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Introduction
The traditional analysis of the location choice by a monopoly has been developed thinking of

static monopolies, namely monopolies selling non-durable goods. At the same time, the spatial
approach has been widely used in applications to the choice of product design. In a spatial
context, the question is if monopoly power leads to the plant location which minimizes transport
costs. In terms of product characteristics the question is whether a monopoly will produce the
variety which maximizes the social welfare—I do not treat here the case of multiplant and
multiproduct monopoly. The definition of product specification by way of spatial models,
following Hotelling (1931), is usually one of horizontal differentiation, where the consumers do
not unanimously rank the different specifications of a good footnote .

In the present paper I shall make use of the definition of a ”spatial network”, which is
familiar to students in spatial economics. Broadly speaking a location network is a set of
interconnected market points. The location of a seller of non-durables on a network has been
extensively studied and it is known to be socially inefficient when mill pricing is used and
socially efficient when delivered pricing is used—see Gabszewicz and Thisse (1986). Under mill
pricing the consumers bear the transportation cost. However, under delivered pricing the
monopolist directly bears the transportation costs. This is why the seller chooses the location on
the network which is socially optimal—for the quantities he decides to sell footnote . The
question in the present paper is whether a monopolist who sells a durable good will locate in the
same way as predicted by the theory for standard monopolies.

Although the literature on durable goods monopoly is rather large, it has not considered so
far the location problem. A summary of this literature is beyond the scope of the present paper;
however, it is worth recalling some of its fundamental features. In a deterministic context it is
well understood that the durable good differs from the static (non-durable) monopoly only if the
seller cannot commit to a sequence of prices over time. This absence of commitment creates an
incentive to reduce prices in the future; the reason is that buyers who have bought in the past do
not re-enter the market so that the monopoly can sell only to consumers with lower and lower
valuation for the good. This is known to be harmful to the monopolist, and I shall refer to this
situation as to the ‘Coase problem’ from Coase (1972). It can be shown that the monopolist
intertemporal profits in the absence of commitment are lower than they could be under full
commitment. The gist of the argument is that consumers will correctly anticipate the price
reductions and decide the date of purchase to their convenience. The monopolist then is in
competition with its future self, as today demand depends upon tomorrow prices.

Several ways to escape from the Coase problem by gaining commitment on future prices
have been identified in the literature. For instance, renting instead of selling is one such escape
(see Bulow (1982)); reducing the durability (Bulow (1986)); capacity limits (De Graba (1995)),
or rising marginal cost functions (Kahn (1986)); rationing demand is another possibility
(Denicolò and Garella (1996)). I shall show below that locating at some distance from the market
nodes on a spatial network is also a way to escape from the Coase problem. Indeed, by locating
at a sufficient distance from a given market node, the monopolist creates a lower bound for his
future price on that node, exploiting the existence of transport costs. This is a way to buy some
commitment on future prices. The need to gain commitment then, as it is shown below, may lead
the monopolist away from the socially optimal location on a location network with several
market nodes.

The result of inefficient location is obtained in two different examples; in both the location
network displays two market nodes connected by an arc. The time horizon is of two periods. In
the first example (in Section 3 below) the presence of two market nodes is not essential to the
argument which, instead, rests upon the property that the inverse demand function be
discontinuous. The driving force is represented there by the commitment not to serve in the
second period low valuation consumers on one of the two market nodes by locating at a
sufficient distance from it. The monopolist who locates at the profit maximizing spot manages to
sell only at the first period; nevertheless, the location choice depends upon the discount



parameter. By contrast the socially optimal location does not depend upon discounting. The
monopoly location, furthermore, is not on a vertex of the network, a feature that breaks the
correspondence between the monopoly preferred location and the ”Hakimi Theorem”, from
Hakimi (1964).

In the second example (Section 4 below) demand is continuous and smooth and at the
equilibrium the monopoly makes sales at both periods. The presence of more than one market
node is crucial in this second set-up. By increasing the distance from a given node the
monopolist who price-discriminate (delivered pricing) increases the cost to bring a unit to
destination. This increase in unit costs could never be optimal if there were only one market node
(reducing the model to the standard non-spatial approach), in fact a non-spatial monopoly, with a
smooth demand, does not find it convenient an increase in costs footnote . Here by contrast the
location choice affords a way to manipulate the second period prices on both market nodes and,
thereby, the demand functions at the first and second period.

One can apply the results to a model of product differentiation, after reinterpreting the
geographical space as a space of product characteristics. The two market nodes here represent
two alternative specifications of the good. Obviously, more general distributions of consumers
over the characteristics space could be considered and the present paper in this respect only
represents a cursory introduction to the topic. Mill pricing is more appropriate to the product
selection interpretation. A sketchy analysis of mill pricing is contained in Section 5. Quite
immediately, the result obtained for the spatial interpretation carries on, implying that the
monopolist choice can be inefficient. Section 6 concludes the paper.

Location on a Network
Define footnote a network N as a subset of ℜ2, where N is the union of a finite number of

arcs, of a well defined length. Each arc in N intersects at least one and at most two other arcs in
N. Arcs can intersect each other only at their extremities. The set of vertices, V , of the network is
made of the extremities of the arcs. S denotes a subset of V with typical element si, for
i = 1, ...,m. At each point si ∈ S—and only at such points—is associated a number pi (in ℜ+)
and a function Dipi from ℜ+ to itself. Consider the problem known as the Weber
problem—from Weber (1909): Choose the location s in N which minimizes the function

Ts = ∑
i=1

m

tDipi
∗ds, si,

where t is a positive constant, the pi
∗ ’s are given, and ds, si is the distance (to be defined

shortly) between two points, s and si belonging to a network. The distance between two points is
defined as the length of the shortest route on N, linking the two points.

A result due to Hakimi (1964), simplifies the search for a solution to the Weber problem:
Theorem (Hakimi,1964): The point s ∈ N, which minimizes Ts, belongs to V.

The Weber problem, interpreted in an economic set-up, amounts to the minimization of total
transport costs incurred for transferring quantities of an output footnote to a number of markets
(the points si in S) located on a network N, for given prices pi

∗ at each destination in S. Total
transport cost on each node tds, si is made up of the per-unit transport cost multiplied by the
quantity demanded at the prevailing price pi

∗. From the point of view of spatial economics this is
clearly a relevant problem, and the Hakimi theorem a useful result. However, the Hakimi
theorem leads to other interesting corollaries from an economic viewpoint. It can be easily seen
in fact that a monopolist who is allowed to practice spatial price discrimination and quoting
delivered prices on each market node si, will choose the same location s∗ which minimizing
transport costs is also socially optimal. In fact, consider a monopolist who produces at costs
cq = c∑Dpi

∗; his profit maximization program shall then be written as

max
pi,s

∑
i=1

m

Dippi − c ∑Dpi −∑
i=1

m

tDipids, si.

It can be shown that the price solution pi
∗ i=1,...,m determines the quantities Dipi

∗ on each



market, and the maximization of profits implies the minimization of Ts for those quantities
with respect to s. Note again that to have the monopolist choice of s coincide with the socially
optimal s for given quantities, it must be possible to practice perfect spatial price discrimination.

Proposition A monopolist selling from a single outlet on N and practicing perfect price discrimination
on the different market nodes will locate his outlet at the location which minimizes total
transport costs Ts. This location belongs to V.

Durable Goods
Consider the following example of a monopolist selling a durable good to a population of

consumers on the network to be described shortly. The time horizon consists of two periods and
unit production costs are assumed to be zero to simplify the algebra. The monopolist can sell at
the beginning of periods 1 and 2, and a consumer who has bought at period 1 has zero demand
for the good at period 2 (durability). Each consumer buys at most one unit of the good. The
possibility of renting is excluded and the monopolist cannot commit to future prices.

Assume the network N to be made of two market nodes connected by a segment of length
ℓ < 1. Market node A is located at end-point 0 and node B at endpoint ℓ (in the notation of
Section 2, sA = 0 and sB = ℓ). The cost of carrying one unit of the good over the distance ds, si
is equal to s − si2 , for i = A,B.

The demand function in each market is a discontinuous function, as it shall be clear from the
description below. In market node A there are ”high valuation” consumers, i.e. those with
valuation of the good given by v, with v distributed over the interval 1,1.5 according to the
uniform function Fv = v − 1

0.5
. In addition to these buyers, at market node A there is a mass x

of low valuation buyers, who value the good at v0, with v0 < 1. Assume also

A.1. v0 < ℓ/2.

In node B there are only a measure B of consumers with unanimous valuation for the good
vB = 1.

The utility function of consumer with valuation equal to v and located in si is given by zero if
he does not buy, while buying a unit at date t gives utility

u = δt−1v − pi for t = 1,2; and i = A,B.   #   

Different markets discount the future at the same rate, δ, as the monopolist. Assume further that

A.2. v0x + A < A.

The location chosen by the monopolist is denoted by s, with s ∈ 0, ℓ. Let define the static
demand and profit as those which apply when there is no second period (or, which is equivalent,
when the monopolist can commit to a constant price over the two periods).

Definition The static monopoly demand on node A is Dp = minA, 23/2 − pA for
v0 < p < 3/2 , Dp = A + x for v0 ≥ p, and Dp = 0 otherwise. The static monopoly
profit on node A when s=0 is pADApA ≡ π̄A.

The reason for disregarding the static profit for locations different from s = 0 is that the
profit π̄A is sufficient as a reference point, as it shall become apparent in the sequel.

Assumption (A.2) implies that the static profit made by the monopolist on node A is larger if
he sells at price 1 only to the high types rather than selling to everybody at price v0. Furthermore,
it is easy to see that the price which maximizes the function p3/2 − p2A is lower than 1(in
particular it is equal to 3/4) so that p1

∗ = 1 is the price which maximizes the static local profit on
A. This is the way in which the Coase argument shows up in the present example; the monopolist
located at s = 0 would like to commit to a price sequence p1

A = p2
A = 1 and realize the static

monopoly profits π̄A = A. However, once all the high valuation consumers have bought in the
first period there is no way to restrain the monopolist from lowering the second period price to v0



and serve the low valuation consumers. But then the high valuation consumers may not buy in
the first period.

Here, rational expectations are assumed to characterize the expectation formation by
consumers, so that a price path is time consistent only if the buyers correctly anticipate the
second period price.

If the monopolist cannot commit to a price sequence then it is well known that his profit
cannot exceed the static monopoly profit footnote .

Obviously, the static demand in B is rectangular with Dp = B if p ≤ 1 and Dp = 0
otherwise. Clearly, p∗ = 1 is the static optimal delivered price on market B if the monopolist
locates in B. There is no ”Coase problem” on node B in this example.

To develop the argument leading to the result I shall analyze first the price sequence for
location s = 0, then the price sequence for locations 0 < s < v0, and finally that for s ≥ v0. The
maximum profit associated to each location choice is computed at each step and then a
comparison will show that under some conditions on the parameters the best location is one to
the right of v0 (in fact it is just a trifle to the right of v0.

1. Consider the pricing problem of the monopolist located at point sA = 0. Clearly, if p1 > v0

the monopolist has an incentive to sell at the second period to consumers who have not bought in
the first period, at a price which shall be lower than the first period price. Then, since consumers
can wait, the consumer v of node A at the first period buys only if the price p1

A is such that

v − p1
A ≥ δv − p2

A.

So that given p1
A > v0, only the types with valuation larger than ṽ ≡ p1

A − δp̌2
A

1 − δ
shall buy at the

first period, where p̌2
A is the second period price anticipated by the buyers.

To proceed, first it must be shown that p2
A cannot be set higher than 1 along a time consistent

price path, and then it shall be easy to pin down the equilibrium price sequence for s = 0. Since
the second period demand, for p2

A > 1, is the measure of buyers with valuations in the interval
p2

A, ṽ, then it is given by 2Aṽ − p2
A . Therefore, to have p2

A ≥ 1 p2
A must be the solution to

max
p2

2Aṽ − p2p2 − s.   #   

Since for s = 0, this price is lower than 1, as shown in the proof of the following Lemma, it is
possible to state:

Lemma If s = 0, the only price sequence p1
A,p2

A which is time consistent is with
p1

A = 1 − δv0 + δv0 and p2
A = v0.

Proof .
(a) p2

A ≥ 1 cannot be part of a time consistent price path. Indeed, assume p2 ≥ 1. p2 > p1

cannot be a time consistent price sequence. If p2 < p1 only consumers with valuation higher than

ṽ ≡ p1 − δp2

1 − δ
shall buy at the first period. Assume then 1 < p2 < p1 < 3/2. The second period

price is then

arg max
p2

2A p1 − p2

1 − δ
p2 = p1

2
  #   

And the second period profits are 2A
1 − δ

p1

2

2
.

The first period demand, if 1 < p2 < p1 < 3/2, shall then be equal to 2A 3
2

− ṽ which is

equal to 2A 3
2

− 2p1 − δp1

21 − δ
. The price at the first period shall be set equal to

arg max
p1

p12A 3
2

− 2p1 − δp1

21 − δ
+ δ 2A

1 − δ
p1

2

2
= 31 − δ

4 − 3δ
.   #   

This value of p1 is lower than 1 for all values of δ ∈ 0,1, but this contradicts that the second
period demand be made of high valuation types with p2

A > 1.
(b) 1 ≥ p2 > v0 cannot be part of a time consistent price path. Indeed, since demand in A is



totally inelastic over the range of prices v0, 1, then either it is p2 = 1, which contradicts part (a)
above, or p2 ≤ v0.
(c) Since demand is equal to A + x for all prices lower than v0, then the only second period price
which can be part of a time consistent price path is p2

A = v0. It follows that first period demand,
D1

Ap1
A,v0, for p1 in the range 1,3/2 shall be given by D1

Ap1
A,v0 =

min A 3 − 2p1 − δv0
1 − δ

, A . The function,

A 3 − 2p − δv0
1 − δ

p,

however, is maximized with respect to p at p1
A = 3 − δ3 − 4v0

4
which in turn is lower than

1(given that v0 < ℓ/2 and ℓ < 1. But then the best first period price is the price which makes the
buyer with willingness to pay exactly equal to 1 indifferent between buying soon or waiting for
p2 = v0. This price is the solution to 1 − p1 = δ1 − v0 and it indeed corresponds to
p1 = 1 − δ + δv0, which, given v0 < ℓ/2 < 1, lies as required in the interval
v0, 1. [End Proof] 

The highest profit that the monopolist can make if he locates in s = 0 is therefore, the one
corresponding to delivered prices p1

B = p2
B = 1, and p1

A = 1 − δ + δv0, p2
A = v0.

Total profits for s = 0 are

π0 ≡ A1 − δ + δv0 + δv0x + B − ℓB.   #   

2. Consider now any location in the interval 0,v0. Since the unit transport cost to market A

is less than v0 the monopolist cannot commit to refuse to sell to customers with valuation v0 at
the second period. On the other hand, a second period price such that v0 < p2 ≤ 1 is not time
consistent given that demand on node A is totally inelastic over that range of prices.
Furthermore, a second period price larger than 1 implies that p2

A = arg maxp2p2 − s2Aṽ − p2 ,
namely p2

A = p1 + s
2

. This implies a second period profit equal to A
21 − δ

p1
A − s2. Then the

first period price should solve

max
p1

p1 − s2A 3
2

− 2p1 − δp1

21 − δ
+ δ A

21 − δ
p1 − s2 .   #   

One can find that the solution to ( ref: MS ) is

p1
A = 31 − δ + s2 − 3δ

4 − 3δ
,   #   

which, again, is lower than 1 for all values of δ. But this contradicts that p2 > 1. In this case also,
the only time consistent price sequence is p2

A = v0 and p1
A = 1 − δ + δv0. The prices are the

same as for the location s = 0, but transport costs are positive, therefore profits on A are lower.
Total profits for s ∈ 0,v0 are

A1 − δ + δv0 − s + δv0 − sx + B − ℓ − sB.   #   

3. Consider location s > v0. At the second period it is impossible to serve the low valuation
consumers without incurring a loss since the unit transport cost from s to 0 is larger than the
reservation price v0. Then it is credible to refuse selling to low valuation customers by
maintaining p2

A = 1. The price sequence p1
A = p2

A = 1 is indeed time consistent.
Total profits from location s > v0 are

A1 − s + B − ℓ − sB.   #   

4. A comparison can now be made. The discussion so far implies that any location in the
interval 0 < s ≤ v0, implies, as argued above, that the second period price be low enough to
serve the low valuation buyers in node A. Then, the profit from these locations is easily seen to



be lower than profit π0 in equation ( ref: P0 ). It is sufficient then to compare ( ref: PSS ) with
( ref: P0 ). It is immediate to see, that a location s > v0 dominates s = 0 if

− sA − B + δA − δv0A + x ≥ 0.   #   

Remark that the L.H.S. in this inequality is increasing in δ : The importance attributed to the
future makes commitment more valuable. For any value of δ, furthermore, this inequality strictly
holds for A = B, under assumption (A.2). The monopolist therefore shall locate at a point v0 + ε ,
whenever A = B, but also when A is smaller than B and condition ( ref: C ) holds. Profits from
locating close to v0 are (neglecting ε)

A1 − v0 + B − ℓ − v0B.   #   

Total sales by the monopolist located at v0 + ε are A + B. By contrast the socially optimal
location, given sales A + B is s = 0 if A > B and s = ℓ if B > A, for all values of δ. Here δ may
play a crucial role in directing the monopolist choice, while it plays no role in the decision about
which is the socially optimal location.

Proposition If inequality ( ref: C ) holds, the location choice of a durable goods monopolist is socially
inefficient.

Also,
Remark If inequality ( ref: C ) holds, the location choice of the monopolist in the example does

not belong to a vertex of the network N.
Remark The location choice of a durable goods monopolist is affected by the time discount

factor.
The first Remark means that the Hakimi theorem is of no help in the case of a durable goods

monopoly.
As a comment to the second Remark, note that if all sales are made at the first period the

socially optimal location is not affected by the rate of time preferences. Next Section considers a
case where sales are made at both periods.

Smooth Demand Functions and Discounting
Manipulating Demand through the Choice of Location

To see that the example in section 3 highlights a more general phenomenon, consider the
same location Network, but assume that at each market node there is a smooth distribution of
willingness to pay. In particular, let the valuation of buyers be distributed over the interval 0,1
at both nodes, with Fv = vα at node A, and Fv = vβ on node B, where α and β are
nonnegative scalars. Then it can be seen that the second period demand is given on each node by
the measure of the buyers with valuation comprised in the interval ṽ,p2

i  for i = A,B. The
measure of this quantity is ṽα − p2

Aα on market A and ṽβ − p2
Bβ on market B. Similarly, first

period demand on node A (resp. B) is the quantity 1 − ṽα (resp. 1 − ṽβ).
Let p2

Ap1
A, s , (resp. p2

Bp1
B, s ) denote the second period price which solves the problem

max
p

p − sṽα − pα,

(resp. maxpp − sṽβ − pβ).
Then the valuation of the consumer on node A that is indifferent between buying at period 1

or waiting for the second period price is

ṽAp1
A, s =

p1
A − δp2

Ap1
A, s

1 − δ
.

Let ṽAp1
A, s ≡ vA, to simplify notation. Respectively, it is ṽBp1

B, s =
p1

B − δp2
Bp1

B, s
1 − δ

≡ vB .

Define π1
A = p1

A − s1 − vAα, and π2
A = p2

Ap1
A, s − svAα − p2

Ap1
A, sα, then total

intertemporal profits on node A, (resp. B) discounted at period 1 are

πA = π1
A + δπ2

A,   #   

and respectively, letting π1
B = p1

B − ℓ − s1 − vBβ and



π2
B = δp2

Bp1
B, s − ℓ − s vBβ − p2

Bp1
Bβ, total intertemporal profits on node B are

πB = π1
B + δπ2

B.

The choice of p1
A (resp. p1

B) is made so as to maximize profits on both nodes for any location
s. This maximization affords a maximum denoted by
Π = ΠA + ΠB = Π1

A + Π1
B + δΠ2

A + Π2
B.Using the envelope theorem and the notation

v i
′ = ∂v ipi, s

∂s
for i = A,B, one finds that the derivative with respect to s of the profit function

on node A, when p1
A is chosen to maximize profits is the sum of two terms:

∂ΠA

∂s
= ΠA1

′ + δΠA2
′ ,

with

ΠA1
′ = −1 − vA

α + sαvA
α−1vA

′ ,   #   

and

ΠA2
′ =

∂p2
A

∂s
− 1 vA

α − p2
Aα + p2

A − sα vA
α−1vA

′ − p2
Aα−1 ∂p2

A

∂s
.   #   

As the notation suggests, ( ref: pia1 ) and ( ref: pia2 ) are the derivatives of the first and
second period components of the sum of discounted profits respectively.

As ΠA1
′ + δΠA2

′ is the derivative of profits on node A so ΠB1
′ + δΠB1

′ is the total
derivative footnote of the sum of discounted profits on node B. The total derivative of profits is
of course ΠA1

′ + ΠB1
′ + δΠA2

′ + ΠB2
′ .

One can note that in the total derivative are present four ”quantity components” these are the
terms −1 − vA

α and −δvA
α − p2

Aα for node A, and 1 − vB
β and δvB

β − p2
Bβ for node B.

Besides these ”quantity components” there appear other terms reflecting the property that by
changing the second period price the values for vA and vB, which enter the demand function at
date 1 and 2, change. In particular, this follows from the property that the valuation which
renders a consumer indifferent between buying at date 1 or waiting depends on p2p1, s.

The monopolist changing his location modifies not only the current and future prices, but
also on each node the intercept on the price axis of the second period demand (vA and vB), and
the intercept of the first period demand (for example for α = 1 this intercept on node A is

1 + p2p1, s
1 − δ

).

Finally there appear a term for each node accounting for the effect of a change in s on the

second period profits through a change in the second period price,
∂pA

2

∂s
vA

α − p2
Aα and

∂pB
2

∂s
vB

β − p2
Bβ.

Consider now the problem from a social point of view. The comparison now takes an
intertemporal dimension which was absent in the previous section example since there the
monopolist sold only at the first period. The comparison involves delivery of the good at the
same dates and to the same consumers as in the monopoly solution (a discount of time
preferences must be applied to future deliveries). This way, total utility from consumption of the
good is kept constant. The location which minimizes transport costs for the quantities sold by the
monopolist is the one which solves

min
s

Ts,δ = s1 − vA
α + sδvA

α − p2
Aα + ℓ − s 1 − vB

β + δvB
β − p2

Bβ .

The first derivative with respect to s of the objective function is

1 − vA
α + δvA

α − p2
Aα − 1 − vB

β − δvB
β − p2

Bβ.   #   

Clearly, ( ref: foc2 ) only involves the ”quantity terms”, while the effects of location on the
consumers’ behavior (the changes in the values for the v ′s) are missing. Therefore, since



( ref: foc2 ) does not depend on s, the solution is at one of the market nodes (the Hakimi
Theorem holds for the social optimum). This shows again that the two solutions, the one for the
monopolist location, and the socially optimal one, may differ.

An Example
The expressions for the derivative of total profits with respect to s are quite complex

functions. The calculations become rather easy, however in a case which can be used as an
illustrative example. Let again describe the node B as one characterized by a rectangular
demand: that is, the population of consumers in B is formed of identical consumers who value
the good at v = 1. Let the mass of these consumers be equal to 1. Furthermore, let market node A
be populated by consumers with valuation in [0,1], and let α = 1. Then it can be easily seen that
vA = p1 − δp2/1 − δ, the price p2

A which maximizes second period profits is
p2

Ap1
A = p1

A + s/2. Plugging in this value of p2
A into the profit function for node A

πA = p1
A − s1 − vA + δp2

A − svA − p2
A,

and maximizing with respect to p1
A, yields

p1
A = 1 + s1 − δ/2 p2

A = 1 + s1 − δ/4 + s/2.

Quite obviously, on node B one has that p1
B = p2

B = 1 and all consumers there buy at date 1.

Then, letting pn = p1
A − s = 1 − δ − s2 − δ

2
, total discounted profits for the monopolist

are

pn 1 − 1 − s2 − δ
2

+ sδ
21 − δ

+ δ
21 − δ

pn2 + 1 − ℓ − s.

This is a concave function of s, and for the value of δ = 0.8 and ℓ = 0.6 it is displayed in the
graph in Figure-1. Clearly the monopolist optimal location is on an interior point of the segment
connecting the two market nodes.

Mill Pricing and Horizontal Differentiation
The product characteristics interpretation of the location network with two market nodes is

possible if one thinks of a rather special distribution of consumers tastes or if one considers the
case of buyers that can be grouped into two categories—men and women, or young and
old—who prefer alternative specifications of a good. More general distributions of consumers
tastes are out of the scope of the present paper footnote . In any case it is worthwhile briefly
considering the location choice under mill pricing.

That mill pricing leads to inefficient locations is already well known. For instance,
Gabszewicz and Thisse (1986a) refer to an example with a network similar to the one in Section
4 above, with a demand function given by max0,α − p + tsi, s2 on each node, where α is a
positive constant. There, a location at the center of the arc connecting the two market nodes is
optimal for sufficiently large values of the parameter α.

The results obtained in Section 3 above extend to the case of mill pricing. This case implies



that consumers bear the transport cost and that the monopolist quotes a uniform price to all
customers. The utility from purchase of a buyer in node A, given a mill price at period t, pt say,
is equal to

δt−1v − pt − s for t = 1,2.   #   

The utility for buyers located at node B is

δt−1v − pt − ℓ − s.   #   

Then, the indifference between waiting and buying soon obtains for

v̂ = p1 − δp2

1 − δ
+ s.

Consider the demand functions described in Section 3. The presence of low valuation customers,
at Node A, with valuation v0, makes it impossible for the monopolist located at s = 0 to use a
mill price sequence like p1 = 1 and p2 = 1. As for the case of section 3, the incentive to serve
low valuation customers cannot be eliminated if the seller locates at (or close to) s = 0. Again
the exercise consists in comparing the maximum profits at locations s < v0, and s ≥ v0. It is not
worth repeating the analysis here as nothing new is gained from it.

Conclusions
The literature on durable goods monopoly has so far neglected the location problems, and at

the same time the literature on location and product specification has not been concerned with
durable goods monopolies. The present paper shows that a price discriminating monopolist will
not necessarily choose a socially optimal location. The reason why is that by manipulating the
transport cost the seller can commit not to lower too much the price in the future on the farthest
nodes from its location. This ameliorates the profits on those nodes and, if these nodes are
important enough, total profits can be increased by such a location policy. Possible applications
of the theory under delivered pricing include the location of a warehouse for intermediate goods
which a seller delivers to different users, or the location of a service provider whose service has
the character of a durable good (like a carpenter, or a plumber who charge the customer for the
traveling cost and transport of materials). As for the horizontal differentiation interpretation, one
may think of the design of a machine or other investment good: this can be chosen in such a way
as to reduce its usefulness for potential buyers who have a low valuation for it (for instance these
buyers may dislike some features that the seller can deliberately incorporate into the good). Third
degree price discrimination is implied here by the delivered price model, whether on geographic
space or on consumer groups, and non discriminatory pricing applies to the mill price model.

The long established literature on the welfare effects of third degree price
discrimination footnote has clarified that it may not be socially optimal to compel a monopolist
to use a uniform price (either a mill price or a uniform delivered price in a spatial model) as this
may result in welfare losses (recent examples are Malueg and Schwartz (1994) and Layson
(1994), see also Shin, Mai and Lin (1988), while Bilas (1969) considers multiple plant firms).
The welfare comparisons in the literature generally hinge upon the quantity sold on each market
or upon the suppression of sales on some of the markets. Market separability (geographic or
other) is clearly essential to third degree price discrimination footnote . Location effects on
welfare have also been considered as shown in Anderson, de Palma and Thisse (1992), where an
analysis is provided also of the number of different specifications introduced into a market.

The present paper does not consider the output effects of price discrimination, and the results
only concern the location effects on welfare. Note, however, that in both the examples
considered above (Section 3 and Section 4) the suboptimal location implies an increase in prices
(lower output) with respect to those which maximize profits when the monopolist is set at the
socially optimal location. For instance, in the example of Section 3 above, the monopolist
excludes a mass of low valuation buyers by locating away from the (large) market node A.
Imposing mill pricing does not necessarily lead to higher output, as it is clear from the discussion
of Section 5.

The present paper leaves open some issues for further research. A major one seems to be the



location choice of durable goods oligopolists, and the study of durable products differentiation
under oligopolistic rivalry. A second issue is the location of multiplant, or multiproduct firms.
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