

T
A

' D
I
P

IA
C

E
N

Z
A

R
U

B
IC

O
N

E

R
IM

IN
I

M
O

N
T

E
C

C
H

IO

F
A

E
N

Z
A

C
A

R
P

I

V
A

L
L

I
T

A
R

O
 E

 C
E

N
O

G
U

A
S

T
A

L
L

A

P
O

R
R

E
T

T
A

 T
E

R
M

E

R
E

G
G

IO
 E

M
IL

IA

C
E

S
E

N
A

 -
 V

A
L

L
E

 D
E

L
 S

A
V

IO

F
O

R
L

I'

R
a

n
d

o
m

 e
ff

e
c
t

Figure 4: Caterpillar plot of unstructured random effects from Beta regression model.

The generic method plot() provides, in a grid (default) or sequence, (a) a scatter-
plot of direct estimates versus model-based estimates, visually capturing the shrinking
process, (b) a Bayesian p values histogram, (c) a boxplot of standard deviation reduc-
tion values, and, if areas sample sizes are provided as input in fit sae(), (d) a scat-
terplot of model residuals versus sample sizes, in order to check for design-consistency
i.e., as long as sizes increase residuals should converge to zero. The following code line
produces Figure 5.

R> plot(summ_beta)

The method density() provides, in a grid (default) or sequence, the density plot
of direct estimates versus HB model estimates and the density plot of standardized
posterior means of the random effects versus standard normal, in order to check for
Gaussian assumption. Figure 6 is produced as the output of the following command.

R> density(summ_beta)

Lastly, the map() function enables the investigation of the analysed phenomenon by
accounting for its geographical dimension, if it exists. More in detail, a ‘SpatialPoly-
gonsDataFrame’ object from the sp package should be provided as input in spatial -
df argument. The spatial id domains argument must receive as input the name of
spatial df variable containing area denominations, in order to correctly match the
areas. If such names match the ones provided through the original dataset, no extra
arguments are required. Otherwise, the match names argument should receive an
encoding two-columns ‘data.frame’: the first with the original data coding (domains)
and the second one with corresponding spatial df object labels. The feature to be
displayed on the map can be defined in quantity argument, choosing among HB model
estimates HB est, direct estimates Direct est, posterior standard deviations SD, and
benchmarked estimates Bench est when a ‘benchmark fitsae’ class object is given as
input (see Section 4.3). The following code loads the Emilia-Romagna health districts
shapefile and produces the maps in Figure 7, with model-based estimates and their
posterior standard deviations.

22

0.04

0.08

0.12

0.04 0.08 0.12
Direct est.

H
B

 e
st

.

0

2

4

6

0.00 0.25 0.50 0.75 1.00
Bayesian p−values

C
ou

nt
s

−0.1

0.0

0.1

0.2

0.3

0.4

Distribution

S
.D

. R
ed

uc
tio

n

−0.01

0.00

0.01

0.02

0.03

0 100 200
Domain sample size

R
es

id
ua

ls

Figure 5: plot() method outcome on object of class ‘summary fitsae’.

R> data("emilia_shp")
R> map(x = summ_beta,
+ spatial_df = emilia_shp,
+ spatial_id_domains = "NAME_DISTRICT")
R> map(x = summ_beta,
+ spatial_df = emilia_shp,
+ quantity = "SD",
+ spatial_id_domains = "NAME_DISTRICT")

4.2.3 Take-home function

Lastly, ‘summary fitsae’ object provides target parameters posterior and model-based
estimates, visually accessible through the function extract() as follows.

R> HB_estimates <- extract(summ_beta)
R> head(HB_estimates$in_sample)

Domains Direct est. HB est. sd 2.5%
1 CASALECCHIO DI RENO 0.0469 0.05511808 0.009143088 0.03696825
2 CITTA’ DI BOLOGNA 0.0681 0.06668932 0.008168604 0.05040972
3 IMOLA 0.0692 0.06723489 0.011631916 0.04467289
4 PIANURA EST 0.0636 0.06621838 0.009554082 0.04787149
5 PIANURA OVEST 0.0685 0.08465454 0.013695722 0.05789687
6 PORRETTA TERME 0.1174 0.09035749 0.019929132 0.05449263

25% 50% 75% 97.5%
1 0.04897258 0.05504724 0.06121161 0.07330119
2 0.06132649 0.06695005 0.07234576 0.08205602

23

0.1

0.2

0.3

0.4

−2 −1 0 1 2
Unstructured random effect

D
en

si
ty

Scaled random effects Standard normal

0

5

10

15

20

0.04 0.08 0.12
Estimates

D
en

si
ty

Direct est. HB est.

Figure 6: density() method visual outcome.

0.04

0.06

0.08

0.10

0.12

HB_est

0.010

0.014

0.018

0.022
SD

Figure 7: map() function visual outcome.

3 0.05913559 0.06721644 0.07501379 0.09011058
4 0.05944194 0.06623004 0.07286028 0.08465238
5 0.07552132 0.08449351 0.09385837 0.11194273
6 0.07645193 0.08868046 0.10297773 0.13293759

The function returns an object of class ‘estimates fitsae’, being a list of two data
frames, distinguishing between $in sample and $out of sample areas, which gathers
domains name, direct and HB estimates, as well as posterior summaries of parameters
θd, ∀d.

A function for exporting such results in CSV format is directly accessible, with
name export(). This function requires an ‘estimate fitsae’ object and a character
string naming the output file (argument file). It is also possible to indicate whether
to export both in and out of sample areas results (default, type = "all"), or only in
or out of sample areas, ("in" or "out", respectively), as follows.

R> export(HB_estimates,
+ file = "results.csv",
+ type = "all")

Additional arguments of write.csv() function from utils package can be further
indicated.

24

4.3 Complementary tools
Complementary tools for small-area analysis provided by the package are the smooth-
ing and benchmarking functions. The smoothing() function allows for data pre-
processing of sampling variance estimates and retrieving effective sample sizes, as
described in Section 2.3. After its usage, output results have to be incorporated in
the dataset used as input of the fit sae() function. The smoothing() function re-
quires as input the data including the direct estimates, whose variable name has to be
specified in direct estimates argument, the method to be used among "ols", "gls"
and "kish" (method), and the specification of a variance function f(θ), through var -
function argument. The default option (NULL) for f(θ) matches the proportion case,
being equal to θ(1− θ), while for other measures it can widely differ, for instance, the
Gini index variance can be approximated to f(θ) = θ2(1− θ2) (Fabrizi and Trivisano,
2016) and therefore the following object has to be provided in var function argument:

R> gini_variance <- function(x){ xˆ2 * (1 - xˆ2) }

If method "ols" or "gls" is chosen, the function requires the raw variance es-
timates (argument raw variance), areas sample sizes (areas sample sizes), and,
possibly, additional covariates (additional covariates), all of them being column
names of the ‘data.frame’ provided to the data argument. On the other hand,
method "kish" requires the domain names (area id, as column name in data) and
the specification of an additional dataset (survey data), defined at sampling unit level
(e.g., households). Such dataset must include sampling weights (weights), unit sizes
(sizes) and domain names (survey area id), in order to allow for matching. The
output is an object of ‘smoothing fitsae’ class, being a list of vectors including dis-
persion parameters estimates: both the variance and φ̂d. If "ols" or "gls" method
has been selected, the list incorporates also an object of class ‘gls’ from nlme pack-
age, ready to be further explored through nlme additional tools. The plot() method
is available for ‘smoothing fitsae’ objects, showing a boxplot of variance estimates,
when effective sample sizes are estimated through "kish" method, or a scatterplot of
both original and smoothed estimates versus sample sizes, when variance smoothing
is performed through "ols" or "gls".

R> smoo <- smoothing(data = emilia_cs,
+ direct_estimates = "hcr",
+ area_id = "id",
+ raw_variance = "vars",
+ areas_sample_sizes = "n",
+ var_function = NULL,
+ method = "ols")
R> smoo

Smoothing procedure for the dispersion parameters

* Adopted method: ols
* Variance function:
function(mu) {
mu * (1 - mu)}

25

Generalized Variance Function regression:

Generalized least squares fit by REML
Model: as.formula(paste0("y ˜ -1", str))
Data: regdata

AIC BIC logLik
481.1331 484.3549 -238.5666

Coefficients:
Value Std.Error t-value p-value

n 2.888026 0.1825709 15.81866 0

Standardized residuals:
Min Q1 Med Q3 Max

-1.5003066 -0.3865189 0.4100642 0.7766002 3.1200482

Residual standard error: 127.9598
Degrees of freedom: 38 total; 37 residual

Summaries of involved quantities

* Smoothed variance estimates:
Min. 1st Qu. Median Mean. 3rd Qu. Max.

7.71e-05 1.74e-04 3.81e-04 1.01e-03 1.20e-03 4.17e-03

* Differences between smoothed and raw variances:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.33e-03 -5.02e-04 -5.50e-05 -6.28e-04 2.21e-05 2.28e-04

* Smoothed Phi:
Min. 1st Qu. Median Mean 3rd Qu. Max.
27.9 85.6 181.0 256.0 372.0 822.0

R> emilia_cs$smoo_phi <- smoo$phi
R> emilia_cs$smoo_vars <- smoo$vars

The benchmark() function implements benchmarking procedures, described in Sec-
tion 2.4.3, on model-based estimates provided by indicating a ‘summary fitsae’ ob-
ject, given a vector of areas weights (share), in our case the population shares, a
benchmark value (bench), and a method among "raking", "ratio" and "double"
(method). When the double benchmarking method is selected, the user must also in-
dicate a second benchmark through the H argument, corresponding to the ensemble
variability. The output is an object of class ‘benchmark fitsae’, being a list including
the vector of benchmark estimates, the posterior risk, and relevant information about
the call. The method plot() is available for ‘benchmark fitsae’ objects, displaying

26

0.100

0.125

0.150

0.175

Bench_est

Figure 8: Benchmarked estimates plotted through map() function.

boxplots of original and benchmarked estimates in comparison with benchmark value.
A ‘benchmark fitsae’ object may be also used as input of map() function, in order
to spatially display benchmarked estimates, extract() or export() functions. The
first option is included in the following code, whose visual output is in Figure 8.

R> shares <- emilia_cs$pop / sum(emilia_cs$pop)
R> bmk <- benchmark(x = summ_beta,
+ bench = 0.13,
+ share = shares,
+ method = "raking")
R> map(x = bmk,
+ spatial_df = emilia_shp,
+ spatial_id_domains = "NAME_DISTRICT")

Benchmarking can be done on the whole set of areas (default option) or even on
a subset of them. In the latter case, the vector containing the names of the consid-
ered areas has to be indicated through the areas argument. Moreover, the function
automatically takes out-of-sample estimates if they are involved in the benchmarking
procedure. Benchmark estimates and posterior risk are stored within an object of class
‘benchmark fitsae’.

R> subset <- c("RIMINI", "RICCIONE", "RUBICONE",
+ "CESENA - VALLE DEL SAVIO")
R> pop <- emilia_cs$pop[emilia_cs$id %in% subset]
R> shares_subset <- pop / sum(pop)
R> bmk_subset <- benchmark(x = summ_beta,
+ bench = 0.13,
+ share = shares_subset,
+ method = "raking",
+ areas = subset)
R> bmk_subset

Benchmarked estimates

* Adopted method: raking
* Benchmark for indicator: 0.13

27

* Weighted sum of original estimates: 0.122
* Number of considered areas: RIMINI, RICCIONE, RUBICONE,

CESENA - VALLE DEL SAVIO

Summaries of involved quantities
* Shares:

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.169 0.198 0.212 0.250 0.264 0.407

* Benchmarked estimates:
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.121 0.129 0.133 0.132 0.136 0.142

* Posterior Risk: 0

* Differences between original and benchmarked estimates:
Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.00837 -0.00837 -0.00837 -0.00837 -0.00837 -0.00837

For temporal models, a benchmark can be specified only for one time period at a time,
indicated in the time argument.

4.4 Spatio-temporal examples
As explained in Section 2, it is possible to fit models that incorporate a spatial de-
pendency structure, a temporal dependency structure or even both of them. The first
extension, useful when the domains of interest are geographical entities, relaxes the
assumption of spatial independence. Commonly, the boundaries across areas are ar-
bitrarily set, and thus it can be reasonable to assume that the quantities of interest
belonging to neighbouring areas are correlated. This can happen when dealing with
data where the spatial dimension is relevant, e.g., agricultural, environmental, eco-
nomic and epidemiological analyses. A spatial extension can be implemented through
the fit sae() function by switching to TRUE the spatial error argument and sup-
plying an object of class ‘SpatialPolygonsDataFrame’ in spatial df argument, being
careful to include it ordered as the data object.

When dealing with panel data, such as the emilia dataset, a temporal depen-
dency structure has to be taken into account due to the presence of repeated measures
across time. It is possible to implement a temporal model by switching to TRUE the
temporal error argument and by providing the name of the dataset temporal variable
in temporal variable argument.

Note that if a spatio-temporal model is required, the domain records should keep
the same ordering within each recorded time in the data object. Hence, it is possible
to re-order the shapefile accordingly, using the following commands.

R> data("emilia")
R> data("emilia_shp")
R> emilia_shp_ord@data <- emilia_shp@data[match(unique(emilia$id),
+ emilia_shp@data$NAME_DISTRICT),]

28

The following code allows estimating a spatio-temporal model under a Beta likeli-
hood. In presence of structured random effects within the model, our suggestion is to
increase the max treedepth argument above 10, to improve the mixing of the HMC
algorithm. After estimating the model, the ‘fitsae’ object can be explored through
summary() method.

R> fit_ST <- fit_sae(formula_fixed = hcr ˜ x,
+ domains = "id",
+ disp_direct = "vars",
+ type_disp = "var",
+ domain_size = "n",
+ data = emilia,
+ spatial_error = TRUE,
+ spatial_df = emilia_shp_ord,
+ temporal_error = TRUE,
+ temporal_variable = "year",
+ max_treedepth = 15,
+ seed = 0)
R> summ_ST <- summary(fit_ST)
R> summ_ST

Summary for the SAE model call:
fit_sae(formula_fixed = hcr ˜ x, domains = "id", disp_direct = "vars",

type_disp = "var", domain_size = "n", data = emilia,
spatial_error = TRUE, spatial_df = emilia_shp,
temporal_error = TRUE, temporal_variable = "year",
max_treedepth = 15, seed = 0, iter = 2000)

----- S.D. of the random effects: posterior summaries -----

mean sd 2.5% 25% 50% 75% 97.5%
sigma_t 0.104 0.022 0.061 0.090 0.104 0.12 0.148
sigma_s 0.297 0.055 0.205 0.259 0.292 0.33 0.418

----- Fixed effects coefficients: posterior summaries -----

mean sd 2.5% 25% 50% 75% 97.5%
(Intercept) -2.273 0.016 -2.305 -2.284 -2.273 -2.261 -2.242
x 0.123 0.020 0.084 0.109 0.123 0.136 0.163

--------------- Model diagnostics summaries ---------------

Min. 1st Qu. Median Mean 3rd Qu. Max.
Residuals -0.024 -0.006 0.001 0.002 0.009 0.036
S.D. Reduction 0.113 0.372 0.456 0.445 0.517 0.677
Bayesian p-value 0.076 0.314 0.465 0.475 0.608 0.978

Shrinkage Bound Rate: 100 %

29

LOO Information Criterion:
Estimate SE

elpd_loo 484.699 8.332
p_loo 47.063 4.892
looic -969.398 16.664

In case of temporal or spatio-temporal object, it is possible to select the year of
interest for map plotting via map() or when performing benchmarking as follows:

R> shares <- aggregate(emilia$pop, list(emilia$year),
+ function(x) x / sum(x))
R> shares <- as.vector(t(shares[,-1]))
R> bmk_st <- benchmark(summ_ST,
+ bench = 0.09,
+ share = shares[1:38],
+ method = "raking",
+ time = "2014")

5 The Shiny Interface
The basic steps, constituting the workflow described in Section 4, have been embedded
within a Shiny application that assists the user from the data loading step to the
export of the outputs. The application can be launched without any preliminary
action running the following command.

R> runShiny_tipsae()

A browser window is opened, which allows users to navigate on the application, being
organized into 5 main tabs briefly described in what follows.

1. Home-page, where a schematic description of the application is provided.

2. Data-page, concerning the step of the data entry, providing also graphical ex-
ploratory tools. In the Loading Data subsection, a CSV file must be loaded, spec-
ifying the contents of the imported variable (e.g., response, covariates, dispersion
parameter, etc.). The "ols" and "gls" smoothing procedure (see Section 2.3)
can be carried out in the Smoothing part. Whereas, in Load shapefile, it is possi-
ble to include in the procedure a spatial structure: the user can choose to directly
load a SHP file or an RDS file containing a ‘SpatialPolygonsDataFrame’ object.
The last tab, named Data Summary, allows an accurate data exploration before
moving to the modelling step.

3. Model Fitting: where a small area model can be fitted. The application auto-
matically constrains the model choice among those allowed by the input data.
The progress of the model fitting is printed.

4. Once computations are completed, the mixing of the MCMC algorithm can be
checked through graphical tools within Check Convergence tab.

30

5. Lastly, if the algorithm has properly converged, the Results tab can be visualized.
Besides all the outputs described in Section 4, further graphical tools concerning
the random effects are also reported.

Notice that the Shiny app does not include all the package tools. Specifically, the
benchmarking procedure has not been implemented and the smoothing procedure does
not include as option the "kish" method. Such options, however, may be included in
future releases of the package.

6 Conclusions and future developments
The tipsae package is a dedicated tool for mapping proportions and indicators de-
fined on the unit interval, widely used to measure, for instance, unemployment, edu-
cational attainment and also disease prevalence. To the best of our knowledge, it is
the first package implementing Beta-based small area methods, particularly indicated
for unit interval responses. Such methods, developed within a Bayesian framework,
come equipped with a set of diagnostics and complementary tools, visualizing and
exporting functions. The features of the tipsae package assist the user in carrying
out a complete SAE analysis through the entire process of estimation, validation and
results presentation, making the application of Bayesian algorithms and complex SAE
methods straightforward. A Shiny application with a user-friendly interface can be
launched to further simplifies the process.

Additional features to be integrated in future releases could be, firstly, the imple-
mentation of shrinking priors for the regression coefficients, useful for variable selection
when several covariates are employed. Secondly, the Beta zero and/or one inflated ver-
sion already implemented could fail when very few zero or one values are observed.
Thus, a possible extension could comprise further flexible alternatives. Lastly, other
directions may focus on model extensions for variance shrinking (You and Chapman,
2006; Sugasawa et al., 2017), able to relax the assumption of known dispersion param-
eter, and for covariates measured with error (Arima et al., 2015).

References
S. Arima, G. S. Datta, and B. Liseo. Bayesian estimators for small area models when

auxiliary information is measured with error. Scandinavian Journal of Statistics, 42
(2):518–529, 2015.

M. Bauder, D. Luery, and S. Szelepka. Small area estimation of health insurance
coverage in 2010-2013. Technical report, 2015.

C. L. Bayes, J. L. Bazán, and C. Garćıa. A new robust regression model for proportions.
Bayesian Analysis, 7(4):841–866, 2012.

J. Besag, J. York, and A. Mollié. Bayesian image restoration with two applications
in spatial statistics. Annals of the Institute of Statistical Mathematics, 43(1):1–20,
1991.

R. S. Bivand, E. Pebesma, and V. Gomez-Rubio. Applied Spatial Data Analysis with
R. Springer-Verlag, 2013. URL https://asdar-book.org.

31

https://asdar-book.org

H. J. Boonstra. mcmcsae: Markov Chain Monte Carlo Small Area Estimation, 2021.
URL https://CRAN.R-project.org/package=mcmcsae. R package version 0.7.0.

P. J. Brown and J. E. Griffin. Inference with normal-gamma prior distributions in
regression problems. Bayesian Analysis, 5(1):171–188, 2010.

B. Carpenter, A. Gelman, M. D. Hoffman, D. Lee, B. Goodrich, M. Betancourt,
M. Brubaker, J. Guo, P. Li, and A. Riddell. Stan: A probabilistic programming
language. Journal of Statistical Software, 76(1):1–32, 2017.

W. Chang, J. Cheng, J. Allaire, C. Sievert, B. Schloerke, Y. Xie, J. Allen, J. McPher-
son, A. Dipert, and B. Borges. shiny: Web Application Framework for R, 2021.
URL https://CRAN.R-project.org/package=shiny. R package version 1.6.0.

G. S. Datta, M. Ghosh, R. Steorts, and J. Maples. Bayesian benchmarking with
applications to small area estimation. Test, 20(3):574–588, 2011a.

G. S. Datta, P. Hall, and A. Mandal. Model selection by testing for the presence
of small-area effects, and application to area-level data. Journal of the American
Statistical Association, 106(493):362–374, 2011b.

S. De Nicolò and A. Gardini. tipsae: Tools for Handling Indices and Proportions
in Small Area Estimation, 2022. URL https://CRAN.R-project.org/package=
tipsae. R package version 0.0.7.

S. De Nicolò, M. R. Ferrante, and S. Pacei. Small Area Estimation of Inequality
Measures Using a Beta Mixture, 2022. URL http://arxiv.org/abs/2209.01985.
arXiv Preprint arXiv:2209.01985v1.

M. D. Esteban, D. Morales, A. Pérez, and L. Santamaŕıa. Small area estimation of
poverty proportions under area-level time models. Computational Statistics & Data
Analysis, 56(10):2840–2855, 2012.

M. D. Esteban, M. J. Lombard́ıa, E. López-Vizcáıno, D. Morales, and A. Pérez. Small
area estimation of proportions under area-level compositional mixed models. Test,
29(3):793–818, 2020.

E. Fabrizi and C. Trivisano. Small area estimation of the gini concentration coefficient.
Computational Statistics & Data Analysis, 99:223–234, 2016.

E. Fabrizi, M. R. Ferrante, S. Pacei, and C. Trivisano. Hierarchical bayes multivari-
ate estimation of poverty rates based on increasing thresholds for small domains.
Computational Statistics & Data Analysis, 55(4):1736–1747, 2011.

E. Fabrizi, M. Ferrante, and C. Trivisano. Hierarchical beta regression models for the
estimation of poverty and inequality parameters in small areas. In M. Pratesi, editor,
Analysis of poverty data by small area estimation, pages 299–314. John Wiley &
Sons, 2016.

E. Fabrizi, M. R. Ferrante, and C. Trivisano. Bayesian small area estimation for
skewed business survey variables. Journal of the Royal Statistical Society C (Applied
Statistics), 67(4):861–879, 2018.

32

https://CRAN.R-project.org/package=mcmcsae
https://CRAN.R-project.org/package=shiny
https://CRAN.R-project.org/package=tipsae
https://CRAN.R-project.org/package=tipsae
http://arxiv.org/abs/2209.01985

E. Fabrizi, M. R. Ferrante, and C. Trivisano. A functional approach to small area
estimation of the relative median poverty gap. Journal of the Royal Statistical
Society A (Statistics in Society), 183(3):1273–1291, 2020.

S. Ferrari and F. Cribari-Neto. Beta regression for modelling rates and proportions.
Journal of Applied Statistics, 31(7):799–815, 2004.

J. I. Figueroa-Zúñiga, R. B. Arellano-Valle, and S. L. Ferrari. Mixed beta regression: A
bayesian perspective. Computational Statistics & Data Analysis, 61:137–147, 2013.

A. Freni-Sterrantino, M. Ventrucci, and H. Rue. A note on intrinsic conditional autore-
gressive models for disconnected graphs. Spatial and Spatio-Temporal Epidemiology,
26:25–34, 2018.

J. Gabry and T. Mahr. bayesplot: Plotting for Bayesian Models, 2021. URL https:
//mc-stan.org/bayesplot. R package version 1.8.1.

J. Gabry, B. Goodrich, and M. Lysy. rstantools: Tools for Developing R Packages
Interfacing with Stan, 2020. URL https://CRAN.R-project.org/package=
rstantools. R package version 2.1.1.

A. Gelman. Prior distributions for variance parameters in hierarchical models.
Bayesian Analysis, 1(3):515–534, 2006.

F. Giovinazzi and D. Cocchi. Social integration of second generation students in the
italian school system. Social Indicators Research, pages 1–21, 2021.

B. Goodrich, J. Gabry, I. Ali, and S. Brilleman. rstanarm: Bayesian Applied
Regression Modeling via Stan, 2020. URL https://mc-stan.org/rstanarm.
R package version 2.21.1.

IBM Corporation. IBM SPSS Statistics 19. IBM Corporation, Armonk, NY, 2010.
URL http://www-01.ibm.com/software/analytics/spss/.

R. Janicki. Properties of the beta regression model for small area estimation of
proportions and application to estimation of poverty rates. Communications in
Statistics-Theory and Methods, 49(9):2264–2284, 2020.

G. Kalton, J. Brick, and T. Le. Estimating components of design effects for use in
sample design. Household Sample Surveys in Developing and Transition Countries
(Sales No. E. 05. XVII. 6), 2005.

L. Kish. Weighting for unequal pi. Journal of Official Statistics, 8(2):183, 1992.

A.-K. Kreutzmann, S. Pannier, N. Rojas-Perilla, T. Schmid, M. Templ, and N. Tza-
vidis. The R package emdi for estimating and mapping regionally disaggregated
indicators. Journal of Statistical Software, 91(7):1–33, 2019. doi: 10.18637/jss.v091.
i07.

B. Liu, P. Lahiri, and G. Kalton. Hierarchical bayes modeling of survey-weighted small
area proportions. In Proceedings of the American Statistical Association, Survey
Research Section, pages 3181–3186, 2007.

33

https://mc-stan.org/bayesplot
https://mc-stan.org/bayesplot
https://CRAN.R-project.org/package=rstantools
https://CRAN.R-project.org/package=rstantools
https://mc-stan.org/rstanarm
http://www-01.ibm.com/software/analytics/spss/

Y. Marhuenda, I. Molina, and D. Morales. Small area estimation with spatio-temporal
fay-herriot models. Computational Statistics & Data Analysis, 58:308–325, 2013.

Y. Marhuenda, D. Morales, and M. del Carmen Pardo. Information criteria for fay-
herriot model selection. Computational Statistics & Data Analysis, 70:268–280,
2014.

S. Migliorati, A. M. Di Brisco, and A. Ongaro. A New Regression Model for Bounded
Responses. Bayesian Analysis, 13(3):845–872, 2018.

I. Molina and Y. Marhuenda. sae: An R package for small area estimation. The R
Journal, 7(1):81, 2015.

D. Morales, M. C. Pagliarella, and R. Salvatore. Small area estimation of poverty
indicators under partitioned area-level time models. SORT, 39(1):19–34, 2015.

M. Morris, K. Wheeler-Martin, D. Simpson, S. J. Mooney, A. Gelman, and C. DiMag-
gio. Bayesian hierarchical spatial models: Implementing the besag york mollié model
in Stan. Spatial and Spatio-Temporal Epidemiology, 31:100301, 2019.

R. Ospina and S. L. Ferrari. Inflated beta distributions. Statistical Papers, 51(1):
111–126, 2010.

D. Pfeffermann, A. Sikov, and R. Tiller. Single- and two-stage cross-sectional and time
series benchmarking procedures for small area estimation. Test, 23(4):631–666, 2014.

J. Pinheiro, D. Bates, S. DebRoy, D. Sarkar, and R Core Team. nlme: Linear
and Nonlinear Mixed Effects Models, 2021. URL https://CRAN.R-project.org/
package=nlme. R package version 3.1-152.

M. G. Ranalli, G. E. Montanari, and C. Vicarelli. Estimation of small area counts
with the benchmarking property. Metron, 76(3):349–378, 2018.

J. N. Rao and I. Molina. Small-Area Estimation. John Wiley & Sons, 2015.

R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2021. URL https://www.
R-project.org.

A. Riebler, S. H. Sørbye, D. Simpson, and H. Rue. An intuitive bayesian spatial
model for disease mapping that accounts for scaling. Statistical Methods in Medical
Research, 25(4):1145–1165, 2016.

SAS Institute Inc. SAS/STAT Software, Version 9.1. Cary, NC, 2003. URL https:
//www.sas.com/.

T. Schmid, F. Bruckschen, N. Salvati, and T. Zbiranski. Constructing sociodemo-
graphic indicators for national statistical institutes by using mobile phone data:
Estimating literacy rates in senegal. Journal of the Royal Statistical Society A
(Statistics in Society), 180(4):1163–1190, 2017.

D. F. Souza and F. A. Moura. Multivariate Beta Regression with Application in Small
Area Estimation. Journal of Official Statistics, 32(3):747–768, 2016.

34

https://CRAN.R-project.org/package=nlme
https://CRAN.R-project.org/package=nlme
https://www.R-project.org
https://www.R-project.org
https://www.sas.com/
https://www.sas.com/

Stan Development Team. RStan: The R Interface to Stan, 2020. URL http:
//mc-stan.org. R package version 2.21.2.

Stata Corporation. Stata Data Analysis and Statistical Software. Stata Corporation,
2007. URL http://www.stata.com/.

S. Sugasawa, H. Tamae, and T. Kubokawa. Bayesian estimators for small area models
shrinking both means and variances. Scandinavian Journal of Statistics, 44(1):150–
167, 2017.

A. Vehtari, A. Gelman, and J. Gabry. Practical bayesian model evaluation using leave-
one-out cross-validation and waic. Statistics and Computing, 27(5):1413–1432, 2017.

A. Vehtari, J. Gabry, M. Magnusson, Y. Yao, P.-C. Bürkner, T. Paananen, and
A. Gelman. loo: Efficient Leave-One-Out Cross-Validation and WAIC for Bayesian
Models, 2020. URL https://mc-stan.org/loo. R package version 2.4.1.

J. Wieczorek and S. Hawala. A bayesian zero-one inflated beta model for estimating
poverty in us counties. In Proceedings of the Joint Statistical Meetings, American
Statistical Association, 2011.

J. Wieczorek, C. Nugent, and S. Hawala. A bayesian zero-one inflated beta model for
small area shrinkage estimation. In Proceedings of the Joint Statistical Meetings,
American Statistical Association, 2012.

Y. You and B. Chapman. Small area estimation using area level models and estimated
sampling variances. Survey Methodology, 32(1):97, 2006.

Y. You and J. Rao. Small area estimation using unmatched sampling and linking
models. Canadian Journal of Statistics, 30(1):3–15, 2002.

J. L. Zhang and J. Bryant. Fully bayesian benchmarking of small area estimation
models. Journal of Official Statistics, 36(1):197–223, 2020.

35

http://mc-stan.org
http://mc-stan.org
http://www.stata.com/
https://mc-stan.org/loo

	Introduction
	Methodology
	Area-level models: Likelihoods
	The Beta model
	The Flexible Beta model
	The Zero/One Inflated Beta model

	Prior distributions
	Unstructured random effects
	Spatially structured random effects
	Temporally structured random effects

	Data pre-processing
	Posterior inference
	Out-of-sample treatment
	Diagnostics and goodness-of-fit tools
	Benchmarking procedure

	Datasets
	Workflow
	Model building and fitting
	Diagnostics and results displaying
	What can accidentally be done with a summaryfitsae object
	Ad-hoc plot functions
	Take-home function

	Complementary tools
	Spatio-temporal examples

	The Shiny interface
	Conclusions and future developments

