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Abstract

When in proxy-SVARs the covariance matrix of VAR disturbances

is subject to exogenous, permanent, nonrecurring breaks that generate

target impulse response functions (IRFs) that change across volatility

regimes, even strong, exogenous external instruments can result in in-

consistent estimates of the dynamic causal effects of interest if the breaks

are not properly accounted for. In such cases, it is essential to explic-

itly incorporate the shifts in unconditional volatility in order to point-

identify the target structural shocks and possibly restore consistency.

We demonstrate that, under a necessary and sufficient rank condition

that leverages moments implied by changes in volatility, the target IRFs

can be point-identified and consistently estimated. Importantly, stan-

dard asymptotic inference remains valid in this context despite (i) the

covariance between the proxies and the instrumented structural shocks

being local-to-zero, as in Staiger and Stock (1997), and (ii) the poten-

tial failure of instrument exogeneity. We introduce a novel identification

strategy that appropriately combines external instruments with “infor-

mative” changes in volatility, thus obviating the need to assume proxy

relevance and exogeneity in estimation. We illustrate the effectiveness

of the suggested method by revisiting a fiscal proxy-SVAR previously

estimated in the literature, complementing the fiscal instruments with

information derived from the massive reduction in volatility observed in

the transition from the Great Inflation to the Great Moderation regimes.
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Non-technical summary

This research investigates the extent to which proxy-SVAR (SVAR-IVs) meth-

ods are effective. Such methods are used to understand how economic policies

affect the economy. For instance, in the empirical application, we study what

happens when governments implement polices that change their spending or

tax revenues. Historically, however, the parameters of interest change with

volatility regimes due to changes in market structures, preference parameters,

or policy conduct. Then, standard proxy-SVAR methods fail to pinpoint the

effect of such policies. In the presence of volatility regimes, we find that proxy-

SVAR methods can yield reliable results if two conditions are met. First, the

way policies affect the economy must stay the same, even when the overall eco-

nomic environment changes. Second, the method must focus on relative effects

of these policies, rather than their absolute value. This paper addresses this

challenge and establishes that, by meeting a technical necessary and sufficient

rank condition, informed by volatility regimes, we can identify and accurately

estimate parameters of interest, even when faced with irrelevant or contami-

nated external instruments, and standard inference applies.

The study demonstrates that properly combining volatility changes with

external instruments can significantly improve inference quality. We employ

this novel approach to revisit the analysis of a seminal fiscal proxy-SVAR

estimated for the US economy, augmenting the set fiscal instruments with the

change in the unconditional VAR error covariance matrix. This captures the

decline in volatility observed in the transition from the Great Inflation to the

Great Moderation period.

Our findings reveal that: (i) the estimated fiscal multipliers are larger than

one; (ii) the peak tax multiplier appears smaller than the estimated peak

fiscal spending multiplier, albeit not dramatically; and (iii) the uncertainty

around the dynamic tax multiplier substantially reduces when we consider the

volatility change, as opposed to using the fiscal proxy-SVAR across the entire

estimation sample disregarding the shift.
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1 Introduction

The last decades have witnessed significant advancements in the development

of novel methods for the identification of macroeconomic shocks in Structural

Vector Autoregressions (SVARs). Among these, “the identification by external

instruments” and “the identification by heteroskedasticity” play an important

role, see e.g. Stock and Watson (2017). In the identification by external instru-

ments, the focus is on specific structural shocks which are identified through

the use of variables external to the VAR, henceforth referred to as instruments

or proxies interchangeably. External instruments address a “partial identifi-

cation” problem, following the approach proposed by Stock (2008), Stock and

Watson (2012, 2018), and Mertens and Ravn (2013). The proxies must be rel-

evant, i.e. correlated with the structural shock(s) of interest, and exogenous,

i.e., uncorrelated with the non-instrumented shocks. The fulfillment of both

relevance and exogeneity conditions ensures that, under regular conditions, the

target impulse response functions (IRFs) can be point-identified, consistently

estimated, and standard asymptotic inference applies. Montiel Olea, Stock,

and Watson (2021) have extended asymptotic inference to cases where SVARs

feature “weak” proxies as in Staiger and Stock (1997). Their contribution

emphasizes that even external variables which are poorly correlated with the

target structural shocks can offer valuable information for identification. In

this paper, we show that external instruments provide valuable information for

identification even in seemingly problematic situations, such as the occurrence

of shifts in the unconditional volatility of the variables associated with changes

in the dynamic causal effects of interest.

As is known, economic relationships are affected by structural breaks, typ-

ically induced by changes in underlying structural behavior, market conditions

or changes in policy conduct. These breaks typically lead to shifts in the dy-

namics and volatility of the variables of interest. The identification through

heteroskedasticity approach, first introduced in SVARs by Lanne and Lütke-

pohl (2008) and inspired by the seminal work of Rigobon (2003) (also see

Sentana and Fiorentini, 2001), relies on the information present in the data

through variations in the unconditional covariance matrix of the VAR. This

method is typically based on the assumption that breaks in volatility do not

alter the impact and propagation of structural shocks but only shift the vari-

ance of these shocks.1 Bacchiocchi and Fanelli (2015), Bacchiocchi, Castel-

nuovo, and Fanelli (2018) and Angelini, Bacchiocchi, Caggiano, and Fanelli

1This approach is commonly acknowledged as a “statistical” identification method, given
that the shocks can only be labeled ex-post, i.e., after the model is estimated, typically by
examining the signs of estimated on-impact coefficients or the implied shape of IRFs.
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(2019) have shown that when there is a rationale to believe that volatility

shifts may be induced by breaks in structural parameters, the heteroskedastic-

ity approach can be extended to scenarios where IRFs change across volatility

regimes.2 In such cases, point identification of the target IRFs can be achieved

by incorporating a limited set of theory-driven or institutionally-knowledge-

based constraints into the model, while still benefiting from the identification

power provided by shifts in volatility. These constraints, referred to as “sta-

bility restrictions” by Magnusson and Mavroeidis (2014), involve specifying

particular structural parameters to vary across volatility regimes while keep-

ing other structural parameters constant; see also Bacchiocchi and Kitagawa

(2022b).

This paper contributes to the literature on SVARs by exploring how changes

in unconditional volatility contribute to the identification of the target struc-

tural shocks with external instruments. These models will be denoted as proxy-

SVARs (SVAR-IVs) throughout. Specifically, we focus on proxy-SVARs where

the covariance matrix of VAR errors exhibits exogenous, permanent, nonrecur-

ring breaks, leading to changes in the target IRFs. In such cases, it is essential

to explicitly incorporate the shifts in unconditional volatility into the analysis

because even strong, exogenous external instruments may produce inconsistent

estimates of the target IRFs if the breaks are not properly taken into account.

The combination of external instruments with the shifts in volatility ensures

the consistency of the estimator of dynamic responses and the use of standard

asymptotic inference. This result marks an important difference relative to the

scenario in which the target IRFs remain constant across volatility regimes.

In that scenario, indeed, we show that relative (normalized) IRFs can be esti-

mated consistently using strong and exogenous instruments even if the breaks

in volatility are not accounted for.

We establish that under a necessary and sufficient rank condition derived

from moments induced by changes in volatility, identification is achieved even

in the presence of proxies that are neither relevant nor exogenous. Notably,

standard asymptotic inference continues to hold despite: (i) the covariance be-

tween proxies and instrumented structural shocks are local-to-zero as in Staiger

2SVARs, whose IRFs change across macroeconomic regimes in correspondence to different
levels of unconditional volatility, are denoted as “SVAR-WB” (with WB standing for “with
breaks”) in Bacchiocchi, Castelnuovo, et al. (2018) and Bacchiocchi and Kitagawa (2022b).
These models are intended to reflect shifts in key structural parameters related to the behavior
of economic agents, market functioning, and/or policy conduct. Similar phenomena have
been studied in the literature, for example, by Lubik and Schorfheide (2004) and Castelnuovo
and Fanelli (2015) in the context of solutions generated by monetary DSGE models, and by
Clarida, Gaĺı, and Gertler (2000) and Boivin and Giannoni (2006) to explain macroeconomic
phenomena such as the Great Inflation and the Great Moderation.
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and Stock (1997); and (ii) the potential breakdown of instrument exogeneity,

wherein instruments, beyond their correlation with the target shocks, also ex-

hibit correlation with some or all non-target shocks, a phenomenon we refer

to as “contamination”. In this context, the investigator has the flexibility to

deduce the role of external instruments in the identification process directly

from the data. In the least favorable scenario, external instruments serve as a

labeling device for the target structural shocks.

Based on the above results, we develop a novel identification strategy that

integrates external instruments with shifts in volatility regimes, eliminating the

necessity to assume proxy relevance and exogeneity prior to estimation. Within

this framework, the Classical Minimum Distance (CMD) estimator emerges as

a natural choice.3 We call external variables that are both credibly relevant and

exogenous as “valid instruments” or “valid proxies”. Conversely, we use the

terms “invalid instruments” or “invalid proxies” for external variables where

the conditions of relevance and/or exogeneity is not satisfied. A more com-

prehensive characterization is offered in Definition 1, Section 2. Our analytic

results, supported by extensive Monte Carlo simulations, demonstrate that

using external instruments in a framework where IRFs change across volatil-

ity regimes is generally advantageous. In fact, when strong and exogenous

instruments complement identification based on shifts in volatility, there are

considerable gains in estimation precision. Notably, even with contaminated

yet strong instruments consistency is not affected and there are significant

gains in estimation precision relative to the case in which only changes in

volatility are leveraged. Remarkably, even in the worst-case scenario where

weak, contaminated instruments are included in the analysis, the estimator of

the target IRFs remains consistent and asymptotically Gaussian.

Intuitively, the relevance condition is not strictly necessary to meet in

our framework as point identification of the target structural shocks can be

achieved, under the derived necessary and sufficient rank condition, by the mo-

ment conditions implied by the shifts in unconditional volatility. This result

parallels the findings of Antoine and Renault (2017) regarding the “relevance

of weaker instruments”, i.e. the scenario that emerges in Generalized Method

of Moments estimation when the moment conditions characterized by local-

to-zero instruments as in Staiger and Stock (1997) complement the moment

conditions associated with strong instruments. Thus, the changes in the VAR

covariance matrix assume a role akin to relevant instruments in the external

instruments approach.

3An alternative Quasi Maximum Likelihood (QML) approach, where the process gov-
erning VAR innovations and proxies is assumed conditionally normal within each volatility
regime, is developed in the associated supplementary material.

5



The exogeneity condition can be relaxed due to the inherent “full identifi-

cation” nature of the identification through changes in volatility, which delivers

also information concerning the non-target shocks. The comprehensive point

identification of both target and non-target shocks, a distinctive characteristic

of the changes in volatility approach, gives rise to both advantages and limi-

tations when external instruments are employed. The principal benefit lies in

the fact that external instruments can be correlated with non-target structural

shocks, other than the target shocks. Working with macroeconomic, aggregate

data, there is a growing consensus that even when researchers carefully pick

instruments that are plausibly exogenous, it is still unlikely that an instru-

ment perfectly satisfies the orthogonality condition. Our approach empowers

applied researchers to make reliable inferences in setups where instruments are

nearly exogenous, not perfectly exogenous and, in general, correlated with the

non-target shocks. In this regard, we note that, similar to Ludvigson, Ma, and

Ng (2020, 2021), our analysis does not primarily focus on relaxing exogeneity

per se. Instead, our broader objective is to leverage the properties of external

variables to facilitate identification

Recently, Schlaak, Rieth, and Podstawski (2023) underscored the advan-

tages that changes in volatility offer, under specific conditions, for testing

instrument exogeneity in point-identified proxy-SVARs. In their framework,

only the variances of structural shocks change across volatility regimes, while

IRFs remain constant. A thorough comparison of our approach with that of

Schlaak et al. (2023) will be presented in Section 3. Ludvigson et al. (2021),

and Braun and Brüggemann (2023) have demonstrated the possibility, in prin-

ciple, of handling proxies akin to the concept of “plausibly exogenous” instru-

ments, as discussed by Conley, Hansen, and Rossi (2012).4 Although we refer

to point identification, our framework yields a similar result in the sense that

the exogeneity condition need not to be imposed in estimation. Failure of

the exogeneity condition as well as the strength of the proxies can be directly

inferred from the data when the stability restrictions are correctly specified.

Our framework also shares the same flexibility highlighted by Keweloh, Klein,

and Prüser (2024) for models identified through the combination of proxy vari-

ables and non-Gaussian shocks. Remarkably, a significant advantage of our ap-

proach is that, given the stability restrictions, we do not rely on any assump-

tions regarding the distribution and/or cross-independence of the structural

shocks. Our framework operates under the assumption that the structural

4In the microeconometric literature on Instrumental Variable (IV) regressions, there is a
growing consensus that even when researchers carefully pick instruments that are plausibly
exogenous, it is unlikely that an instrument perfectly satisfies the orthogonality condition;
see, e.g. Berkowitz, Caner, and Fang (2012) and references therein.

6



shocks are cross-uncorrelated, see Ramey (2016, Section 2.1). Furthermore,

in comparison to the aforementioned contributions, the suggested stability re-

strictions approach requires the specification of a set of (minimal) restrictions

to achieve identification. Therefore, other than combing external instruments

with changes in volatility, it addresses the challenges and limitations regarding

the causal interpretation of purely statistical approaches to identification based

on heteroskedasticity or non-Gaussian shocks, as emphasized by Montiel Olea,

Plagborg-Møller, and Qian (2022)

We present the key aspects of our approach by revisiting the fiscal proxy-

SVAR estimated in Mertens and Ravn (2014) on US quarterly data cover-

ing the period 1950:Q1-2006:Q4. We use two fiscal instruments, one for the

tax shock, which coincides with the narrative tax instrument of Mertens and

Ravn (2014), and the other for the fiscal spending shock, taken from Angelini,

Caggiano, Castelnuovo, and Fanelli (2023). Additionally, we consider a struc-

tural break in the VAR covariance matrix, capturing the substantial reduction

in volatility observed during the transition from the Great Inflation to the

Great Moderation period.

The paper is organized as follows. Section 2 covers our baseline proxy-

SVAR specification (Section 2.1), the data generating process (DGP) and as-

sumptions (Section 2.2), and our main results on identification, estimation

and check of identifiability (Section 2.3). Section 3 discusses connections and

differences with contributions in the recent literature. Section 4 applies the

methodology to the identification of US fiscal multipliers. Section 5 concludes.

A supplement complements the paper in various dimensions, including for-

malization, comprehensive Monte Carlo experiments, proofs of propositions,

additional empirical results, and the extension of the analysis to the case of

multiple volatility regimes and QML estimation.

2 Proxy-SVARs with shifts in unconditional

volatility

In this section, we introduce the baseline proxy-SVAR specification within a

DGP that incorporates a break (M = 1) in the error covariance matrix, re-

sulting in M + 1 = 2 volatility regimes in the data. We extend the analysis

to more than two structural breaks in the supplementary material. Section

2.1 presents the proxy-SVAR as an augmented SVAR model and defines proxy

properties. Section 2.1 outlines the DGP and the assumptions underpinning

the analysis. Section 2.3 introduces the stability restrictions approach, cov-

ering identification conditions, CMD estimation, informal methods to check
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identifiability.

2.1 Baseline model

Our reference model is the SVAR:

Yt = ΠXt + ut, t = 1, ..., T (1)

ut = Hεt,

where Yt is the n × 1 vector of endogenous variables, Xt := (Y ′t−1, ..., Y
′
t−l)

′ is

the vector collecting l lags of the variables, T the number of time observations,

Π := (Π1, ... ,Πl) is the n × nl matrix containing the autoregressive (slope)

parameters and ut an n × 1 martingale difference sequence (MDS), E(ut |
It−1) = 0, It := (Yt, Yt−1, ...) being the information set available at time

t. Throughout the paper, we refer to the term ut in equation (1) as “VAR

innovations” or “VAR disturbances”. Deterministic terms have been excluded

from the analysis without loss of generality. The initial values Y0, ..., Y1−l are

treated as fixed constants throughout the analysis. In the following we denote

with Cy the VAR companion matrix that depends on the parameters in Π; i.e.

Cy = Cy(Π).

In (1), the system of equations ut = Hεt maps the n×1 vector of structural

shocks εt to the reduced-form innovations by the n×n nonsingular matrix H,

that contains the on-impact (instantaneous) coefficients. It is assumed that

the structural shocks have normalized covariance matrix Σε := E(εtε
′
t) = In,

meaning that in the rest of the paper we consider responses to one-standard de-

viations shocks, except where indicated. In this framework, model (1) implies

the “conventional” SVAR restrictions Σu := E(utu
′
t) = HH ′. We temporary

assume that the parameters (Π, H), hence Σu < ∞, are constant, i.e., time-

invariant, over the sample period Y1, ..., YT . This hypothesis will be relaxed in

Section 2.2.

Let ε1,t be the k × 1 subvector of elements in εt containing the 1 ≤ k <

n target structural shocks. We consider the corresponding partition of the

structural relationships ut = Hεt:

ut =

(
u1,t

u2,t

)
=

(
H11 H12

H21 H22

)(
ε1,t

ε2,t

)
= H•1ε1,t + H•2ε2,t (2)

where ε2,t contains the (n − k) structural shocks that are not of interest, u1,t

and u2,t are VAR disturbances and have the same dimensions as ε1,t and ε2,t,

respectively; H•1 := (H ′11 , H
′
21)′ is n × k and collects the on-impact coeffi-

cients associated with the target structural shocks. Finally, H•2 is n× (n− k)
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and collects the on-impact coefficients associated with the non-target shocks.

The objective of the analysis is the identification and estimation of the h-

period ahead responses of the variables, Yt+h, to the j-th target shock in ε1,t,

corresponding to:

IRF•j(h) :=
∂Yt+h
∂ε1,j,t

= (Sn(Cy)hS′n)H•1ej , 1 ≤ j ≤ k (3)

where Sn := (In , 0n×n(l−1)) is a selection matrix and ej is the k × 1 vector

containing ‘1’ in the j-th position and zero elsewhere. Equation (3) refers to

responses to one-standard deviation target shocks. Note that we denote the

IRFs in (3) as “absolute” IRFs since they do not incorporate “unit effect”

normalizations, as discussed below. While the reduced-form parameters in the

companion matrix Cy can be easily estimated from the reduced-form VAR,

the identification and estimation of the on-impact coefficients in H•1, or of

the relative impacts Hrel
2,1 := H2,1(H1,1)−1, may be challenging in the absence

of auxiliary information. The solution provided by the “external instruments

approach” is to consider an r × 1 vector of external variables, say zt, r ≥ k,

which satisfy the conditions:5

E(ztε
′
1,t) = Φ , rank[Φ] = k (relevance) (4)

E(ztε
′
2,t) = 0r×(n−k) (exogeneity) (5)

where Φ is an r× k matrix of parameters. By combining (2) with the external

instruments yields the moment conditions:

E(utz
′
t) := Σu,z :=

(
Σu1,z

Σu2,z

)
= H•1Φ′ :=

(
H1,1Φ′

H2,1Φ′

)
k × r
(n− k)× r (6)

which represent the key ingredients of the proxy-SVAR approach; see Stock

(2008), Mertens and Ravn (2013) and Stock and Watson (2018). Note, in

particular, that under fairly general conditions on the processes that generate

VAR innovations and proxies, ηt := (u′t, z
′
t)
′, the estimator Σ̂u,z := 1

T

∑T
t=1 ûtz

′
t,

where ût, t = 1, ..., T , are the VAR residuals, is a
√
T -consistent, asymptoti-

cally Gaussian estimator of the covariance matrix Σu,z in (6); see supplemen-

5In equations (4)-(5) it is maintained that the proxies zt are expressed in “innovations
form”, i.e. a serially uncorrelated process, condition that can be relaxed. Actually, we may
also consider a vector of r×1 “raw” proxies Zt for which one can consider the decomposition
Zt = Proj(Zt | It−1) + zt, where Proj(Zt | It−1) is the linear projection of Zt onto the
space spanned by the variables in the information set at time t − 1, It−1, and zt captures
the “unsystematic component” of Zt, that is, what remains of Zt after appropriately filtering
out the dynamics induced by past information.
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tary material for details.

For our purposes, a convenient summary of the conditions (4)-(5) is given

by the linear measurement error model:

zt = Φε1,t + Ωωωt (7)

where ωt is a normalized measurement error term, meaning that E(ωtω
′
t) = Ir,

uncorrelated with the structural shocks εt := (ε′1,t, ε
′
2,t)
′, and Ωω is a symmetric

and positive definite matrix, so that E(ztz
′
t) = ΦΦ′ + ΩωΩ′ω.

The proxy-SVAR can be then compacted in the expression:(
Yt
Zt

)
︸ ︷︷ ︸

Wt

=

(
Π

∗

)
︸ ︷︷ ︸

Γ

Xt +

(
ut
zt

)
︸ ︷︷ ︸

ηt

(8)

(
ut
zt

)
︸ ︷︷ ︸

ηt

=

(
H 0

RΦ Ωω

)
︸ ︷︷ ︸

G

(
εt
ωt

)
︸ ︷︷ ︸

ξt

(9)

where Γ collects the VAR autoregressive parameters as well as the parameters

“∗” associated with the potential lags necessary to whiten the raw instruments,

RΦ contains the relevance parameters and the exclusion restrictions arising

from the exogeneity conditions, and ξt := (ε′t, ω
′
t)
′, with E(ξtξ

′
t) = In+r, col-

lects the structural shocks and the normalized measurement errors (for similar

representations, see e.g., Angelini and Fanelli, 2019; Arias, Rubio-Ramı́rez, and

Waggoner, 2021; Giacomini, Kitagawa, and Read, 2022). The vector ηt in (9)

incorporates the VAR innovations and the proxies; the implied (n+r)×(n+r)

covariance matrix Ση := E(ηtη
′
t) = GG′ is symmetric and positive definite. The

matrix G in (9) plays a key role for our analysis. In its more general form, it

gives rise to the covariance restrictions:

Ση :=

(
Σu Σu,z

Σz,u Σz

)
= GG′ =

(
HH ′ HR′Φ
RΦH

′ RΦR
′
Φ + ΩωΩ′ω

)
=

(
H•1H

′
•1 +H•2H

′
•2 H•1Φ′ +H•2Υ′

ΦH ′•1 + ΥH ′•2 ΦΦ′ + ΥΥ′ + ΩωΩ′ω

)
, (10)

where, for future developments, we have parameterized the matrixRΦ asRΦ :=

(Φ,Υ), with Υ is such that Υ = 0r×(n−r) when proxy exogeneity holds, and

Υ 6= 0r×(n−r) in the presence of contamination effects. In other words, possible

non-zero elements in Υ capture proxy contamination, see below.6 The moment

6We opt to use the term “contamination” when exogeneity fails, rather than the term
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conditions (10) incorporate four cases of interest for the proxies zt, addressed

in Definition 1.

Definition 1 (Instrument properties) Given the proxy-SVAR in (8)-(9)

with RΦ corresponding to the bottom-left block of G, consider a drifting DGP

characterized by sequences of models in which E(ztε
′
1,t) = ΦT ; then the proxies

zt are:

(i) “strong and exogenous” if ΦT → Φ with rank[Φ] = k, and Υ = 0r×(n−r);

(ii) “local-to-zero and exogenous” if ΦT = T−1/2C, C being an r × k matrix

with finite norm, ‖C‖ <∞, and Υ = 0r×(n−r);

(iii) “strong and contaminated by the non-target shocks” if ΦT → Φ with

rank[Φ] = k, and Υ 6= 0r×(n−r).

(iv) “local-to-zero and contaminated by the non-target shocks” if ΦT = T−1/2C,

C being an r × k matrix with finite norm, ‖C‖ <∞, and Υ 6= 0r×(n−r).

Starting from the tenet that valid external instruments in the sense of

Stock and Watson (2018) are those matching the condition in Definition 1.(i),

the external instruments in Definitions 1.(ii)-1.(iv) will be deemed invalid.

Specifically, Definition 1.(iv) characterizes our most extensive interpretation

of the concept of invalid proxies, namely a scenario in which the external

instruments zt exhibit weak correlations in the sense of Staiger and Stock

(1997) with the target shocks, while being correlated with some or all non-

target shocks. It is worth emphasizing that, in all four cases in Definition

1, the matrix G in (9) maintains its nonsingularity, provided rank[H] = n

and rank[Ωω] = r. This particular detail holds significant importance for our

developments in Section 2.3.

“endogenous proxies”. Our consideration is focused on a scenario in which external instru-
ments are primarily associated with the target shocks. However, their correlation with the
target shocks can be altered by potential links with some of the non-target shocks which,
possibly, can be explained by economic arguments. To provide a concrete example, Angelini,
Caggiano, et al. (2023) utilize the measure of Total Factor Productivity (TFP) from Fer-
nald (2014) as an instrument for the output shock. They find that the TFP instrument
is positively correlated with the output shock but also negatively correlated with the tax
shock, albeit not to a significant extent. Angelini, Caggiano, et al. (2023) offer comprehen-
sive theoretical and empirical explanations for why such an effect might be observed in the
data.
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2.2 DGP and main assumptions

In this section, we relax the assumption that the SVAR parameters (Π, Σu,H)

and the external instruments parameters (RΦ,Ωω, Σz) are constant, i.e., time-

invariant over the sample (W1, ...,WT ). The two subsequent assumptions in-

troduce a structural break and establish the regularity conditions under which

our analysis is conducted. It is worth noting that the framework described

below is consistent with approaches such as Bai (2000) and Qu and Perron

(2007). However, unlike these authors, given the scopes of the analysis, our

focus does not extend to inference on the break dates.

Hereafter, superscripts or subscripts “(0)” denote vectors/matrices evalu-

ated in a neighborhood of the true parameter values. The indicator function

is represented by I (·).

Assumption 1 (Break in the error covariance matrix) Let TB be a break

date, 1 < TB < T . The reduced form associated with the proxy-SVAR in (8)

belongs to the DGP:

Wt = Γ(t)Xt + ηt , Ση(t) := E(ηtη
′
t) , t = 1, ..., T (11)

where it holds

Γ(t) := Γ1 · I (t ≤ TB) + Γ2 · I (t > TB)

Ση(t) := Ση,1 · I (t ≤ TB) + Ση,2 · I (t > TB)

and

(i) the process {ηt}, with ηt, is α-mixing on both samples (W1, ...,WTB ) and

(WTB+1, ...,WT ), meaning that it satisfies the conditions in Assumption

2.1 in Brüggemann, Jentsch, and Trenkler (2016); moreover, the process

{ηt} has absolutely summable cumulants up to order eight on both samples

(W1, ...,WTB ) and (WTB+1, ...,WT );

(ii) Ση,1 <∞ and Ση,2 <∞ are positive definite;

(iii) each true regime parameter (Γ
(0)
i ,Σ

(0)
η,i ), i = 1, 2, corresponds to a covari-

ance stationary VAR process for Wt;

(iv) Σ
(0)
η,2 6= Σ

(0)
η,1.

Assumption 2 (Known break date) The break date TB is known. More-

over, TB = bτ (0)
B T c, 0 < τ

(0)
B < 1 being the true fraction of observations in the

first volatility regime.
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Assumption 1 postulates that the unconditional error covariance matrix

Ση changes at the break date TB; despite this change, the system remains

“stable” in the two volatility regimes in the following sense. First, the process

that generates the VAR disturbances and the proxies, {ηt}, is α-mixing and

has absolutely summable cumulants up to order eight (Assumption 1(i)) in

both regimes. The α-mixing condition for ηt means that VAR disturbances

and proxies may be driven by conditionally heteroskedastic processes (e.g.

GARCH) within the two volatility regimes and/or the proxies may be, e.g.,

generated by zero-censored processes; see e.g. Jentsch and Lunsford (2022).

The hypothesis of absolutely summable cumulants up to order eight for {ηt} is

a technical requirement essential to guarantee Moving Block Bootstrap (MBB)

consistency, see Brüggemann et al. (2016) and Assumption 2.4 in Jentsch and

Lunsford (2022). It is intended that MBB resampling is conducted separately

on (W1, ...,WTB ) and (WTB+1, ...,WT ). Second, the unconditional covariance

matrices Ση,1 and Ση,2 are “finite” and positive definite (Assumption 1(ii)), and

the VAR for Wt is asymptotically stable in both volatility regimes (Assump-

tion 1(iii)). Finally, Assumption 1(iv) simply establishes that the unconditional

covariance matrices Ση,1 (pre-break period) and Ση,2 (post-break period) are

different. While this implies that our analysis relies on (at least) a change in

unconditional volatility, Assumption 1.(iv) is not sufficient to ensure identifi-

cation. The extent to which Ση,1 and Ση,2 need to differ for our approach to

be effective is formalized implicitly in terms of a necessary and sufficient rank

condition for identification, as discussed below (see Proposition 1). Note that

in this framework, the slope VAR parameters may or may not change across

the two volatility regimes. Both cases, where Γ1 6= Γ2 and Γ1 = Γ2, are allowed

and can be considered in our analysis.

Assumption 2 posits that the break date TB is known to the econome-

trician, reflecting the empirical macroeconomics scenario where it is acknowl-

edged that there are volatility regimes in the data, often associated with crises

and/or significant policy changes linked to distinct macroeconomic regimes.

The condition TB = bτBT c, see, e.g. Bai (2000), ensures that we can rely on

the typical methods of asymptotic inference.7 In principle, Assumption 2 can

be relaxed and the break date can be inferred from the data with some sta-

tistical procedure or test. When the break date TB is inferred from the data,

post-test inference should account for Bonferroni-Holm type adjustments.

7It is maintained that there are sufficient observations to estimate the model in each
regime.
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2.3 The stability restrictions approach

The main implication of Assumptions 1-2 is that the subsets of observations

(W1, ...,WTB ) and (WTB+1, ...,WT ) are characterized by two distinct VAR co-

variance matrices, Ση,2 and Ση,1, respectively. The modeling of Ση,2 6= Ση,1

holds critical importance in this framework.

A pertinent, related question is whether the target IRFs (3) can still be

estimated consistently by using the instruments zt alone, despite the shift in

volatility. We tackle this issue in Section 3 and the supplementary material

(see Section S.3) when we directly compare our approach with Schlaak et al.

(2023). Our primary finding is that external instruments can be exclusively

employed for inference, even when volatility breaks are disregarded, under two

conditions: (i) the target IRFs remain constant across volatility regimes, indi-

cating that the break solely affects the variance of the structural shocks while

leaving their impact and propagation unchanged; (ii) “relative”, not absolute

responses are estimated, i.e., responses obtained by imposing “unit effect” nor-

malizations (see Proposition S.1). Conversely, when the target IRFs change

across volatility regimes due to shifts in the impact of the target structural

shocks, even strong and exogenous proxies fail to result in consistent estima-

tion if the breaks in volatility are disregarded. Therefore, in general, shifts in

volatility need to be incorporated in proxy-SVAR analysis.

Our novel approach to model the change in volatility, based on target IRFs

that change across volatility regimes is summarized in the next three sections.

The supplementary material, Section S.4, provides a more “conventional” al-

ternative where IRFs are assumed constant across volatility regimes.

2.3.1 Target IRFs and their identifiability

We supplement Assumptions 1-2 with a crucial condition under which the

target IRFs deviate from those in equation (3).

Assumption 3 (Regime-dependent IRFs) The dynamic causal effects pro-

duced by the target shocks can be summarized, for 1 ≤ j ≤ k, by the IRFs:

IRF•j(t, h) :=

{
(S′n(Cy,1)hSn)H•1ej , t ≤ TB,
(S′n(Cy,2)hSn)(H•1 + ∆H•1)ej t ≥ TB + 1

(12)

where ∆H•1 denotes an n×k matrix whose non-zero coefficients capture possible

changes in the on-impact parameters in H•1 in the shift from the first to the

second volatility regime; ∆H•1 := H
(2)
•1 −H•1, H

(2)
•1 being the analogous of the

matrix H•1 in the second volatility regime.
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Note that for ∆H•1 6= 0n×k, Assumption 3 implies Ση,2 6= Ση,1, hence it

does not conflict with Assumption 1(iv). Furthermore, the companion matrices

Cy,i in (12) depend, for i = 1, 2, on the autoregressive (slope) parameters in Γi,

see (11), hence the slope parameters can remain possibly constant under As-

sumption 1.8 Moreover, (12) is formulated to depict responses to one-standard

deviation target shocks in both volatility regimes. We elaborate on this con-

cept later in the paper.

Throughout, for any matrix A, the notation ∆A will refer to a matrix

with the same dimensions as A, where non-zero elements represent potential

parameter changes from the first to the second volatility regime. Formally,

∆A is defined as ∆A := A(2) − A, with A(2) corresponding to A in the second

volatility regime. We use the same notation for elements of a matrix, i.e.

∆ai,j := a
(2)
i,j − ai,j , for ai,j (i, j)-element of A, and a

(2)
i,j (i, j)-element of A(2).

To point-identify and estimate the target IRFs (12) in system (11), we model

the relationship between the vector collecting VAR innovations and proxies,

ηt, and the vector that includes the structural shocks and the measurement

errors associated with the proxies, ξt by:

ηt = Gξt + ∆G · I (t > TB) ξt, (13)

where the matrix G has the structure discussed in Section 2.1, see (9), and the

term ξt here is such that it is respected the condition E(ξtξ
′
t) = In+r. In its

general form, the structure of the matrix G+ ∆G reads:

G+ ∆G =

(
H 0

RΦ Ωω

)
︸ ︷︷ ︸

G

+

(
∆H 0

∆RΦ
∆Ωω

)
︸ ︷︷ ︸

∆G

:=

(
H•1 H•2 0

Φ Υ Ωω

)
︸ ︷︷ ︸

G

+

(
∆H•1 ∆H•2 0

∆Φ ∆Υ ∆Ωω

)
︸ ︷︷ ︸

∆G

(14)

where it is seen that ∆Φ, ∆Ψ and ∆Ωω capture possible changes in the param-

eters governing proxy properties, while ∆H•2 captures possible changes in the

on-impact coefficients associated with the non-target shocks. Recall that the

top-right blocks of zeros in G and ∆G pertain to the impact of measurement

errors associated with the instruments on the variables, which must be zero

in both volatility regimes by construction. Under (14), the dynamics of the

8It turns out that the target IRFs may change across the two volatility regimes under
Assumption 1 either because ∆H•1 6= 0, or possibly because both conditions ∆H•1 6= 0 and
Cy,2 6= Cy,1 hold.
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proxies zt can be described by the linear measurement error model:

zt = RΦεt + Ωωωt︸ ︷︷ ︸
first volatility regime

+ [∆RΦ
εt + ∆Ωωωt] I (t > TB)︸ ︷︷ ︸

second volatility regime

= [Φ + ∆ΦI (t > TB)]︸ ︷︷ ︸
Φ̃t

ε1,t + [Υ + ∆ΥI (t > TB)]︸ ︷︷ ︸
Υ̃t

ε2,t

+ [Ωω + ∆ΩωI (t > TB)]︸ ︷︷ ︸
Ω̃ω,t

ωt (15)

where, under drifting DGPs characterized by sequences of models in which

E(ztε
′
1,t) = Φ̃T → Φ̃ = (Φ + ∆Φ), and for Υ̃t = 0r×(n−k) or Υ̃t 6= 0r×(n−k), the

model accounts for instrument properties as featured in Definition 1.

Equation (15) remarks that the relevance and exogeneity of zt, as well as

the variance of measurement errors, are allowed to change across volatility

regimes. It also suggests that in line with Definition 1 above and as in, e.g.,

Ludvigson et al. (2020, 2021), the external instrument zt can be correlated with

shocks other than the target shocks, via nonzero elements in Υ and/or ∆Υ. As

is well-known, the proxy-SVAR approaches developed by Mertens and Ravn

(2013) and Stock and Watson (2018) achieve point identification by assuming

that the external variables exhibit zero correlations with the non-target shocks.

Conversely, the methodology proposed in the frequentist framework by Lud-

vigson et al. (2020, 2021) for set-identified SVARs allows the external variables

to display departures from exogeneity; see Braun and Brüggemann (2023) for

a Bayesian perspective. Ludvigson et al. (2020) note that the focus of their

analysis is not on relaxing exogeneity per se, but on the broader objective of

using the external instruments to aid in identification. Here, we demonstrate

that breaks in unconditional volatility enable us to address a situation akin

to Ludvigson et al. (2020), with the crucial distinction being that we achieve

point identification. Importantly, this methodology offers the potential for the

data to inform us about the extent of the correlations between the proxies zt
and (part of) the non-target shocks.

The moment conditions implied by model (13) are:

Ση(t) =

{
Ση,1 = GG′ t ≤ TB,
Ση,2 = (G+ ∆G)(G+ ∆G)′ t ≥ TB + 1

(16)

and in light of the structure of the matrices G and ∆G in (14), system (16)

implies that even when proxy exogeneity holds in both volatility regimes, Υ =

0r×(n−r) and ∆Υ = 0r×(n−r), the moment conditions supply information not
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only on the parameters of direct interest H•1 and ∆H•1 , see (12), but also on

elements in H•2 and ∆H•2 , that are not of direct interest in the analysis. We

discuss the “full/partial” nature of the approach that incorporates volatility

changes to external instruments in this and in the next section.

It is important to highlight that the parameterization in (16) is more gen-

eral than one might expect. Consider, e.g., an alternative parameterization

given by:

Ση(t) =

{
Ση,1 = ĞV(1)Ğ

′ t ≤ TB,
Ση,2 = (Ğ+ ∆̆G)V(2)(Ğ+ ∆̆G)′ t ≥ TB + 1

(17)

where the structural shocks and proxy measurement errors, ξt := (ε′t, ω
′
t)
′, are

now intended to have variance E(ξtξ
′
t) = V(1) in the first volatility regime,

and E(ξtξ
′
t) = V(2) in the second volatility regime. Here V(1) and V(2) are

diagonal matrices with positive elements on the diagonal, respectively, and Ğ

and Ğ + ∆̆G differ from G and G + ∆G in (14) only in having “1” on their

main diagonals. One interpretation of (17) is that the change in the covariance

matrices Ση,2 and Ση,1 is now explained by changes in the variances of the

structural shocks, captured by V(2) 6= V(1), as well as changes in on-impact

coefficients, captured by the nonzero elements in the matrix ∆̆G. However,

taken (17) and Ğ, ∆̆G, V(1) and V(2) as DGP, it is always possible to find

matrices G and ∆G such that the following equalities hold:

GG′ = ĞV(1)Ğ
′ t ≤ TB,

(G+ ∆G)(G+ ∆G)′ = (Ğ+ ∆̆G)V(2)(Ğ+ ∆̆G)′ t ≥ TB + 1.

For example, the equations above hold with G := ĞV
1/2

(1) and ∆G = (Ğ +

∆̆G)V
1/2

(2) −ĞV
1/2

(1) . In light of this equivalence, we prefer to rely on the moment

conditions in (16) whose implied IRFs refer to one-standard deviation shocks

in both volatility regimes.

Defined the vectors ση,1 = vech(Ση,1) and ση,2 = vech(Ση,2), then the

moment conditions can be expressed in the more compact form:

ση,1 = vech(GG′)

ση,2 = vech
(
(G+ ∆G)(G+ ∆G)′

) (18)

and, as in Magnusson and Mavroeidis (2014) identification can be attained

through the following set of (linear) constraints on G and ∆G:

vec(G) = SGγ, (19)
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vec(∆G) = S∆G
δ. (20)

In (19)-(20), SG is an (n + r)2 × a selection matrix of full column rank, a <

(n + r)2, γ := (γ′H , γ
′
R, γ

′
Ωω

)′ is the a-dimensional vector collecting the free

nonzero parameters entering the matrix G, with γH , γR, and γΩω containing

the nonzero elements in H, RΦ, and Ωω, respectively; S∆G
is an (n + r)2 × b

selection matrix of full column rank b, b < (n+r)2, and δ := (δ′H , δ
′
R, δ

′
Ωω

)′ is the

b-dimensional vector of free nonzero parameters in the matrix S∆G
, with δH ,

δR and δΩω having analogous interpretation as γH , γR and γΩω , respectively.

Thus, since the elements in the vector δ capture changes from the first to the

second volatility regime, the restrictions on ∆G should be strictly interpreted

as stability restrictions.

The stability restrictions in (19)-(20) serve a dual purpose. On the one

hand, the constraints imposed on matrix G are instrumental in identifying k

target structural shocks, alongside n − k non-target shocks possibly under a

parsimonious set of restrictions (more on this below).9 On the other hand,

the constraints on ∆G determine which of the non-zero and zero proxy-SVAR

parameters contained in matrix G undergo changes in the transition from the

first to the second volatility regime. As it will be shown in the empirical

illustration in Section 4, the specifications of the matrices G (γ), ∆G (δ),

SG and S∆G
in (14)-(20) are tailored to the specific problem and the scopes

of the analysis. Importantly, besides leveraging the change in volatility, the

stability restrictions that the investigator specifies in (19)-(20) are grounded

in the underlying theory or knowledge of the phenomenon under study. They

do not rely on statistical information such as the distribution of the structural

shocks or their cross-independence.

It can be noticed that, jointly equation (18) through (20) jointly character-

ize a “full identification” problem in the sense that, as they stand, the moment

conditions and identification restrictions affect not only the target structural

shocks but also the non-target ones. The decision to take a (partial) stance

on the non-target shocks arises when (n − k) > 1 (see Section 4).10 In the

9It is worth noting that, for k > 1, even in a “conventional” proxy-SVAR with no struc-
tural breaks, achieving point-identification necessitates at least 1

2
k(k − 1) additional restric-

tions beyond the instruments in, e.g., Mertens and Ravn (2013) and Angelini and Fanelli
(2019).

10In principle, our approach can be extended to the case in which identification and esti-
mation are developed by partialing out the influence of non-target shocks from the analysis.
Specifically, it is possible to maintain that changes in volatility can be exclusively attributed
to parameters related to the impact of the target shocks on the variables. One advantage of
this solution is that it relieves the investigator from taking a stance on the non-target shocks.
A drawback is that one must assume proxy exogeneity in estimation, leading to the loss of
one of the benefits of our suggested approach.
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remainder of the paper, we delve into the (local) point identification and esti-

mation of the proxy-SVAR under the general specification defined by equations

(18)-(20), emphasizing the strengths of the proposed methodology.

The parameters associated with the target IRFs in (12) are elements of

γ and δ, that we collect in the vector θ. More precisely, θ := (γ′H•1 , δ
′
H•1

)′,

with γH•1 , δH•1 , being subvectors of γH and δH , respectively. θ is referred to

as the vector of parameters of interest. The moment conditions (18) feature

(n + r)(n + r + 1) reduced-form coefficients, ση,1 and ση,2, and a + b free

parameters that we collect in the vector ς := (γ′, δ′)′. We can conveniently

summarize these moment conditions by the distance function:

m(ση, ς) :=

(
m1(ση,1, ς)

m2(ση,2, ς)

)
=

(
ση,1 − vech(GG′)

ση,2 − vech
(
(G+ ∆G)(G+ ∆G)′

) ) , (21)

where it is intended that the matricesG and ∆G are constrained as in (19)-(20).

Equation (21) shows that the point identification problem of θ is equivalent

to the problem of uniquely recovering the vector ς, comprising some nuisance

parameters, from the reduced-form covariance parameters in ση,1 and ση,2,

respectively. The next proposition establishes the necessary and sufficient

conditions for this to happen. We denote with ς0 the true value of ς.

Proposition 1 (Identification under changing IRFs) Given the proxy-

SVAR from Assumptions 1-3, consider the moment restrictions in (21) with

G and ∆G restricted as in (19)-(20). Assume ς0 is a regular point in the para-

metric space Pς . Then, irrespective of whether the proxies zt satisfy one of the

conditions in Definition 1:

(i) a necessary and sufficient rank condition for the identification of ς in

a neighborhood of ς0 is that rank[J (ς0)] = a + b, where J (ς0) is the

(n+ r)(n+ r + 1)× (a+ b) Jacobian evaluated at ς0, given by:

J (ς0) :=
∂m(ση, ς)

∂ς ′

∣∣∣∣
ς=ς0

,

∂m(ση, ς)

∂ς ′
= 2

(
I2 ⊗D+

n+r

)( (G⊗ In+r) 0(n+r)2×(n+r)2

(G+ ∆G)⊗ In+r (G+ ∆G)⊗ In+r

)(
SG 0

0 S∆G

)
;

(22)

(ii) a necessary order condition is:

(a+ b) ≤ (n+ r)(n+ r + 1). (23)
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The main message from Proposition 1 is that in the presence of a shift in

unconditional volatility, the stability restrictions in (19)-(20) allow to point-

identify the parameters in a neighborhood of ς0, hence the proxy-SVAR pa-

rameters, θ, and the target IRFs. The result holds regardless of the properties

of the external instruments outlined in Definition 1. The possible breakdown

of proxy relevance and exogeneity does not affect the necessary and sufficient

rank condition in Proposition 1.11

Intuitively, relevance is not strictly necessary because regardless of the lo-

cal rank properties of Φ, the rank of the Jacobian matrix J (ς) in (22) remains

unaffected by sequences of matrices ΦT converging to Φ; this implies that even

in cases where the proxies satisfy the conditions in Definition 1.(ii) and 1.(iv),

identification of the proxy-SVAR can still be achieved through the shift in

volatility. On the other hand, the exogeneity condition can be potentially re-

laxed due to the “full identification” nature of the approach through changes

in volatility, which inherently delivers information concerning the non-target

shocks, other than the target shocks. Provided the necessary and sufficient

rank condition holds, the target structural shocks can be recovered even when

the instruments are correlated with some non-target shocks. This flexibility,

however, comes at the cost of the investigator needing to take a stance, at least

partially, on how non-target shocks impact the variables, which requires a few

constraints on H•2 and ∆H•2 , via (19)-(20). As shown in the empirical illustra-

tion in Section 4 where we estimate a fiscal proxy-SVAR for the US economy

with a shift in unconditional volatility, this stance can often be established by

leveraging insights from other studies.12

2.3.2 Estimation

To estimate the target IRFs under Proposition 1, we adopt the CMD approach.

Assumptions 1-3 suffice to guarantee the consistency and asymptotic normal-

ity of the CMD estimator, as indicated in Proposition 2 below. Notably, no

distribution assumption is required for ηt.

11It is noteworthy that the necessary and sufficient rank condition in Proposition 1 remains
valid, as expected, even when the restrictions imposed by the investigator G and ∆G imply
“sub-sample identification”. With this term we mean that the identification of parameters γ
and δ can be achieved through two SVAR analyses conducted separately on the two volatility
regimes; see e.g. Blanchard and Gaĺı (2009). It is evident that the utility of the identification
conditions outlined in Proposition 1 extends well beyond the phenomenon of sub-sample
identification.

12We establish an analogous proposition to Proposition 1 for cases in which the target IRFs
are assumed to remain constant across volatility regimes; see supplementary material, Section
S.4, Proposition S.3. This proposition provides a theoretical foundation for the results that
Schlaak et al. (2023) documented only through simulation studies for the case r = k = 1.
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To introduce the estimation method, it may be useful to preliminary start

from the asymptotic properties of the estimator of the reduced-form covariance

matrices of the proxy-SVAR in (11), σ̂η := (σ̂′η,1, σ̂
′
η,2)′. Under Assumptions

1-2, it holds the asymptotic normality result:

√
T (σ̂η−ση,0) =

√
T

(
σ̂η,1 − ση,1,0
σ̂η,2 − ση,2,0

)
d→ N(0, Vση) , Vση :=

(
Vση,1 0

0 Vση,2

)
(24)

where ση,0 := (σ′η,0,1, σ
′
η,0,2)′ is the true value of ση, and the structure of the

asymptotic covariance matrices Vση,i , i = 1, 2 is discussed in detail by e.g.

Brüggemann et al. (2016); see also references therein. Henceforth, we assume

the existence of a consistent estimator for Vση , denoted V̂ση .13

Under the conditions of Proposition 1, the estimator of the parameters ς,

hence of θ, is obtained by solving the minimization problem:

ς̂T := arg min
ς∈Pς

mT (σ̂η, ς)
′V̂ −1
ση mT (σ̂η, ς) (25)

where mT (σ̂η, ς)
′ :=

(
mT,1(σ̂η,1, ς)

′,mT,2(σ̂η,2, ς)
′)′ is the distance function in

(21) with ση replaced with the estimator σ̂η.
14 Let θ̂T := (γ̂′H•1,T , δ̂

′
H•1,T

)′ be

the subvector of the CMD estimator ς̂T := (γ̂′T , δ̂
′
T )′. The next proposition

establishes asymptotic properties.

Proposition 2 (Asymptotic properties CMD estimator) Let ς̂T be the

CMD estimator of the parameters ς obtained from (25), and θ̂T := (γ̂′H•1,T , δ̂
′
H•1,T

)′

be the corresponding subvector of ς̂T . Let ς0 be an interior of Pς (assumed com-

pact), with θ0 subset of ς0 (θ0 ∈ Pθ ⊆ Pς). Under the conditions of Proposition

1:

ς̂T
p→ ς0 ,

√
T (ς̂T − ς0)

d→ N(0, Vς)

θ̂T
p→ θ0 ,

√
T (θ̂T − θ0)

d→ N(0, Vθ)

where Vς :=
(
J (ς0)′V −1

ση J (ς0)
)−1

and Vθ is the corresponding block of Vς .

13Under Assumptions 1-2 and mild additional auxiliary conditions, the residual-based mov-
ing block bootstrap (MBB), as introduced by Brüggemann et al. (2016) (and outlined by
Jentsch and Lunsford (2022) in the context of proxy-SVAR models), is consistent. This
means that the regime-dependent covariance matrices Vση,i that form Vση in (24) can be
estimated by applying the MBB separately within each volatility regime.

14As is known, the optimization problem in (25) can be influenced by multiple local minima,
aligning with the fact that the necessary and sufficient rank condition in Proposition 1 holds
for local, not global identification; we refer to Bacchiocchi and Kitagawa (2022a) for SVARs
in which identification is local and not global. When two or more local minima arise from
(25), one reasonable selection criterion is to inspect ex-post the signs of estimated coefficients
and compare them with the signs expected from the theory.
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Proposition 2 establishes that the target IRFs can be consistently esti-

mated, and standard asymptotic inference can be applied regardless of the

proxy properties formalized in Definition 1. The simulation studies, summa-

rized in the supplementary material, emphasize the benefits arising from the

results in Propositions 1-2 in terms of gains in efficiency in the estimation of

target IRFs relative to not including external instruments in the analysis.

Proposition 2 ensures that when (n+ r)(n+ r + 1) > (a+ b), the number

of overidentifying restrictions resulting from the estimation problem (25), (n+

r)(n+ r + 1)− (a+ b), can be empirically evaluated using the overidentifying

restrictions test. Notably, as evidenced by our simulation studies, the test for

overidentifying restrictions appropriately rejects when the stability restrictions

include incorrect constraints; for instance, when proxy exogeneity is imposed

in estimation but the DGP of the instrument belongs to model (15) with Υ or

(Υ + ∆Υ) different from zero.

Jointly, Propositions 1-2 provide the foundation for our approach to the

identification and estimation of proxy-SVARs with permanent, nonrecurring

breaks in the error covariance matrix. Essentially, the suggested approach

(i) does not necessitate pre-testing proxy strength and exogeneity; (ii) does

not need to rely on weak-instrument robust methods; (iii) does not require

imposing proxy exogeneity in estimation.

2.3.3 Checks of identifiability

The identification and estimation approach discussed in the previous section

holds if and only if the Jacobian matrix J (ς) in (22) is full column rank. When

the rank condition rank[J (ς)] = a+ b holds locally, the shift in unconditional

volatility captured under Assumption 1(iv) by the distance Ση,2−Ση,1, conveys

sufficient information to compensate for potential instrument weakness without

compromising the inference on the target structural shocks and the validity of

standard asymptotics. Even contaminated instruments do not affect estimates’

consistency when stability restrictions are correctly specified.

Conversely, when the shift Ση,2−Ση,1 is “weak”, the shift in unconditional

volatility does not provide sufficient information for identification. We study

such phenomenon in Section S.6 of the supplement, focusing in detail on how

changes in volatility impact the necessary and sufficient rank condition for

identification derived in Proposition 1. In particular, we approximate scenarios

characterized by weak changes in volatility with the phenomenon of “shrinking

shifts”, which arises when Assumption 1(iv) does not hold because the distance

Ση,2 − Ση,1 tends to vanish as T → ∞. We postpone to future research the

elaboration of a comprehensive robust approach to proxy-SVARs that fully
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integrates potentially weak external instruments in a context in which the

identification information stemming from heteroskedasticity is scant.

In practical situations practitioners can, in principle, test the rank of the

Jacobian matrix ex-post, meaning after estimating the model and substituting

the elements in G and ∆G in (22) with their estimates, obtaining J (ς̂T ); see,

e.g., Kleibergen and Paap (2006) and Al-Sadoon (2017) and references therein.

Alternatively, one can apply the pre-test for the null hypothesis that IRFs do

not change, against the alternative that they change across a finite number of

volatility regimes, as recently introduced by Lütkepohl and Schlaak (2022) for

the one instrument-one shock case, generalized in Bruns and Lütkepohl (2024)

to the multiple instruments setup. However, while our approach accommodates

invalid proxies, Bruns and Lütkepohl (2024) test requires strong, exogenous

instruments. Hence, it can be interpreted as an implicit assessment of the

validity of the rank condition of the Jacobian J (ς) only when the investigator

has no doubts about instrument strength and exogeneity. In any case, if a

pre-test of the identification conditions is undertaken, post-test inference must

be adjusted accordingly.

In the empirical illustration discussed in Section 4, following the indications

arising from our Monte Carlo sperimentations, we assess the quality of iden-

tification by inspecting the smallest singular value implied by the estimated

Jacobian matrix J (ς̂T ) relative to its associated uncertainty as captured by a

bootstrap confidence interval, emphasizing that no rigorous inference is being

drawn in this process.15

3 Connections and differences with the

literature

In this section, we review contributions in the existing literature where external

instruments are explicitly combined with changes in volatility, highlighting the

main differences with our approach. While the current literature sees a grow-

ing number of articles driven by the idea that “blending” different methods

enhances the (point- or set-) identification of the structural shocks of interest,

15In our Monte Carlo experiments, we evaluate the identifiability of the analyzed proxy-
SVARs with changes in volatility by examining the distribution of the smallest eigenvalue of
the matrix J (ς̂T )′J (ς̂T ), which corresponds to the smallest singular value of the estimated
Jacobian matrix J (ς̂T ). Results suggest that in situations in which the necessary and suf-
ficient conditions for identification in Proposition 1 holds, the variability surrounding the
estimated smallest singular value of the Jacobian matrix J (ς̂T ) is considerably smaller com-
pared to cases in which the distance between covariance matrices across volatility regimes
tends to shrink.
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our focus here is specifically on contributions that integrate external instru-

ments and volatility shifts within point-identified SVARs.

Schlaak et al. (2023) concentrate on proxy-SVARs where a single instru-

ment is used for a single target shock (r = k = 1), and breaks in the uncon-

ditional VAR covariance matrix imply that the target IRFs remain constant

across volatility regimes. They demonstrate, primarily through extensive sim-

ulation studies, that the identification through the heteroskedasticity approach

not only enables refining the inference on the target structural shocks obtained

by external instruments, but also facilitates testing the exogeneity condition

and the evaluation of the strength of the proxy. Our analysis formally es-

tablishes that, in the one shock-one instrument framework they consider, by

concentrating on relative IRFs that remain constant across volatility regimes,

a valid external instrument ensures consistent estimation even if the break

in volatility is disregarded. Conversely, our approach demonstrates that re-

gardless of whether one considers absolute or relative IRFs, the responses (12)

cannot be estimated consistently by the instruments alone.

More precisely, in Schlaak et al. (2023), the (absolute) target IRFs are not

defined by those in (12), but rather are given by:

IRF•j(t, h) :=

{
(Sn(Cy)hS′n)H•1ej t ≤ TB,
(Sn(Cy)hS′n)H•1P

1/2
•1 ej t ≥ TB + 1

, 1 ≤ j ≤ k

where P•1 is a diagonal matrix with distinct, positive elements on the diagonal.

It turns out that the relative (normalized) IRFs are given by:

IRF•1(t, h)

IRF11(t, 0)
= (Sn(Cy)hS′n)

(
1

Hrel
2,1

)
, t = 1, ..., T

where Hrel
2,1 := H2,1(H1,1)−1 = Σu2,z(Σu1,z)

−1, see (6). Proposition S.1 in the

supplementary material, Section S.3, shows that if the instrument satisfies the

relevance and exogeneity conditions in Definition 1.(i), then:

Σ̂u2,zΣ̂
−1
u1,z

p→ Hrel
2,1 ,

where Σ̂u1,z and Σ̂u2,z are the corresponding blocks of the estimator Σ̂u,z :=
1
T

∑T
t=1 ûtz

′
t. This result implies that in under the assumptions of Schlaak et al.

(2023), a valid external instrument potentially suffices alone for the consistent

estimation of the relative IRFs without the need to take the break in volatility

into account. Obviously, incorporating the moment conditions stemming from

the break in volatility in the analysis can only enhance, rather than hinder,

the inference. Also, in the framework of Schlaak et al. (2023), an informative

24



change in volatility compensates for the occurrence of weak instruments, a

result that we prove analytically in the supplementary material, Section S.4.

A comparable scenario, not exclusively restricted to point identification,

is explored by Carriero, Marcellino, and Tornese (2023)), who also consider a

framework in which the impact and propagation of the structural shocks re-

main unchanged across volatility regimes. Carriero et al. (2023) also combine

proxy-SVARs and heteroskedasticity (proxy-SVAR-H, see supplement, Section

S.4) in a Bayesian framework. Their approach is primarily driven by the idea

that heteroskedasticity offers a way to sharpen identification while simultane-

ously relaxing the zero restrictions that are typically essential in proxy-SVARs

when dealing with multiple target shocks. Conversely, our analysis shows that

if the hypothesis of invariant target IRFs across volatility regimes cannot be

empirically justified, augmenting the external instruments with moment con-

ditions stemming from shifts in unconditional volatility becomes a crucial mea-

sure to reestablish consistency and standard inference. Hence, in comparison

to both Schlaak et al. (2023) and Carriero et al. (2023), our analysis highlights

that, in empirical cases of interest, augmenting external instruments with the

breaks in volatility emerges as the sole approach to ensure the consistent esti-

mation of the dynamic causal effects of interest.

Finally, Lütkepohl and Schlaak (2022) and Bruns and Lütkepohl (2024)

develop tests for changing IRFs due to shifts in volatility based on using exter-

nal instruments. In these tests, however, instruments must be both relevant

and exogenous to ensure proper size control and power. See e.g., Bruns and

Lütkepohl (2023) for an application to the oil market.

4 Empirical illustration: a fiscal proxy-SVAR

with a shift in volatility

In this section, we illustrate the effectiveness and potential of our methodol-

ogy by re-evaluating fiscal proxy-SVAR of Mertens and Ravn (2014) by our

approach. Specifically, we estimate US fiscal multipliers by incorporating ex-

ternal fiscal instruments for fiscal shocks and simultaneously considering the

(almost abrupt) shift in volatility that occurred during the transition from

the Great Inflation to the Great Moderation period. The Great Moderation,

observed since the mid-1980s, is characterized by a notable decrease in the

standard deviation of GDP, along with other macroeconomic and financial

variables. Subsequently, we compare our findings with those in the existing

literature.

Since the seminal contribution of Mertens and Ravn (2014), the estima-
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tion of US fiscal multipliers using multiple external instruments for the tax

and fiscal spending shocks has attracted considerable attention, as evidenced

by contributions in works such as Caldara and Kamps (2017) and Angelini,

Caggiano, et al. (2023), among many others. Fiscal multipliers have been in-

ferred also leveraging changes in volatility, see, e.g., Lewis (2021) and Fritsche,

Klein, and Rieth (2021).16 Lewis (2021) introduces a nonparametric approach

exploiting the volatility of US data, assuming constant IRFs. In contrast,

Fritsche et al. (2021), focusing specifically on government spending shocks,

acknowledge, within various empirical specifications, the possibility of Markov

switching state-dependent IRFs.

We consider a VAR model for the variables Yt := (TAXt, Gt, GDPt)
′

(n = 3), where TAXt is a measure of per capita real tax revenues, Gt de-

notes per capita real government spending and GDPt is per capita real out-

put. Government spending includes federal government expenditure and gross

investment; tax revenues are the sum of federal current tax receipts, social

insurance contributions, and corporate income taxes.17 All variables are in

logarithms after being deflated by the GDP deflator. The estimation sample

covers the period from 1950:Q1 to 2006:Q4, comprising a total of T = 228

quarterly observations. The time series are linearly detrended. The reduced-

form VAR includes p = 4 lags and a constant.

Standard residual-based diagnostic tests show that VAR disturbances are

serially uncorrelated but display conditional heteroskedasticity. The graphs

in the left panel of Figure 1 plot the VAR residuals on the period 1950:Q1-

2006:Q4. As is known, McConnell and Perez-Quiros (2000) identify 1984:Q1

as the break-date of the variance of the US real GDP; see also, among many

others, Justiniano and Primiceri (2008). We take TB = 1984:Q1 as a break

point in our sample, corresponding to the vertical lines in Figure 1, which

delineates two volatility regimes. The first volatility regime, denoted as the

Great Inflation, spans the period from 1950:Q1 to 1984:Q1 and includes 137

quarterly observations. The second volatility regime, denoted as the Great

Moderation, covers the period from 1984:Q2 to 2006:Q4 and includes 91 quar-

terly observations. The graph clearly illustrates that VAR residuals become

less volatile during the Great Moderation.

Let ut := (utaxt , ugt , u
gdp
t )′ be the vector of VAR disturbances, and ε1,t :=

16In this context, we do not explicitly address contributions that make use of models
for conditional heteroskedasticity in the identification of fiscal multipliers, such as the work
of Bouakez, Chihi, and Normandin (2014). Similarly, we do not discuss works that solely
utilize third and fourth unconditional moments of the reduced-form innovations like the work
of Guay (2021).

17All variables are taken from Caldara and Kamps (2017), where a more detailed explana-
tion of the dataset can be found.
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(εtaxt , εgt )
′ the vector of (target) fiscal shocks, ε2,t := εgdpt being the (non-target)

output shock. In line with Mertens and Ravn (2014), we use fiscal instruments

for the fiscal shocks. Specifically, we consider two fiscal instruments collected

in the vector zt := (ztaxt , zgt )′, r = k = 2. ztaxt represents Mertens and Ravn

(2011) series of unanticipated tax shocks, derived from a subset of shocks

identified through a narrative analysis of tax policy decisions (Romer and

Romer, 2010). On the other hand, zgt represents a novel series of unanticipated

fiscal spending shocks introduced in Angelini, Caggiano, et al. (2023).18The

two fiscal instruments are plotted in the right column of Figure 1.

To proceed with a benchmark in mind, we initially estimate the fiscal proxy-

SVAR without considering the break in unconditional volatility (Section 4.1).

Subsequently, we amend the empirical analysis by incorporating the break at

TB = 1984:Q1 and implementing our stability restrictions approach (Section

4.2).

4.1 Benchmark: no volatility shifts

We start by estimating a proxy-SVAR over the whole sample period 1950:Q1-

2006:Q4, maintaining that the fiscal instruments zt are relevant and exogenous

for the target fiscal shocks ε1,t := (εtaxt , εgt )
′. We consider the following proxy-

SVAR specification: utaxt
ugt
ugdpt

 =

 h
(1)
1,1 h

(1)
1,2

h
(1)
2,1 h

(1)
2,2

h
(1)
3,1 h

(1)
3,2


︸ ︷︷ ︸

H•1

(
εtaxt
εgt

)
︸ ︷︷ ︸

ε1,t

+ H•2ε
gdp
t︸︷︷︸
ε2,t

(26)

(
ztaxt
zgt

)
︸ ︷︷ ︸

zt

=

(
ϕ1,1 ϕ1,2

0 ϕ2,2

)
︸ ︷︷ ︸

Φ

(
εtaxt
εgt

)
︸ ︷︷ ︸

ε1,t

+

(
ω̃taxt
ω̃gt

)
︸ ︷︷ ︸

ω̃t

(27)

and estimate the model by the CMD approach introduced in Angelini and

Fanelli (2019). In (26)-(27), ω̃t := (ω̃taxt , ω̃gt )′ denotes the vector of (unnormal-

ized) measurement errors associated with the two fiscal proxies. As is known,

with k = 2 target shocks, it is necessary to impose at least 1
2k(k − 1) = 1

restriction on the parameters in (H ′•1,Φ
′)′ to achieve point identification; see

18Hence, the time series zgt used in this paper does not coincide precisely with the one used
in Mertens and Ravn (2014) for instrumenting fiscal spending shocks. This explains why our
results, obtained on the estimation sample from 1950:Q1-2006:Q4 without taking the change
in volatility into account (see Section 4.1), do not match precisely those in Mertens and Ravn
(2014).

27



Angelini and Fanelli (2019). The zero in the (2,1) position of the matrix Φ in

(27) posits that the fiscal spending proxy solely instruments the fiscal spending

shock. In turn, we permit the tax proxy to possibly convey information on the

fiscal spending shock other than the tax shock, allowing the data to inform on

the significance of the parameter ϕ1,2.

The so-estimated dynamic fiscal multipliers are plotted in bold (solid lines)

in Figure 2, surrounded by 68% MBB confidence intervals, represented by the

dotted thin black lines. Dynamic multipliers are computed from the estimated

target fiscal IRFs using the same method as in Mertens and Ravn (2014); see

also Caldara and Kamps (2017) and Angelini, Caggiano, et al. (2023).19 In the

upper panel of Figure 2, we present the dynamic tax multipliers. Consistent

with the findings in Mertens and Ravn (2014), the peak tax multiplier is 2.7

(3 quarters after the shock), and the associated 68% confidence interval, while

broad, does not include zero. Turning our attention to the estimated dynamic

fiscal spending multipliers in the lower panel of Figure 2, the peak effect is 1.66

(4 quarters after the shock), with an associated 68% MBB confidence interval

of (0.76, 1.91). We summarize the estimated peak tax and fiscal spending

multipliers, denoted asMpeak
tax andMpeak

g , respectively, in column (i) of Table

1.

As emphasized in the empirical fiscal literature, a critical parameter in-

fluencing the size of the tax multiplier is the output elasticity of tax revenues

(automatic stabilizer), denoted as ψtaxy ; see Mertens and Ravn (2014), Caldara

and Kamps (2017), Lewis (2021), and Angelini, Caggiano, et al. (2023). Our

point estimate of the parameter ψtaxy in column (i) of Table 1, is 3.26, with

a 68% confidence interval of (0.75, 5.84). Overall, these findings for the esti-

mation sample 1950:Q1-2006:Q4 align with the main conclusions in Mertens

and Ravn (2014). We complete our calculations computing the correlations

19Let Pt represent either the level of fiscal spending or the level of tax revenues (not in
logs), and GDP et denote the unlogged level of output. For simplicity, we use βyhto denote
the response of log-output at horizon h to a one-standard deviation fiscal policy shock, and
βp0 for the on-impact response of the logged fiscal variable to the corresponding one-standard
deviation fiscal policy shock. Then, in our context, dynamic multipliers, defined as the dollar
response of output to an effective change in the fiscal variable of 1 dollar occurred h period
before, are given by the expression:

Mp,h := (βyh/βp0)× Scalingp

where Scalingp is a policy shock-specific scaling factor converting elasticities to dollars. We
set the scaling factor equal to the sample means of the series (GDP et /Pt) computed over
the estimation period. Thus, when dealing with the change in volatility and the stability
restriction approach (Section 4.2), the scaling factor is calculated considering observations
in the corresponding volatility regime. We refer to Caldara and Kamps (2017) and Angelini,
Caggiano, et al. (2023) for a detailed discussion.
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between the fiscal proxies and the estimated fiscal shocks, also reported in col-

umn (i) of Table 1. The estimated correlation between zgt and εgt is 96%, with

a relatively narrow 68% MBB confidence interval of (96%, 98%). In contrast,

the estimated correlation between ztaxt and εtaxt is 27%, accompanied by a 68%

confidence interval of (12%, 37%), raising concerns about the strength of the

tax proxy over the entire estimation sample of 1950:Q1-2006:Q4.20

The estimated fiscal multipliers are obtained from normalized IRFs, i.e.

relative effects. As demonstrated in Section 3 (see also the supplementary

material), when the target IRFs incorporate unit effect normalizations and

remain constant across volatility regimes in the data generating process, the

dynamic causal effects of interest can be consistently estimated, even ignoring

shifts in volatility, if the instruments are both relevant and exogenous. We

revisit this consideration later in the text, bearing in mind that the empirical

results obtained thus far seem to cast doubt on the relevance used for the tax

proxy.

4.2 Shift in unconditional volatility: The stability
restrictions approach

Next, we proceed with our stability restrictions approach, which requires ex-

plicitly complementing the fiscal instruments zt with the shift in unconditional

volatility occurring at the date TB = 1984:Q1.21

The empirical counterpart of model (13) is specified as follows:
utaxt
ugt
ugdpt

ztaxt
zgt

 =


h

(1)
1,1 h

(1)
1,2 h

(2)
1,1 0 0

h
(1)
2,1 h

(1)
2,2 0 0 0

h
(1)
3,1 h

(1)
3,2 h

(2)
3,1 0 0

ϕ1,1 ϕ1,2 Υ1,1 σω,1 0

0 ϕ2,2 Υ2,1 σω,1,2 σω,2


︸ ︷︷ ︸

G:=

 H•1
Φ

H•2
Υ

0

Ωω




εtaxt
εgt
εgdpt

ωtaxt
ωgt


︸ ︷︷ ︸

ξt

20A formal test of relevance of the tax proxy ztaxt on the same sample may be found in the
Supplementary Material of Angelini, Cavaliere, and Fanelli (2024).

21We also conducted a simple sub-sample estimation exercise, wherein the same (constant
parameters) proxy-SVAR in (26)-(27) estimated on the whole sample is re-estimated sep-
arately on the Great Inflation and Great Moderation samples, respectively. Due to space
constraints, detailed results on this, and graphs of the implied dynamic multipliers, are avail-
able upon request.
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+



∆
h

(1)
1,1

∆
h

(1)
1,2

0 0 0

∆
h

(1)
2,1

∆
h

(1)
2,2

0 0 0

0 ∆
h

(1)
3,2

∆
h

(2)
3,1

0 0

∆ϕ1,1 ∆ϕ1,2 0 ∆σω,1 0

0 ∆ϕ2,2 0 0 ∆σω,2


︸ ︷︷ ︸

∆G:=

 ∆H•1

∆Φ

∆H•1

∆Υ

0

∆Ωω



I (t > TB)


εtaxt
εgt
εgdpt

ωtaxt
ωgt


︸ ︷︷ ︸

ξt

(28)

and is based on the following set of hypotheses. The first two columns of the

matrix G, which pertain to the instantaneous impact of the fiscal shocks on

the variables in the first volatility regime, reproduce exactly the structure of

the matrix (H ′•1,Φ
′)′ considered in the specification (26)-(27) for which the

proxy-SVAR was estimated on the whole sample period. Given the full iden-

tification nature of the changes in volatility approach, the third column of the

matrix G refers to the instantaneous impact of the output (non-target) shock

on the variables. In this case, we borrow the restriction h
(2)
2,1 = 0 from Mertens

and Ravn (2014). This restriction, considered an uncontroversial tenet in the

US fiscal empirical literature, posits that fiscal spending does not respond

instantaneously to the output shock; see also Blanchard and Perotti (2002).

Furthermore, we relax a-priori the exogeneity of the two fiscal proxies zt with

respect to the output shock, leaving the contamination parameters Υ1,1 and

Υ2,1 unrestricted in (28), letting the data to inform us about possible violation

of the exogeneity condition. Finally, we compensate for the zero restriction

in the position (2,1) of the matrix of relevance parameters Φ by allowing the

measurement error affecting the tax proxy to potentially influence the variance

of fiscal spending instrument through the parameter σω,2,1.

In the second volatility regime, i.e. for the sample starting from t ≥ TB+1,

we specify a single stability restriction pertaining to the impact of the tax

shock. In particular, we posit that the instantaneous impact of the tax shock on

output remains constant across the two regimes, implying ∆
h

(1)
3,1

= 0 in the first

column of ∆H•1 in (28). To motivate this constraint, note that the inspection

of the bottom-right graph Figure 1, which plots the “great ratio” TAXt −
GDPt, suggests that the relative dynamics of tax revenues and GDP remains

substantially stable over the sample period 1950:Q1–2006:Q4, as it should be

expected, e.g., under a sustainable debt policy. It can be therefore argued

that the change in volatility occurring at TB = 1984:Q1, affects both time

series simultaneously, which is unsurprising given the strict cyclical relationship

connecting tax revenues and output. Also, considering the nature of the proxy
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used to instrument the latent tax shock which is highly zero-censored and

does not display marked changes across the two volatility regimes, the stability

restriction ∆
h

(1)
3,1

= 0 appears a reasonable one in our context. All other nonzero

on-impact coefficients in H•1, as well as the nonzero relevance parameters in Φ

are permitted to change across the two volatility regimes. As for the on-impact

coefficients associated with the non-target output shock, we specify the matrix

∆H•2 similar to H•2, i.e., keeping the restriction borrowed from Mertens and

Ravn (2014) also valid in the second volatility regime (∆
h

(2)
2,1

= 0) and letting

all other coefficients vary. Lastly, we keep the contamination parameters Υ1,1

and Υ2,1 unchanged relative to the Great Inflation. Finally, we allow for a

shift in the variance of the fiscal instrument’s measurement error.

The proxy-SVAR specified in (28) involves (a+b)=27 parameters, collected

in the vector ς, which are spread across the matrices G and ∆G in (28), and is

based on (n+r)(n+r+1)=30 moment conditions. The model is therefore overi-

dentified if the necessary and sufficient rank condition in Proposition 1 holds.

The CMD estimates ς̂T resulting from problem (25) are summarized in the

upper panel of Table 2 along with 68% MBB confidence intervals. The overi-

dentifying restrictions test reported in the bottom panel of Table 2 strongly

supports the estimated model with a p-value of 0.90, highly supportive of the

chosen specification. An informal check of the quality of the identification of

the estimated proxy-SVAR with the change in volatility is also summarized

in the bottom part of Table 2, which displays the estimated smallest singular

value of the Jacobian matrix, J (ς̂T ), with associated 68% MBB confidence

interval. As observed above, we refrain from interpreting the fact that the

bootstrap confidence interval for the smallest singular value does not contain

zero as conclusive statistical evidence that the rank identification condition in

Proposition 1 is met for the estimated model. At the same time, however, we

do not observe clear-cut signs suggesting a potential lack of identification due

to an insufficiently informative shift in volatility. Therefore, we can reasonably

maintain that the reduction in volatility of the data observed in the shift from

the Great Inflation to the Great Moderation regime suffices to point-identify

the model, and standard asymptotic inference can be used in this framework.

The CMD estimates in Table 2 reveal important information about the

properties and quality of the instruments used to estimate fiscal proxy-SVAR.

Two main considerations arise. First, apparently, the relevance of the fiscal

spending instrument zgt captured by the parameters ϕ2,2 (Great Inflation) and

ϕ2,2 + ∆ϕ2,2 (Great Moderation), tends to decline because of the negative

and significantly estimated parameter ∆ϕ2,2 . However, in line with the Great

Moderation phenomenon, this decline is compensated by a decrease in the
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variance of the associated proxy measurement error (due to the significantly

and negative estimated parameter ∆σω,2). Overall, the estimated correlation

between the proxy zgt and the identified fiscal spending shock εgt remains high

across the two volatility regimes; see the columns (ii) and (iii) of Table 1.

Interestingly, the contamination parameter Υ2,1 is estimated at a very low

magnitude and is not statistically significant, supporting the hypothesis that

the instrument used for the fiscal spending shock is exogenous and relevant on

both volatility regimes.

Second, the tax instrument ztaxt is poorly correlated with the tax shock

εtaxt in the Great Inflation period, where the relevance parameter ϕ1,1 is not

statistically significant. However, relevance increases markedly in the Great

Moderation regime, where the relevance parameter change, ∆ϕ1,1 , is significant

and the magnitude and statistical significance of ϕ1,1 + ∆ϕ1,1 become substan-

tial. To illustrate, examining columns (ii) and (iii) of Table 1, we observe that

the implied correlation between the tax proxy ztaxt and the estimated tax shock

εtaxt swings from 15% to 46% across the two volatility regimes. This marked

change in the relevance condition is not surprising given the zero-censored na-

ture of the narrative tax instrument, which, by construction, contains many

zeros that inherently tend to weaken strength. A simple count shows that the

number of zeros characterizing the tax instrument in the Great Inflation pe-

riod, where volatility is higher, is considerably higher than the number of zeros

in the Great Moderation, where ztaxt seems to more accurately approximate

the latent tax shock. Moreover, the 68% MBB confidence interval for the con-

tamination parameter, Υ1,1, suggests that the tax proxy is negatively linked,

albeit not dramatically, with the output shock. A similar finding is also doc-

umented in Keweloh et al. (2024), leveraging the non-normality of structural

shocks in a Bayesian approach. The implied “contamination correlations” in

Table 1, specifically in columns (ii) and (iii), vary from -11% in the Great

Inflation to -9.8% in the Great Moderation. As emphasized, in our frame-

work inference is reliable also when instruments are nearly exogenous and not

necessarily perfectly exogenous. Specifically, the potential breakdown of the

exogeneity condition does not compromise the consistency of the parameter

estimator under correctly specified stability restrictions. Consequently, the

dynamic fiscal multipliers derived from the estimates in Table 2, while fully

capitalizing on and reflecting instrument properties, can be deemed robust to

instruments being weak and/or contaminated.
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4.2.1 Fiscal spending multipliers

The dynamic fiscal multipliers resulting from the proxy-SVAR estimated in

Table 2 are plotted in Figure 2. Solid red lines refer to the Great Inflation

period and are surrounded by red shaded 68% MBB confidence intervals; solid

blue lines pertain to the Great Moderation period and are surrounded by

blue shaded 68% MBB confidence intervals. While differences in terms of size

and uncertainty for dynamic fiscal spending multipliers (lower panel) are mild

across the two volatility regimes, they appear more pronounced for dynamic

tax multipliers (top panel).

Focusing first on the dynamic spending multipliers in the lower panel of Fig-

ure 2, we observe that, despite some statistically significant differences emerg-

ing between the blue and red lines at some initial horizons, magnitudes and

associated uncertainty captured by 68% MBB confidence intervals appear not

dramatically different across the two volatility regimes. The estimated peak

fiscal spending multiplier, Mpeak
g , summarized in the columns (ii) and (iii) of

Table 1, is 2.38 in the Great Inflation and remains 2.38 in the Great Modera-

tion period. These point estimates are surrounded by comparable 68% MBB

confidence intervals, namely (1.2, 2.5) and (1.3, 2.9), respectively. The only

notable difference that emerges between the two volatility regimes is that the

peak effect is achieved 4 quarters after the shock in the Great Moderation and

2 quarters after the shock in the Great Inflation. These findings on the US

fiscal spending multiplier diverge from those of Lewis (2021) on the one hand

and share contact points with Fritsche et al. (2021) on the other hand. Lewis

(2021), who considers our same estimation sample, exploits the nonparametric

heteroskedasticity in fiscal data while keeping the target IRFs constant across

volatility regimes. He detects a fiscal spending multiplier peaking at 0.75 after

two quarters, very imprecisely estimated. Instead, among their many specifi-

cations, Fritsche et al. (2021) also rely on Markov Switching dynamics across

high and low volatility states, allowing IRFs to change across these two states.

Considering an estimation sample that partially covers the period after the

Global Financial Crisis, Fritsche et al. (2021) confirm changes in the impact of

government spending shocks between high and low volatility regimes, with the

high volatility state essentially matching our Great Inflation period, and the

low volatility state essentially covering our Great Moderation sample. They

establish that the fiscal spending multiplier is significantly higher in the low

volatility state (where it peaks around 2.5-3) compared to the high volatility

state (where it peaks around 1.72-2). Our results align with those in Fritsche

et al. (2021) and further strengthen their findings, as we complement the iden-

tification arising from the change in volatility with the information stemming
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from a relevant, exogenous, fiscal spending instrument.

4.2.2 Tax multipliers

Focusing on the dynamic tax multipliers plotted in the upper panel of Figure 2,

noticeable differences across the two volatility regimes become apparent. Rel-

ative to the case in which the proxy-SVAR is estimated on the entire sample

ignoring the break in volatility (black solid line), we observe in both volatility

regimes a significant reduction in the magnitude of estimated dynamic multi-

pliers, accompanied by a substantial decline in associated uncertainty. Specifi-

cally, our estimates of the tax multiplier in column (ii) of Table 1,Mpeak
tax , peak

at 1.99 (6 quarters after the shock) during the Great Inflation and decline to

a peak of 1.66 (2 quarters after the shock) during the Great Moderation. In

both cases, 68% MBB confidence intervals deliver considerably more precise

estimates relative to the case in which the change in volatility is ignored. The

estimated output elasticity of tax revenues, ψtaxy , is 2.28 in the Great Inflation

and 4.92, and imprecisely estimated, in the Great Moderation.22 These results

suggest that the peak tax multipliers obtained with the proxy-SVAR approach

on the whole estimation sample, approximately 3 in Mertens and Ravn (2014)

and 2.62 in our framework, are likely to reflect a bias induced by the nar-

rative tax instrument being weak, in addition to being contaminated by the

output shock. Once we account for the shift in volatility, estimate consistency

is restored, accompanied by a remarkable increase in precision.

Overall, our analysis reveals four crucial findings: (i) the relevance of the

narrative tax instrument of Mertens and Ravn (2014) shifts from “weak-like”

to “strong-like” during the transition from the Great Inflation to the Great

Moderation period; (ii) the exogeneity condition fails in the sense that we de-

tect some non-negligible correlation between the tax instrument and the output

shock; (iii) once instrument properties in (i) and (ii) are accounted for, the es-

timated peak tax multiplier is smaller than the estimated peak fiscal spending

multiplier, though not dramatically so; (iv) the uncertainty surrounding the

estimated dynamic tax multipliers reduces substantially compared to applying

the fiscal proxy-SVAR on the entire sample without accounting for the change

in volatility. Finding (ii) is also documented in Keweloh et al. (2024), who

leverage the non-Gaussianity of structural shocks in a Bayesian context.

22As is known, there exists a direct link between the magnitude of the parameter ψtaxy and
the on-impact tax multiplier, as discussed in Caldara and Kamps (2017). In our case, the
on-impact tax multiplier associated is not significant.

34



4.2.3 Forcing regime-invariant IRFs: The Proxy-SVAR-H

approach

For comparative purposes, we conclude our empirical analysis by forcing the

target IRFs to be constant across the two volatility regimes. Hence, we imple-

ment Schlaak et al.’s (2023) approach, denoted Proxy-SVAR-H, whose analytic

and empirical results have been summarized in the supplementary material,

see Sections S.4.1 and S.4.2.

The implied peak fiscal multipliers are summarized in column (iv) of Table

1. Figure 3 summarizes all dynamic fiscal multipliers estimated in this pa-

per, without reporting confidence intervals to improve readability. Colors are

the same as in Figure 2. Dynamic multipliers implied by the Proxy-SVAR-H

approach are plotted in green.

5 Concluding remarks

We have developed an identification and estimation strategy for proxy-SVARs

in cases where changes in economic behavior, market conditions, policy con-

duct, and institutional mechanisms induce permanent and nonrecurring shifts

in the unconditional VAR error covariance matrix, leading to breaks in the

target IRFs across volatility regimes. In such settings, even when instruments

are relevant and exogenous, they may fail to produce consistent, asymptoti-

cally Gaussian estimates of both absolute and relative target IRFs if changes

in volatility are not appropriately considered. We have introduced a novel

methodology to address inference in proxy-SVARs in these cases. Our results

emphasize that if the moment conditions arising from changes in volatility are

sufficiently informative and allow for the point identification of target IRFs

through stability restrictions, and if these stability restrictions are correctly

specified by the econometrician, even invalid external instruments can con-

tribute to identifying the structural shocks of interest. In general, external

instruments improve estimation efficiency even when the exogeneity condition

fails, and weak instruments can still convey information on the target shocks

without the need to rely on weak-instruments robust methods.

The comprehensive review on fiscal multipliers of Ramey (2019) highlights

the significant lack of consensus on the tax multiplier, primarily attributed to

the inherent difficulty in identifying exogenous tax shocks, a task more chal-

lenging than identifying fiscal spending shocks. Our estimator of the U.S. tax

multiplier is robust to the tax proxy being weak in one regime and strong in

the other, as well as to contamination from the output shock. Our analysis

shows that the identification of the effects of fiscal policy can be substantially
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improved by properly combining external instruments with changes in volatil-

ity.
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Braun, R. and Brüggemann, R. (2023). “Identification of SVAR Models by

Combining Sign Restrictions With External Instruments”. In: Journal of

Business & Economic Statistics 41.4, pp. 1077–1089.
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Table 2: Estimated parameters of the fiscal proxy-SVAR with break in volatil-
ity at time TB = 1984:Q1 and associated 68% MBB confidence intervals (in
parentheses).

G ∆G

h
(1)
1,1 0.018

(0.010,0.021)
∆
h

(1)
1,1

−0.008
(−0.012,−0.001)

h
(1)
2,1 −0.000

(−0.001,0.000)
∆
h

(1)
2,1

0.001
(−0.000,0.001)

h
(1)
3,1 −0.003

(−0.003,−0.002)

h
(1)
1,2 0.003

(0.001,0.006)
∆
h

(1)
1,2

−0.003
(−0.005,0.001)

h
(1)
2,2 0.014

(0.012,0.014)
∆
h

(1)
2,2

−0.007
(−0.007,−0.005)

h
(1)
3,2 0.003

(0.002,0.004)
∆
h

(1)
3,2

−0.002
(−0.002,−0.001)

h
(2)
1,1 0.020

(0.016,0.021)
∆
h

(2)
1,1

−0.005
(−0.010,−0.003)

h
(2)
3,1 0.009

(0.008,0.009)
∆
h

(2)
3,1

−0.006
(−0.007,−0.005)

ϕ1,1 0.020
(−0.004,0.036)

∆ϕ1,1 0.049
(0.001,0.089)

ϕ1,2 −0.010
(−0.018,0.004)

∆ϕ1,2 −0.009
(−0.025,0.008)

ϕ2,2 0.015
(0.013,0.015)

∆ϕ2,2 −0.007
(−0.007,−0.006)

Υ1,1 −0.015
(−0.027,−0.004)

Υ2,1 −0.000
(−0.000,0.000)

σ1,1 0.131
(0.096,0.133)

σ2,1 −0.000
(−0.000,0.000)

σ2,2 0.004
(0.003,0.004)

∆σ2,2 −0.002
(−0.002,−0.001)

Overidentifying restrictions: 0.573 [0.903]

Min. eigenvalue: 1.23e-6
(4.35e-7,1.14e-6)

NOTES. Upper panel: CMD estimates. Lower panel: overidentifying restrictions test with

associated p-value (in brackets). Minimum singular value of the estimated Jacobian matrix

J (ς̂T ) with associated 68% MBB confidence interval.
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Figure 2: Estimated dynamic fiscal multipliers with 68% MBB (pointwise)
confidence intervals at a 20-quarters horizon. Tax multipliers are in the upper
panel; fiscal spending multipliers in the lower panel. Black solid lines refer
to multipliers estimated on the whole sample 1950:Q1–2006:Q4 without ac-
counting for a break in volatility; dotted thin black lines are the associated
68% MBB confidence intervals. Red solid line refer to multipliers estimated
on the first volatility regime 1950:Q1–1984:Q1 (Great Inflation); red shaded
areas are the associated 68% MBB confidence intervals. Blue solid lines re-
fer to multipliers estimated on the second volatility regime, 1984:Q2–2006:Q4
(Great Moderation); blue shaded areas are the associated 68% MBB confidence
intervals.
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Figure 3: Estimated dynamic fiscal multipliers without confidence intervals at
a 20-quarters horizon. Tax multipliers are in the upper panel; fiscal spending
multipliers in the lower panel. Black solid lines refer to multipliers estimated on
the whole sample 1950:Q1–2006:Q4 without accounting for a break in volatil-
ity. Red solid lines refer to multipliers estimated on the first volatility regime
1950:Q1–1984:Q1 (Great Inflation). Blue solid lines refer to multipliers esti-
mated on the second volatility regime, 1984:Q2–2006:Q4 (Great Moderation).
Green lines refer to multipliers obtained from the Proxy-SVAR-H approach
(see supplement, Section S.4), i.e. accounting for a break in volatility while
maintaining that IRFs remain constant across volatility regimes.

46



SUPPLEMENT TO
INVALID PROXIES AND VOLATILITY CHANGES

By Giovanni Angelini, Luca Fanelli, Luca Neri

March 2024

Abstract

This supplement complements the paper along many dimensions as de-

scribed in the Introduction below.

S.1 Introduction

In this Supplement, we extend and complete the paper along several dimen-

sions. Section S.2 introduces special matrices utilized in the paper and sup-

plement. Section S.3 discusses the conditions under which the proxy-SVAR

approach, which does not explicitly incorporate breaks in the VAR covariance

matrices when these breaks are present in the DGP, yields consistent estimates

of the target IRFs and when it does not.

Section S.4 focuses on the case in which the shifts in unconditional volatility

are assumed to solely affect the variance of the structural shocks, not their im-

pact and transmission mechanisms. This implies constant IRFs across volatil-

ity regimes. Subsection S.4.1 formalizes the underlying theory, and Subsection

S.4.2 applies it to infer the US fiscal multipliers, complementing the results in

the paper.

Section S.5 extends the identification and estimation approach outlined in

the paper along two important dimensions. Firstly, it considers the case where

the number of breaks in volatility is M ≥ 2, resulting in M + 1 volatility

regimes. Secondly, it explores QML estimation as an alternative to the CMD

estimation considered in the paper.

Section S.6 investigates how the phenomenon of “shrinking shifts” impacts

the necessary and sufficient identification rank condition derived in Proposition

1.

Section S.7 summarizes the results of comprehensive Monte Carlo experi-

ments that investigate the finite sample performance of the stability restrictions

approach developed in the paper. In particular, we examine the performance

of the stability restrictions approach in terms of relative efficiency of estimated

target IRFs with respect to other estimation approaches, under different prop-

erties of external instruments. Furthermore, we examine the performance of

the overidentifying restrictions test when the econometrician incorrectly im-

poses proxy exogeneity in estimation. We also evaluate methods to indirectly

1



assess the identifiability of the proxy-SVAR when the changes in volatility are

“weak”.

Unless differently specified, hereafter all references – except those starting

with ‘S.’ – refer to sections, assumptions, equations and results in the main

paper.

S.2 Special matrices

In the paper and in what follows, we often make use of the following matrices

(Magnus and Neudecker, 1999): Dn is the n-dimensional duplication matrix

(Dnvech(A) = vec(A), A being an n × n matrix) and D+
n := (D′nDn)−1Dn

is the Moore-Penrose generalized inverse of Dn. Kns is the ns-dimensional

commutation matrix (Knsvec(A) = vec(A′), A being n × s). We simply use

Kn in place of Knn when n = s. Moreover, Nn := 1
2(In2 +Kn), and note that

in the proof of propositions we often exploit the result: D+
nNn = D+

n .

Finally, we denote with vecd(A) the vector containing the diagonal elements

of the square matrix A. Then, given the p × p diagonal matrix A, the p2 × p
derivative FA := ∂vec(A)

∂vecd(A)′ contains by construction ‘0’ and ‘1’. Specifically,

the matrix FA is such that rank[FA] = p if the diagonal elements of A are

distinct. Conversely, rank[FA] = p − c when there are c repeated elements

on the diagonal of A. Hence, the rank of FA depends on whether there are

repeated elements on the diagonal of A or not.

S.3 Proxy-SVARs estimation disregarding

volatility breaks

The covariance matrix Σu,z = E(utz
′
t) encountered in (6) plays a crucial role

in proxy-SVAR estimation. In the absence of structural breaks, Σu,z can be

estimated by its sample analog:

Σ̂u,z :=
1

T

T∑
t=1

ûtz
′
t

where ût, t = 1, ..., T , are the VAR residuals. As shown by Jentsch and

Lunsford (2022) and Angelini, Cavaliere, and Fanelli (2024), under fairly gen-

eral conditions on the process ηt := (u′t, z
′
t)
′, which encompasses the α-mixing

hypothesis as specified in point (i) of Assumption 1, and regardless of proxy

properties, the estimator ζ̂T := vec(Σ̂u,z) is a
√
T -consistent, asymptotically

Gaussian estimator of ζ := vec(Σu,z). Hence, subject to standard regularity

2



conditions, proxy-SVAR estimation relies on the following results:

ζ̂T
p→ ζ0 ,

√
T (ζ̂T − ζ0)

d→ N(0, Vζ) (S.1)

where ζ0 is the true value of ζ := vec(Σu,z) and Vζ is a positive definite

covariance matrix.

From equation (6), it follows that in the presence of “well behaved” proxies

as captured by Definition 1.(i), Σu2,z(Σu1,z)
−1 = Hrel

2,1 := H2,1(H1,1)−1, which

implies that the relative on-impact effects of the target shocks on the variables

can be estimated by:

Ĥrel
2,1 := Σ̂u2,z(Σ̂u1,z)

−1 (S.2)

where Σ̂u2,z and Σ̂u1,z are the corresponding blocks of Σ̂u,z. It turns out

that under relevant and exogenous instruments, Σ̂u2,z
p→ H2,1Φ′ and Σ̂u1,z

p→
H1,1Φ′, rank[Φ] = k, implying that Ĥrel

2,1 in (S.2) is a consistent estimator of

the true Hrel
2,1 := H2,1(H1,1)−1. Consistency, however, is no longer guaranteed

when the instruments fail to be relevant and/or exogenous as in Definitions

1(ii)-1(iv).

In the special case where r = k = 1 (one instrument is used for one target

structural shock), robust asymptotically correct inference on the coefficients in

Hrel
2,1 := H2,1(H1,1)−1 can be grounded on weak-instrument robust techniques

as outlined in the test inversion methodologies discussed by Montiel Olea,

Stock, and Watson (2021). In these cases, the instrument can possibly be

weak according to Definition 1.(ii) yet still informative. However, when k > 1,

it is not evident how test inversion methods should be handled in the absence

of further restrictions; see, e.g., Montiel Olea et al. (2021) and Angelini et al.

(2024) for discussions.

In this section, we investigate whether and under which conditions the esti-

mators considered in (S.1) and (S.2) are consistent despite Σu,2 6= Σu,1, where

Σu,1 and Σu,2 are the unconditional covariance matrices of VAR disturbances

in the two volatility regimes. Assumption 1 implies:

Σu(t):=Σu,1 · I (t ≤ TB) + Σu,2 · I (t ≥ TB + 1) , Σu,2 6= Σu,1. (S.3)

To simplify the analysis, we consider the following auxiliary assumptions.

Assumption 4 The DGP for the external instruments zt belongs to model (7),

meaning that the parameters in (RΦ,Ωω) are constant across volatility regimes.

Assumption 5 The VAR slope parameters in the companion matrix Cy =

Cy(Π) remain constant across volatility regimes

3



With Assumptions 4-5, we define a “favorable” scenario in which the struc-

tural break solely impacts the covariance matrix of VAR disturbances. This

impact does not affect VAR dynamics, the relevance parameters, the exogene-

ity condition, and instrument measurement error.

There are two ways by which we can incorporate condition (S.3) in SVAR

analysis. A common solution is to exploit the simultaneous factorization (see,

e.g., Magnus and Neudecker, 1999, Theorem 23):

Σu,1 = HH ′ = H•1H
′
•1 +H•2H

′
•2 t ≤ TB,

Σu,2 = HPH ′ = H•1P•1H•1 +H•2P•2H
′
•2 t ≥ TB + 1

(S.4)

where P is a diagonal matrix with distinct positive elements on the main

diagonal, and P•1 and P•2 are diagonal matrices such that:

P =

(
P•1

P•2

)
, HP 1/2 =

(
H•1P

1/2
•1 , H•2P

1/2
•2

)
.

This standard modeling of a change in volatility (Lanne and Lütkepohl, 2008)

implicitly assumes that the underlying structural specification is defined as

follows:

ut = HεtI (t ≤ TB) +HP 1/2εtI (t > TB)

= {H•1ε1,t +H•2ε2,t} I (t ≤ TB)

+
{
H•1P

1/2
•1 ε1,t +H•2P

1/2
•2 ε2,t

}
I (t > TB)

so that, recalling that Σε := E(εtε
′
t) = In, the diagonal elements in P can be

interpreted as the variances of the structural shocks in the second volatility

regime relative to the first volatility regime (where variances are normalized

to 1). It turns out that the on-impact responses to one-standard deviation

shocks are captured by the matrix H in the first volatility regime and the

matrix HP 1/2 in the second volatility, simply indicating a proportionate re-

scaling of IRFs.

In this scenario, the absolute target IRFs are given by the expression:

IRF•j(t, h) :=

{
(Sn(Cy)hS′n)H•1ej t ≤ TB,
(Sn(Cy)hS′n)H•1P

1/2
•1 ej t ≥ TB + 1

, 1 ≤ j ≤ k (S.5)

so that, for e.g. k = 1, the relative IRFs are:

IRF•1(t, h)

IRF1,1(t, 0)
= (Sn(Cy)hS′n)

(
1

Hrel
2,1

)
, t = 1, ..., T. (S.6)
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Equations (S.5) and (S.6) show that while the absolute target IRFs (to one

standard deviation shocks) vary between the two volatility regimes due to

the re-scaling of the target structural shocks, the relative target IRFs remain

unaltered.

The next proposition establishes the conditions under which the target

IRFs can be estimated by external instruments ignoring the break in the co-

variance matrix.

Proposition S.1 (Constant IRFs) Assume that the DGP belongs to the

proxy-SVAR (8) under Assumptions 1-2 and Assumptions 4-5. Consider a

drifting DGP characterized by sequences of models in which E(ztε
′
1,t) = ΦT ,

where the external instruments zt satisfy the condition in Definition 1.(i). Fur-

ther, assume that the DGP belongs to (S.4). Then

(i) the estimator Σ̂u,z := 1
T

∑T
t=1 ûtz

′
t is such that:

Σ̂u,z
p→ τ

(0)
B H•1Φ′ + (1− τ (0)

B )H•1P
1/2
•1 Φ′

=
[
τ

(0)
B H•1 + (1− τ (0)

B )H•1P
1/2
•1

]
Φ′,

τ
(0)
B being the true fraction of observation in the first volatility regime;

(ii) for k = 1 and rank[P ] = n, Σ̂u2,zΣ̂
−1
u1,z

p→ Hrel
2,1 .

Proposition S.1 suggests that while the absolute target IRFs (S.5) cannot

be estimated consistently, the relative target IRFs in (S.6) in principle can,

despite the break in volatility (but in Σu alone). This result, however, is not

guaranteed to hold when the external instruments do not satisfy the condition

in Definition 1.(i), or Assumptions 4-5 do not hold. It turns out that, in

general, correct asymptotic inference on the absolute target IRFs must take

the break in volatility into explicit account; see Schlaak, Rieth, and Podstawski

(2023).

The alternative method one can exploit to incorporate condition (S.3) in

SVAR analysis, is to consider the parameterization:

Σu,1 = HH ′ = H•1H
′
•1 +H•2H

′
•2, t ≤ TB,

Σu,2 = (H + ∆H)(H + ∆H)′

= (H•1 + ∆H•1)(H•1 + ∆H•1)′ + (H•2 + ∆H•2)(H•2 + ∆H•2)′, t ≥ TB + 1

(S.7)

where, as in the paper, ∆H = (∆H•1 ,∆H•2) denotes an n × n matrix whose

non-zero coefficients capture possible changes in the on-impact parameters in

H in the shift from the first to the second volatility regime. The modeling

5



of the change in unconditional volatility in (S.7) implies that the underlying

structural specification is defined as follows (Bacchiocchi and Fanelli, 2015):

ut = HεtI (t ≤ TB) + {H + ∆H} εtI (t > TB)

= {H•1ε1,t +H•2ε2,t} I (t ≤ TB)

+ {[H•1 + ∆H•1 ] ε1,t + [H•2 + ∆H•2 ] ε2,t} I (t > TB)

so that the IRFs change in the shift from the first to the second volatility

regime, because the break modifies the magnitude of the responses of the

variables to the structural shocks.1 In this scenario, the (absolute) target

IRFs are given in equation (12), here reported for convenience:

IRF•j(t, h) :=

{
(Sn(Cy)hS′n)H•1ej t ≤ TB

(Sn(Cy)hS′n)(H•1 + ∆H•1)ej t ≥ TB + 1
, 1 ≤ j ≤ k.

(S.8)

Notice that the scenario depicted by the equations in (S.7)-(S.8) coincides with

the framework analyzed in the paper but includes Assumptions 4-5. For k = 1,

the relative target IRFs now are:

IRF•1(t, h)

IRF1,1(t, 0)
=


(Sn(Cy)hS′n)

(
1

H2,1(H1,1)−1

)
t ≤ TB,

(Sn(Cy)hS′n)

(
1

(H2,1 + ∆H2,1)(H1,1 + ∆H1,1)−1

)
t ≥ TB + 1

(S.9)

hence it is evident that for ∆H•1 = (∆′H1,1
,∆′H2,1

)′ 6= 0, both absolute and

relative target IRFs change after the break. We have implicitly proved the

next proposition.

Proposition S.2 (Regime-varying IRFs) Assume that the DGP belongs

to the proxy-SVAR (8) under Assumptions 1-2 and Assumptions 4-5. Con-

sider a drifting DGP characterized by sequences of models in which E(ztε
′
1,t) =

ΦT , where the external instruments zt satisfy the condition in Definition 1.(i).

Further, assume that the DGP belongs to (S.7). Then, both absolute and rel-

ative target IRFs can not be estimated consistently if the break in volatility is

not taken into account.

1Note that for ∆H chosen as ∆H := H(P 1/2−In), P being a diagonal matrix with positive
(distinct) elements on the diagonal, the moment conditions (S.7) collapse to (S.4), showing
that (S.7) nests (S.4).
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It is important to note that if in correspondence of the break in volatility

the IRFs change, even under the simplifying Assumptions 4-5, the estimators

Σ̂u,z and Σ̂u2,zΣ̂
−1
u1,z do not maintain consistency, as explained in detail in the

paper.

S.4 Constant IRFs: proxy-SVAR-H approach

In this section, we delve into an alternative modeling approach for the condi-

tion Ση,1 6= Ση,2 relative to the stability approach developed in Section 2.3.

Specifically, we concentrate on the scenario where it is assumed that the shift

in unconditional volatility solely affects the variance of the structural shocks,

leaving their impact and transmission mechanisms unchanged; that is, IRFs

remain constant across volatility regimes. For simplicity, throughout, we adopt

terminology from Carriero, Marcellino, and Tornese (2023) and refer to this

approach as the Proxy-SVAR-H approach, with “H” standing for heteroskedas-

ticity.

Section S.4.1 deals with the methodology, and Section S.4.2 applies it to

the estimation of US fiscal multipliers, complementing the results in Section

4.2 of the paper.

S.4.1 Methodology

We keep Assumption 1 valid, but focus on the scenario in which the target

IRFs are as in (S.5), i.e. regime-invariant. Let Gun be the (n + r) × (n + r)

unrestricted nonsingular counterpart of the matrix G in (9), i.e. Gun does not

incorporate any zero entry. We exploit the simultaneous factorization (see,

e.g., Magnus and Neudecker, 1999, Theorem 23):

Ση,1 = GunG
′
un (S.10)

Ση,2 = GunΛG′un = (GunΛ1/2)︸ ︷︷ ︸
G∗un

(GunΛ1/2)′︸ ︷︷ ︸
G∗′un

(S.11)

where Λ is an (n+r)×(n+r) diagonal matrix with positive elements. A typical

interpretation of (S.10)-(S.11) is that the simultaneous factorization captures

situations in which, given constant on-impact coefficients, the variances of the

elements in ξt := (ε′t, ω
′
t)
′ are equal to the identity matrix in the first volatility

regime and change in relative terms to Λ in the second volatility regime. Hence,

the diagonal elements of Λ can be interpreted as the variances of the elements

in ξt relative to the first volatility regime, where variances were normalized to
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one; see, e.g., Lanne and Lütkepohl (2008) and Sims (2021).2

A well known result from the conventional literature on identification-

through-heteroskedasticity is that the moment conditions (S.10)-(S.11) suffice

to point-identify the parameters in Gun, up to column permutation and sign

normalization. This implies that the identification of structural shocks can

occur, at most, ex-post, meaning once the investigator observes the estimated

parameters in the columns of Gun and the resulting IRFs. Subsequently, based

on the significance and sign of these estimates, the investigator can assign la-

bels to the corresponding structural shocks. However, as argued in Schlaak

et al. (2023), the proxies zt may help to solve, at least partially, the “up-to-

column-permutation” issue implicit in (S.10)-(S.11).

Here we demonstrate analytically what Schlaak et al. (2023) show through

simulation studies, namely that also in this framework, possibly invalid prox-

ies do not affect the identification achieved by sufficiently strong changes in

volatility. Consider the notation Gun = Gun(γ, γ̄), where γ is the vector of a

parameters that enter the matrix G in (9) and γ̄ is the vector of (n+ r)2 − a
parameters that are set to zero in the matrix G but not in Gun. In other

words, G = Gun(γ, 0) for γ̄ := 0. Let ρ = (γ′, γ̄′, λ′)′, λ = vecd(Λ), the

(n+ r)(n+ r + 1)× 1 vector containing all parameters contained in Gun and

Λ. The identifiability of ρ ensures that also the parameters of interest and the

target IRFs in (S.5) are identifiable. ρ0 denotes the true value of ρ.

Proposition S.3 Given the SVAR in (11) and Assumptions 1-2, consider

the simultaneous factorization (S.10)-(S.11). Then a necessary and sufficient

condition for the identification of ρ in a neighborhood of ρ0 in the parameter

space Pρ (ρ0 ∈ Pρ, regular point) is that det[J (ρ0)] 6= 0, where J (ρ0) is the

(n+ r)(n+ r + 1)× (n+ r)(n+ r + 1) Jacobian matrix evaluated at ρ0, given

by:

J (ρ) =
∂mc(ση, ρ)

∂ρ′

∣∣∣∣
ρ=ρ0

,

mc(ση, ρ) =

(
ση,1 − vech(GunG

′
un)

ση,2 − vech(GunΛG′un)

)
,

∂mc(ση, ρ)

∂ρ′
:= 2(I2⊗D+

(n+r))

(
(Gun ⊗ I(n+r)) 0

(GunΛ⊗ I(n+r)) (Gun ⊗Gun)

)(
In+r 0

0 1
2FF

)
.

(S.12)

2Note that with Gun unrestricted, the diagonal elements of Λ coincide with the eigenvalues
of the symmetric matrix Ση,2Σ−1

η,1. Obviously, if the investigator wishes to consider responses
to one-standard deviation shocks in both volatility regimes, the on-impact responses to one-
standard deviation shock in the second volatility regimes are captured by the matrixGunΛ1/2,
which differs from Gun for simple scaling factors.
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Some remarks are in order.

First, the stated necessary and sufficient condition for identification in

Proposition S.3 demonstrates analytically that identification can be achieved

regardless of the proxy properties specified in Definition 1. This result empha-

sizes that an informative change in volatility tends to enhance identification

irrespective of proxy properties. This holds regardless of whether IRFs change

or remain constant across volatility regimes. Moreover, Proposition S.3 indi-

rectly rationalizes the findings documented in Schlaak et al. (2023) through

simulation methods, i.e. that external instruments positively contribute to

identification when the data exhibit changes in unconditional volatility.

Second, equation (S.12) shows that the rank of the Jacobian J (ρ) in (S.12)

may collapse when the matrix FΛ is not full column rank, situation that may

occur when some diagonal elements of Λ are not distinct, which in turn im-

plies that the differences in the covariance matrices Ση,2 and Ση,1 are not

“sufficiently strong” to ensure the point identification of all structural shocks

in the system.3 In their application to the monetary policy framework, Schlaak

et al. (2023) estimate the diagonal elements of Λ and verify that confidence

intervals constructed for the diagonal elements of Λ, using one standard de-

viation around point estimates, do not overlap. The checks of identifiability

discussed in Section 2.3 can be also applied in this context.

S.4.2 Empirical results: fiscal multipliers revisited

In this section we apply the methodology discussed in the previous section to

the estimation of US fiscal multipliers. The general framework is the same

discussed in Section 4.

The implied peak fiscal multipliers, summarized in column (iv) of Table

1, are the ones with the lowest magnitude across all estimated models. In

particular, the point estimate of the peak fiscal spending multiplier, Mpeak
g ,

1.5, and associated confidence intervals are very close to their counterparts ob-

tained by the fiscal instruments alone, ignoring the break in volatility. Since,

in our framework, fiscal multipliers reflect, by construction, the effect of rel-

ative IRFs, and considering that the consequences of the change in volatility

appear evident on the tax shock and are less marked on the fiscal spending

shock, this result is somewhat expected in light of our discussion in Section 3.

3Bacchiocchi, Bastianin, Kitagawa, and Mirto (2024) consider a partial identification
approach in a Bayesian framework in situations like these, but without considering external
instruments.
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The scenario is different for the tax shock. The estimated peak tax multiplier

is in this case 0.49 with 68% MBB confidence interval equal to (-0.20, 0.75),

a marked difference relative to the 2.7 estimated by the “pure” proxy-SVAR

approach, see column (i). The point estimated of the tax automatic stabilizer,

ψtaxy at 1.76. These sharp differences in the estimated dynamic causal effects

of (relative) tax shocks in the two scenarios represent indirect evidence that

a dramatic change in the IRFs of output to the tax shock occurred after the

decline in unconditional volatility observed with the Great Moderation phe-

nomenon. Interestingly, the contamination of the tax proxy with the output

proxy appears confirmed even when IRFs are kept constant across volatility

regimes.

S.5 Multiple volatility regimes and QML

estimation

This section extends the identification and estimation approach discussed in

the paper along two dimensions: first, considering the case where the are at

least two changes in volatility (M ≥ 2) resulting in M + 1 volatility regimes

(Section S.5.1), and second, QML estimation of the proxy-SVAR under stabil-

ity restrictions (Section S.5.2).

S.5.1 Multiple volatility regimes

The reduced-form proxy-SVAR model is the same as in equation (11), but

now the parameters are allowed to change at the break points TB1 , . . . , TBM ,

where 1 < TB1 , . . . , < TBM < T . Conventionally we assume that TB0 :=1 and

TBM+1
:=T . The assumption that follows generalizes Assumptions 1-2 in the

paper to a broader framework.

Assumption 6 Given the proxy-SVAR (11),

(i) the are M known break points, 1 < TB1 < . . . < TBM < T , such that

TB1 ≥ (n+ r), TBi − TBi−1 ≥ (n+ r), i = 2, . . . ,M + 1, (n+ r) := dim(Wt);

(ii) the law of motion of the autoregressive (slope) parameters π(t):=vec(Γ(t))

and the unconditional covariance matrix ση(t):=vech(Ση(t)) are given by:

π(t) =

M+1∑
i=1

πi × I
(
TBi−1 < t ≤ TBi

)
, t = 1, ..., T

ση(t) =
M+1∑
i=1

ση,i × I
(
TBi−1 < t ≤ TBi

)
, t = 1, ..., T (S.13)
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where Ση,i <∞, i = 1, ...,M + 1 and:

ση,i := vech(Ση,i) 6= ση,j := vech(Ση,j) for i 6= j.

(iii) the process {ηt}, where ηt := (u′t, z
′
t)
′, is α-mixing and has absolutely

summable cumulants up to order eight on the M + 1 volatility regimes.

Similarly to the case of a single break, the relationships between the VAR

disturbances and proxies and the structural shocks and measurement errors is

given by ut = G(t)ξt, where ξt is normalized to have unit variance across the

M + 1 volatility regimes, and G(t) is defined by:

G(t):=G+
M+1∑
i=2

∆Gi × I
(
TBi−1 < t ≤ TBi

)
, t = 1, ..., T. (S.14)

In (S.14), ∆Gi := G(i)−G(i−1), i = 2, ...,M+1 (G(1) := G) are (n+r)×(n+r)

matrices. In (S.14), G contains the nonzero structural parameters before any

break occurs, while the nonzero elements in the matrices ∆Gi i = 2, ...,M + 1

describe how and to what extent the instantaneous impact of the structural

shocks changes across volatility regimes.

The mapping between the reduced- and structural-form parameters is now

given by:

Ση,1 = GG′ , Ση,i =

G+
i∑

j=2

∆Gj

G+
i∑

j=2

∆Gj

′ , i = 2, ...,M + 1

(S.15)

and the linear identifying restrictions characterizing G and ∆Gi , i = 2, . . . ,M+

1, can be collected in the expression:
vec(G)

vec(∆G2)
...

vec(∆GM+1
)

=


SG · · ·

S∆G2
· · ·
. . .

...

S∆GM+1


︸ ︷︷ ︸

S∗


γ

δ2
...

δM+1

 . (S.16)

In (S.16), γ is the a×1 vector (a = dim(γ)) that collects the free (unrestricted)

elements in the matrix G, and δi is the bi × 1 vector (bi = dim(δi)) containing

the free elements in the matrices ∆Gi , i = 2, ...,M + 1. The selection matri-

ces SG, sG, S∆G2
and s∆G2

are of conformable dimensions and have obvious

interpretation. To simplify notation, the big selection matrix in system (S.16)
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is summarized in the (M + 1)(n+ r)× (a+ b2 + . . .+ bM+1) matrix S∗.

Proposition S.4 (Identification under changing IRFs, M + 1 volatility regimes)

Assume that the DGP belongs to the class of SVARs (11) under Assumption

6, with the law of motion of the covariance matrix ση(t) given as in (S.13).

Given the structural specification in (S.14), assume that the matrices G and

(G+ ∆Gi), i = 2, ...,M+1, are non-singular and that G, ∆Gi, i = 2, ...,M+1,

are subject to the restrictions in (S.16).

(i) A necessary and sufficient rank condition for the parameters ς := (γ′, δ′2, . . . , δ
′
M+1)′

to be locally identified in a neighborhood of ς0 is that the 1
2 (M + 1) (n+ r)(n+

r+ 1)× (a+ b2 + . . .+ bM+1) Jacobian matrix J (ς) defined by the expression:

2(IM+1⊗D+
n+r)


(G⊗ In+r)

(G+ ∆G2)⊗ In+r (G+ ∆G3)⊗ In+r
...

...
. . .(

G+ ∆GM+1

)
⊗ In+r

(
G+ ∆GM+1

)
⊗ In+r · · ·

(
G+ ∆GM+1

)
⊗ In+r

S∗

(S.17)

has full column rank in a neighborood of ς0.

(ii) A necessary order condition is:

(a+ b2 + . . .+ bM+1) ≤ (M + 1) (n+ r)(n+ r + 1)/2.

Note that for M = 1, Proposition S.4 collapses to Proposition 1 in the

paper.

When the necessary and sufficient rank condition in Proposition S.4 is

satisfied, the proxy-SVAR can be estimated by extending the CMD approach

discussed in the paper to the multiple volatility regimes case.

S.5.2 QML estimation

To simplify exposition, in the remainder of this section we consider quasi-

maximum likelihood estimation based on observations:

W−l+1,W−l+2, ...,W0,W1, ...,WT

for the case of a single break (M = 1) occurring at the known date t =

TB, i.e. two volatility regimes in the data. The generalization to the case

M ≥ 2 is tedious but straightforward. Hence, given the reduced-form model

(11), the QML estimation for the whole sample, W1, ...,WT , conditional on

W−l+1,W−l+2...,W0, based on the assumption of conditionally Gaussian errors,
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is given by:
M+1∏
i=1

TBi∏
t=TBi−1

+1

f(Wt |Wt−1, ...,Wt−l; Γi, Ση,i)

where

f(Wt |Wt−1, ...,Wt−l; Γi , Ση,i)

=
1

(2π det (Ση,i))
1/2

exp

{
−1

2
[Wt − ΓiXt]

′Σ−1
η,i [Wt − ΓiXt]

}
.

By standard manipulations, and conventionally denoting with G̊ = G(γ) and

∆̊G = ∆G(δ) the counterparts of the matrices G and ∆G that fulfill the iden-

tification conditions in Proposition 1, the concentrated, quasi log-likelihood of

the proxy-SVAR reduces to:

logLT (ζ) = const− TB
2

log
∣∣∣G̊∣∣∣2 − T − TB + 1

2
log
∣∣∣G̊+ ∆̊G

∣∣∣2
− TB

2
tr

(
G̊−1

(
G̊−1

)′
Σ̂η,1

)
− T − TB + 1

2
tr

(((
G̊+ ∆̊G

)−1
)′ (

G̊+ ∆̊G

)−1
Σ̂η,2

)
,

(S.18)

where Σ̂η,1 and Σ̂η,2 are estimates of the reduced-form covariance matrices

obtained from the two volatility regimes. Bacchiocchi and Fanelli (2015) dis-

cuss the derivation of the score and associated information matrix for a case

analogous to the likelihood function given in (S.18).

S.6 Identification failure under shrinking shifts

To envisage how identification stemming from the change in unconditional

volatility may deteriorate and lead to identification failure, we notice that the

moment conditions (16) imply that the shift in volatility is entirely due to the

nonzero elements in the matrix ∆G:

Ση,2 − Ση,1 = G∆′G + ∆GG
′ + ∆G∆′G. (S.19)

Recall that the nonzero entries in ∆G (δ) capture changes in the parameters

in the transition from the first to the second volatility regime. This raises the
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question of how large the magnitude of shifts in ∆G (δ) must be in (S.19) for

the approach outlined in the previous sections to remain valid.

To characterize the phenomenon of “shrinking covariances”, we relax As-

sumption 1(iv) in the paper (while keeping all the other assumptions valid)

and approximate ∆G in (S.19) by the local-to-zero condition:

∆G = %T ∆̃G (S.20)

where %T is a scalar that converges to zero as the sample size increases, and ∆̃G

represents a re-scaled version of the matrix ∆G that fulfills the same stability

restrictions as ∆G in (20). According to (S.20), the magnitude of the change

in volatility in the proxy-SVAR is controlled by the parameter %T → 0, whose

speed of convergence to zero plays a crucial role. Under (S.20), the distance

between Ση,2 and Ση,1 in (S.19) can be written as:

Ση,2 − Ση,1 = %TG∆̃′G + %T ∆̃GG
′ + %T ∆̃G%T ∆̃′G

= %T

[
G∆̃′G + ∆̃GG

′ + ∆̃G%T ∆̃′G

]
︸ ︷︷ ︸

ΨT

(S.21)

so that it is seen that, as in Bai (2000), ΨT → Ψ = (G∆̃′G + ∆̃GG
′) 6=

0(n+r)×(n+r) and (Ση,2 − Ση,1) → 0(n+r)×(n+r), as %T → 0. Intuitively, given

(S.21) and T being large, the moment conditions in system (16) no longer pro-

duce (n+ r)(n+ r + 1) independent moment conditions that offer meaningful

information on the parameters ς. This could lead to the failure of the necessary

and sufficient rank conditions for identification derived in Proposition 1.

The parameterization in (S.21) is a distinctive feature of the literature on

structural change detection in VARs and is typically complemented with the

following condition on the rate of convergence of %T to zero, %T → 0, under

which it is possible to prove that
√
T (σ̂η − ση,0) is still convergent; see, e.g.,

Bai (2000) and Qu and Perron (2007). However, by combining the conditions

%T → 0 with the stability restrictions (19)-(20), the implied Jacobian matrix

now is:

J̃ (ς) := 2
(
I2 ⊗D+

n+r

)( (G⊗ In+r) 0(n+r)2×(n+r)2

(G+ ∆̃G)⊗ In+r (G+ ∆̃G)⊗ In+r

)(
SG 0

0 %TS∆G

)
and demonstrates that, even in cases where J̃ (ς) has full column rank for

nonzero %T (no shrinking), identification fails as %T approaches zero.
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S.7 Monte Carlo results

In this section, we evaluate the finite sample performance of the proposed

stability restrictions approach for proxy-SVARs with breaks in unconditional

volatility, considering a series of comprehensive simulation experiments.

Design The design of the experiment is as follows. We generate pseudo-

samples of length T from a bivariate (n = 2) stable VAR(1) with zero initial

values (Y0 := 02×1), and a single break in the unconditional covariance matrix

occurring at the break date TB := b0.5T c, i.e. located at the middle of the

overall sample. The DGP matrix of autoregressive parameters (see (8)-(9)) is

given by:

Π :=

(
0.8250 0.5000

−0.2000 0.75

)
and its largest eigenvalue in modulus is equal to 0.84, a persistence that aligns

with the level we observe in empirical analyses. Given the vector of structural

shocks, εt := (ε1,t, ε2,t)
′, ε1,t is the target structural shock (ε2,t the non-target

shock), which is instrumented by the proxy zt (r = k = 1).The DGP for the

instrument zt is described by the linear measurement error model:

zt =
[
ϕ+ ∆ϕI (t > TB)

]
ε1,t +

[
Υ + ∆ΥI (t > TB)

]
ε2,t

+
[
σω + ∆σωI (t > TB)

]
ωt , t = 1, ..., T

where ϕ and ϕ+∆ϕ are the relevance parameters, Υ, Υ+∆Υ the contamination

parameters, whose non-zero values capture the connections of the instrument

with the non-target shock. Finally, σω is the standard deviation of the proxy’s

measurement error ωt. In this design, also the variance of the measurement

error may changes from σ2
ω to (σω + ∆σω)2 in the shift from the first to the

second volatility regime. Relevance and (failure of) exogeneity are captured

by the correlations:

corr(zt, ε1,t) =

{ ϕ
(ϕ2+Υ2+σ2

ω)1/2 , t ≤ TB,
ϕ+∆ϕ

((ϕ+∆ϕ)2+(Υ+∆Υ)2+(σω+∆σω)2)1/2 , t ≥ TB + 1

corr(zt, ε2,t) =

{
Υ

(ϕ2+Υ2+σ2
ω)1/2 , t ≤ TB,

Υ+∆Υ

((ϕ+∆ϕ)2+(Υ+∆Υ)2+(σω+∆σω)2)1/2 , t ≥ TB + 1
.

We consider scenarios in which the external instrument satisfies the exo-

geneity condition (Υ = 0,Υ + ∆Υ = 0, implying corr(zt, ε2,t) = 0 for any t),

and scenarios where it does not (Υ 6= 0,Υ + ∆Υ 6= 0). Similarly, we exam-
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ine situations in which relevance is met, meaning that the correlation with

the target shock is strong on the estimation sample, and scenarios in which

the external instrument is local-to-zero as in Staiger and Stock (1997), i.e.

ϕ := cT−1/2, with |c| < ∞. In general, the design covers all possible proper-

ties for the proxies as per Definition 1. The DGP values for ϕ, Υ, σω and ∆σω
are specified below.

By combining the VAR with the external instrument for ε1,t, the covariance

matrices satisfy, under Assumption 1, the moment conditions:

Ση,1 = GG′

Ση,2 = (G+ ∆G)(G+ ∆G)′

with DGP values for G and ∆G given by:

G =

(
H•1 H•2 02×1

ϕ Υ σω

)
=

 1.00 0.40 0

0.70 0.90 0

ϕ Υ 1


∆G =

(
∆H•1 ∆H•2 02×1

∆ϕ ∆Υ ∆σω

)
=

 −0.50 0 0

0 0 0

∆ϕ ∆Υ −0.04

 .

The true vector of structural parameters, ς0 := (γ′0, δ
′
0)′, comprises γ0 :=

(1, 0.7, 0.40, 0.90, ϕ0,Υ0, 1)′ and δ0 := (−0.5,∆ϕ,0,∆Υ,0,−0.040)′.

In this design, the target IRFs in (12) change across the two volatility

regimes solely because of changes in the on-impact parameters H•1 := (1, 0.7)′,

as captured by the elements in ∆H•1 := −0.5. Overall, the total number of

structural parameters to estimate when Υ 6= 0,∆Υ 6= 0 (exogeneity fails) is

11, while there are (n + r)(n + r + 1) =12 moment conditions. Therefore,

the proxy-SVAR incorporates d =1 testable overidentifying restriction when

Υ 6= 0,∆Υ 6= 0 (exogeneity fails), and d =3 testable overidentifying restrictions

when Υ = 0,∆Υ = 0 (exogeneity holds) and is imposed in estimation. The

necessary and sufficient rank condition implied by Proposition 1 is satisfied for

the specified values of (ϕ0,∆ϕ,0) and (Υ0,∆Υ,0) we consider below.

In all experiments, we generateN =10,000 samples of lengths T = {250, 500, 1, 000},
respectively, under the hypothesis that the structural shocks εt := (ε1,t, ε2,t)

′

and the proxy’s measurement error ωt are drawn from iidN(0, 1) processes.4

When dealing with strong proxies, the DGP values of ϕ and ∆ϕ are such that

corr(ε1,t, zt) = 0.58 for the full sample. Instead, when dealing with local-to-

4We can relax both Gaussianity and the iid hypothesis provided the process ηt := (u′t, z
′
t)
′

respects the α-mixing conditions stated in Assumption 1.
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zero proxies, the correlations vary with the sample size, namely corr(ε1,t, zt) =

{0.045, 0.0318, 0.0225}, depending on whether the sample length T is equal to

250, 500 or 1, 000 respectively.

Relative performance We start by examining whether there are gains

or losses from complementing the identification of the target shock via the

change in volatility with the external instrument. We first present the models

which are compared and then define the measure of relative efficiency used

throughout.

In Table S.1 we call “Model.q”, q = 1, 2, 3, 4, 5 the five model involved

in the comparison. With Model.1 we denote results obtained by our stabil-

ity restrictions, namely by estimating the proxy-SVAR parameters ς by the

CMD approach discussed in Section 2.3, assuming that the econometrician

correctly specifies the VAR lag length and knows the break date TB. Model.1

is used as a benchmark in the comparison; hence, relative efficiency measures

in Table S.1 are set to 1 for this model. Model.2 is the same as Model.1 but

with the contamination parameters Υ and ∆Υ set to zero, meaning imposing

proxy exogeneity. Model.3 denotes result obtained by the change in volatil-

ity approach alone, i.e. without leveraging the instrument for identification.

Model.4 denotes results obtained by the proxy-SVAR-H approach, see Section

S.4, i.e. assuming that the target IRFs remain constant across the two volatil-

ity regimes. Model.5 denotes results obtained by the external instrument,

ignoring the break in volatility, i.e. a “conventional” proxy-SVAR approach.

Numbers in Table S.1 correspond to measures of relative efficiency based on

Mean Squared Error (MSE) obtained in samples of length T = 500 as follows.

For q ≥ 2, we have:

rel-MSEModel.q
Model.1 := τB × rel-MSEModel.q

Model.1(t)I (t ≤ TB)

+ (1− τB)× rel-MSEModel.q
Model.1(t)I (t > TB) (S.22)

where τB := bTB/T c is the fraction of the sample covering the first volatility

regime and:

rel-MSEModel.q
Model.1(t) :=

1

25

25−1∑
h=0


1
N

∑N
j=1

(
̂

IRFModel.q
i,1,j (t, h)− IRF 0

i,1(t, h)

)2

1
N

∑N
j=1

(
̂IRFModel.1
i,1,j (t, h)− IRF 0

i,1(t, h)
)2

 .

(S.23)

In (S.22)-(S.23), N =10,000 is the number of Monte Carlo simulations, i =

{1, 2} denotes the response variable considered in Yt = (Y1,t, Y2,t)
′, IRF 0

i,1(t, h)
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is the true value of the absolute response of Yi,t+h to the target shock ε1,t

(see equation (12)), and
̂

IRFModel.q
i,1,j (t, h) the corresponding estimate obtained

from Model.q on the sample of observation generated at the iteration j. Note

that the measures in (S.22)-(S.23) are opportunely adapted to considering the

whole sample of length T for Model.4 and Model.5, where the target IRFs are

kept constant across the two volatility regimes.

For q ≥ 2, measures obtained from (S.22)-(S.23) greater than 1 indicate

that Model.q performs worse in terms of MSE than the benchmark Model.1.

Conversely, values less than 1 indicate that there are relative gains in effi-

ciency. It is worth remarking, however, that in this DGP, the estimators of

the target IRFs in the numerator of (S.23) are not consistent for Model 4

and Model.5, as these models maintain that the IRFs do not change across

volatility regimes. In these cases, therefore, comparisons drawn from Table

S.1 must be interpreted with caution. Panel (a) of Table S.1 focuses on the

case where a strong external instrument is used, while panel (b) refers to a

local-to-zero instrument. For both cases, the instrument can be exogenous to

the non-target shock (corr(zt, ε2,t) = 0) or can be contaminated to various

extents (corr(zt, ε2,t) = {0.05, 0.15, 0.25}).
We notice from Panel (a) of Table S.1 that the incorporation of a strong

and exogenous instrument to the identification based on a shift in volatility

leads to considerable gains in performance. As expected, only the model which

correctly imposes proxy exogeneity in estimation (other than the stability re-

strictions) performs better than the benchmark. In general, even when the

exogeneity condition fails, a strong instrument tends to increase the accuracy

with which the target IRFs are estimated, on average. Interestingly and, as

expected, Panel (b) of Table S.1 shows that the gains relative to only leverag-

ing the shift in volatility vanish in the presence of local-to-zero instruments.

However, even in the scenario characterized by invalid proxies as in Definition

1.(iv), no alternative approach to the stability restrictions approach proves to

be better.

Overidentifying restrictions test Next we focus on the rejection fre-

quency of the overidentifying restrictions test resulting from the CMD estima-

tion approach discussed in the paper.

On each of theN =10,000 generated samples of lengths T = {250, 500, 1000},
we estimate the parameters ς of the proxy-SVAR by the CMD approach dis-

cussed in Section 2.3, assuming that the econometrician correctly specifies the

VAR lag length and knows the break date TB. This approach corresponds to

Model.1 in the comparisons discussed above. Then, we investigate the rejection

frequency of the implied overidentifying restriction test under two main cases.

18



In one scenario, the econometrician leaves the contamination parameters un-

restricted in estimation, with the idea that the significance of Υ and ∆Υ can

be inferred from the data provided the conditions in Proposition 1 hold. The

other scenario coincides with the case in which the econometrician imposes the

exogeneity restriction in estimation (Υ = 0,∆Υ = 0). This implies that the

estimated proxy-SVAR is misspecified when contamination (Υ 6= 0,∆Υ 6= 0)

holds in the DGP, i.e. for corr(zt, ε2,t) = {0.05, 0.15, 0.25}.
Under the null that the stability restrictions hold, the overidentifying re-

strictions test statistic (see equation (25)) is asymptotically distributed in the

stated DGP as χ2
d random variable, with degree of freedom d as defined above.

Tests are conducted at the 5% nominal significance level and rejection frequen-

cies are summarized in Table S.2.

The right panel of Table S.2 pertains to the case where the econometri-

cian does not impose proxy exogeneity in estimation. The left panel, instead,

assumes that exogeneity is imposed. It is observed that, regardless of the cor-

relation between the instrument and the non-target shock, when the external

instrument is left free in estimation, the CMD estimation approach provides

rejection frequencies compatible with finite sample size control regardless of

strength. On the contrary, rejection frequencies tend to increase with the ex-

tent of contamination and the increase in sample size regardless of strength,

revealing that the test tends to have finite sample power against the failure of

instrument exogeneity.

Overall, the results in Table S.2, combined with those in Table S.1, confirm

that when identification of the proxy-SVAR is ensured by shifts in volatility, as

implied by the necessary and sufficient rank conditions in Proposition 1, it is

generally advantageous for the econometrician not to impose exogeneity in es-

timation. Violations of the exogeneity condition can be detected from the data

regardless of whether the instrument is relevant or local-to-zero. Notably, even

when the instrument is both relevant and contaminated, it proves to be useful

for the inference on the target IRFs. However, the overidentifying restric-

tions test rejects the model’s validity when exogeneity is incorrectly imposed

in estimation, and again, this holds irrespective of instrument strength.

We turn on the performance of the overidentifying restrictions test at the

end of this section, where we explore how the stability restrictions approach

performs when the shifts in volatility provide limited information, resulting in

near-rank failure for the Jacobian J (ς), rendering the results in Propositions

1-2 invalid.

Checks of identifiability and shrinking shifts Results in Table S.1

and Table S.2 are obtained under scenarios in which the proxy-SVAR with a
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break in unconditional volatility is identified. Identifiability depends on the full

column rank condition of the Jacobian matrix J (ς), as derived in Proposition

1; see equation (22). The validity of the necessary and sufficient rank ensures

the use of standard asymptotic inference, as stated in Proposition 2. Here,

we investigate to what extent the smallest singular values of J (ς̂T ), given

the CMD estimates ς̂T and associated measures of uncertainty are informative

about the identifiability of the proxy-SVAR.

First, we consider the case in which the change in VAR covariance matrices

is sufficient to identify the model, consistent with the DGP considered so far.

Table S.3 summarizes the average, across Monte Carlo simulations, of the es-

timated smallest singular values of the Jacobian matrix along with associated

interquartile ranges (IQRs). IQRs are used in this context as broad approxi-

mations of confidence intervals. As previously, we explore scenarios with both

relevant and local-to-zero instruments, and both exogenous and contaminated

instruments. Results in Table S.3 indicate that in situations where the change

in volatility is sufficient for identification, the smallest singular values of the

estimated Jacobian matrix are far from zero and the associated IQRs tend

not to include the zero. Another important finding from Table S.3 is that

proxy properties do not affect the identifiability of the model, confirming the

analytic results discussed in the paper and the figures in tables S.1 and S.2.

The results outlined in Table S.3 also indirectly support the identifiability of

the fiscal proxy-SVAR estimated in Section 4 of the paper. In that section, in

the bottom part of Table 2, we reported the estimated smallest singular value

of the Jacobian matrix along with associated 68% MBB confidence interval,

which reassuringly seem to rule out the case of a zero singular value.

Secondly, we reexamine the performance of the stability restrictions ap-

proach under a different scenario. Specifically, we address cases where the dis-

tance between covariance matrices in the two volatility regimes, (Ση,2 −Ση,1),

shrinks according to equation (S.21) in the paper, reported here for conve-

nience:

Ση,2 − Ση,1 = %TΨT .

In this equation, as the scalar %T converges to zero, %T → 0, ΨT → Ψ =

(G∆̃G + ∆̃GG) 6= 0 determining a near-rank failure setup for the Jacobian

J (ς); see Section 2.3.

Table S.4 summarizes the estimated smallest singular values of the Jaco-

bian matrix and associated IQRs when VAR covariance matrices shrink at the

rate %T ∼ o(T−1/2). We now observe a departure from the patterns seen in

Table S.3. Unlike the scenarios presented there, where the ratio between the

estimated average smallest singular values and the average length of IQRs is
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consistently greater than 2, we now notice a distinct trend. Specifically, the

magnitude of the estimated smallest singular values tends to be systematically

smaller than 2 times the IQR, indicating a lack of identification resulting from

the change in volatility. However, in line with expectations, strong proxies

appear to sustain the identifiability of the proxy-SVAR when the exogeneity

condition is imposed in estimation, although not when it is not. This phe-

nomenon is explained by the fact that when deviations from exogeneity are

allowed, the instruments also provide information about the non-target shocks.

Consequently, if the change in volatility poorly identifies the non-target shocks,

the failure in identification extends to the entire system. In contrast, when ex-

ogeneity is imposed in estimation, whether or not it holds in the DGP, any

information originating from the non-target shocks is not transmitted to the

target shocks. In this case, the Jacobian matrix maintains full column rank,

ensuring identification.

S.8 Proofs of propositions

Proof of Proposition 1: (i) The result follows by deriving the moment

conditions in (18)-(21) with respect to the parameter ς := (γ′, δ′)′ and then

applying matrix derivative rules; see Bacchiocchi and Fanelli (2015, Proposi-

tion 1);

(ii) the necessary order condition follows trivially from the dimensions of the

Jacobian matrix:

J (ς) :=
∂m(ση, ς)

∂ς ′︸ ︷︷ ︸
(n+r)(n+r+1)×(a+b)

=

(
∂m1(ση ,ς)

∂ς′
∂m2(ση ,ς)

∂ς′

)

in (22), where both ∂m1(ση, ς)/(∂ς
′) and ∂m2(ση, ς)/(∂ς

′) are of dimension

(1
2(n+ r)(n+ r + 1)× (a+ b)).

Proof of Proposition 2: Let Q̂T (ς) := mT (σ̂η, ς)
′V̂ −1
ση mT (σ̂η, ς) be the ob-

jective function upon which CMD estimation is computed in (25). We observe

that: (a) under the conditions of Proposition 1, Q0(ς) := m(σ+
0 , ς)

′V −1
ση m(σ+

0 , ς)

is uniquely maximized at ς0 in the neighborhood Nς0 ; (b) Pς is compact and

Nς0 ⊆ Pς ; (c) Q0(ς) is continuous; (d) Q̂T (ς) converges uniformly in proba-

bility to Q0(ς). To prove that (d) holds, recall that under Assumptions 1-2

σ̂η
p→ ση,0, hence mT (σ̂η, ς)

p→ m(ση,0, ς) by the Slutsky Theorem. Also recall

that it exists an estimator of the asymptotic covariance matrix Vση such that

V̂ση
p→ Vση , see (24). Then, with ‖·‖ denoting the Euclidean norm, by the
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triangle and Cauchy-Schwartz inequalities:∣∣∣Q̂T (ς)−Q0(ς)
∣∣∣ ≤ ∣∣∣[mT (σ̂η, ς)−m(ση,0, ς)]

′V̂ −1
ση [mT (σ̂η, ς)−m(ση,0, ς)]

∣∣∣
+
∣∣∣m(ση,0, ς)

′[V̂ −1
ση + V̂ −1′

ση ][mT (σ̂η, ς)−m(ση,0, ς)]
∣∣∣

+
∣∣∣m(ση,0, ς)

′[V̂ −1
ση − V

−1
ση ]m(ση,0, α)

∣∣∣
≤ ‖mT (σ̂η, ς)−m(ση,0, ς)‖2

∥∥∥V̂ −1
ση

∥∥∥
+ 2 ‖m(ση,0, ς)‖ ‖mT (σ̂η, ς)−m(ση,0, ς)‖

∥∥∥V̂ −1
ση

∥∥∥
+ ‖m(ση,0, ς)‖2

∥∥∥V̂ −1
ση − V

−1
ση

∥∥∥
so that supς∈Pς

∣∣∣Q̂T (ς)−Q0(ς)
∣∣∣ p→ 0. Given (a), (b), (c), and (d), the consis-

tency result follows from Newey and McFadden (1994, Theorem 2.1).

To prove asymptotic normality, we start from the first-order conditions

implied by the problem (25) in the paper:

J (ς̂T )′V̂ −1
ση mT (σ̂η, ς̂T ) = 0 (S.24)

where J (ς̂T ) denotes the Jacobian matrix J (ς) :=
∂m(ση ,ς)

∂ς′ := J (ση, ς) eval-

uated at the estimated parameters σ̂η and ς̂T , respectively. By expanding

mT (σ̂η, ς̂T ) around ς0 and solving, yields the expression (valid in Nς0):

√
T (ς̂T − ς0) = −

{
J (σ̂η, ς̂T )′V̂ −1

ση J (σ̂η, ς̄)
}−1
J (σ̂η, ς̂T )′V̂ −1

ση

√
TmT (σ̂η, ς0)

(S.25)

where ς̄ is a mean value. From (24) and the delta-method:

√
TmT (σ̂η, ς0)

d→ N(0,J (ς0)′VσηJ (ς0)′) (S.26)

where J (σ̂η, ς0)
p→ J (ση,0, ς0) := J (ς0). From the consistency result in (i),

as T → ∞, J (σ̂η, ς̂T )
p→ J (ση,0, ς0) := J (ς0) and J (σ̂η, ς̄)

p→ J (ση,0, ς0) :=

J (ς0), respectively. Moreover, the matrix J (ς0)′V −1
ση J (ς0) is nonsingular in

Nς0 because of Proposition 1. It turns out that

−
{
J (σ̂η, ς̂T )′V̂ −1

ση J (σ̂η, ς̄)
}−1
J (σ̂η, ς̂T )V̂ −1

ση

p→ −
{
J (ς0)′V −1

ση J (ς0)
}−1
J (ς0)′V −1

ση ,

so that the conclusion follows from (S.26) and the Slutsky theorem.
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Proof of Proposition S.1: (i) Consider the sums:

Σ̂u,z :=
1

T

T∑
t=1

ûtz
′
t =

1

T


TB∑
t=1

ûtz
′
t +

T∑
t=TB+1

ûtz
′
t


=

1

T

TBTB
TB∑
t=1

ûtz
′
t +

T − TB
T − TB

T∑
t=TB+1

ûtz
′
t


=
TB
T

{
1

TB

TB∑
t=1

ûtz
′
t

}
+
T − TB
T

 1

T − TB

T∑
t=TB+1

ûtz
′
t

 .

hence, for T →∞,

TB
T

{
1

TB

TB∑
t=1

ûtz
′
t

}
p→ τ

(0)
B E

[
utz
′
tI (t ≤ TB)

]
= τ

(0)
B E

[
{H•1ε1,t +H•2ε2,t} z′t

]
= τ

(0)
B H•1E

[
ε1,tz

′
t

]
= τ

(0)
B H•1Φ′ ;

T − TB
T

 1

T − TB

T∑
t=TB+1

ûtz
′
t

 p→ (1− τ (0)
B )E

[
utz
′
tI (t > TB)

]
= (1−τ (0)

B )E
[{
H•1P

1/2
(1) ε1,t +H•2P

1/2
(2) ε2,t

}
z′t

]
= H•1P

1/2
(1) E

[
ε1,tz

′
t

]
= H•1P

1/2
(1) Φ′.

(ii) It is seen that with Φ 6= 0 (rank[Φ] = k = 1) and rank[P(1)] = 1:

Σu,z (Σu1,z)
−1 =

(
Σu1,z

Σu2,z

)
(Σu1,z)

−1

=


(
H1,1Φ′

H2,1Φ′

)
(H1,1Φ′)−1 t ≤ TB(

H1,1P
1/2
(1) Φ′

H2,1P
1/2
(1) Φ′

)(
H1,1P

1/2
(1) Φ′

)−1
t ≥ TB + 1

=



(
1

(H2,1Φ′) (H1,1Φ′)−1

)
(

1

(H2,1P
1/2
(1) Φ′)

(
H1,1P

1/2
(1) Φ′

)−1

) , t = 1, ..., T
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=

(
1

Hrel
2,1

)
, t = 1, ..., T.

As Σ̂u2,z
p→ H2,1P

1/2
(1) Φ′ and Σ̂u1,z

p→ H1,1P
1/2
(1) Φ′, it follows that Σ̂u2,z

(
Σ̂u1,z

)−1

is consistent for Hrel
2,1 .

Proof of Proposition S.3: (i) The nonlinear functional relationship between

ση := (vech(Ση,1)′, vech(Ση,2)′)′ and ρ is given by ση = σ(ρ), where σ(ρ) =

(vech[GunGun
′]′, vech[GunΛGun

′])′. A necessary and sufficient condition for ρ

to be uniquely recovered from ση is that rank[J (ρ)] = dim(ρ) = (n + r)(n +

r + 1) locally, where J (ρ) = ∂σ(ρ)
∂ρ′ is (n + r)(n + r + 1) × (n + r)(n + r + 1).

Using matrix algebra derivatives and the properties of duplication matrices:

J (ρ) =

(
∂vech(GunG′un)

∂ρ′
∂vech(GunΛG′un)

∂ρ′

)
=

(
∂vech(GunG′un)

∂ρ′
∂vech(GunG′un)

∂λ′
∂vech(GunΛG′un)

∂ρ′
∂vech(GunΛG′un)

∂λ′

)

=

(
D+

(n+r)
∂vec(GunG′un)

∂ρ′ 0

D+
(n+r)

∂vec(GunΛG′un)
∂ρ′ D+

(n+r)
∂vec(GunΛG′un)

∂λ′

)
(

D+
(n+r)

∂vec(GunG′un)
∂vec(Gun)′ ×

∂vec(Gun)
∂ρ′ 0

D+
(n+r)

∂vec(GunΛG′un)
∂vec(Gun)′ × ∂vec(Gun)

∂ρ′ D+
(n+r)

∂vec(GunΛG′un)
∂vec(Λ)′ × ∂vec(Λ)

∂λ′

)
.

Now, given N(n+r) := 1
2(I(n+r)2 + K(n+r)) with K(n+r) commutation matrix,

and since we have:

∂vec(GunG
′
un)

∂vec(Gun)′
= 2N(n+r)(Gun ⊗ I(n+r));

∂vec(GunΛG′un)

∂vec(Gun)′
= 2N(n+r)(GunΛ⊗ I(n+r));

∂vec(GunΛG′un)

∂vec(Λ)′
= (Gun ⊗Gun),

and 2D+
(n+r)N(n+r) = 2D+

(n+r), the Jacobian reads:

J (ρ) = 2(I2 ⊗D+
(n+r))

(
(Gun ⊗ I(n+r)) 0

(GunΛ⊗ I(n+r)) (Gun ⊗Gun)1
2FΛ

)

= 2(I2 ⊗D+
(n+r))

(
(Gun ⊗ I(n+r)) 0

(GunΛ⊗ I(n+r)) (Gun ⊗Gun)

)(
SG 0

0 1
2FΛ

)
.

Proof of Proposition S.4: See Bacchiocchi and Fanelli (2015), Supplemen-
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tary Material.

S.9 Sensitivity of the stability restrictions

estimator

Sensitivity analysis consists into measuring the effects of local misspecification

of the moments of estimator onto first-order asymptotics of the θ̂. Let us con-

sider misspecification of the moments in the sense of wrong assignment of the

parameter τ . Namely, for any ε 6= 0, let us consider situations with 2 regimes,

where the break date used in the estimation of θ is TB,ε = b(τ0 + ε)T c as

opposed to the true TB = bτ0T c, such that as T → ∞, TB,ε → TB. Let σ̂η be

a consistent estimator of ση.

In the context of the stability restrictions estimator, local misspecifications

may realize under the form of estimation error and/or incorrect assignment

of a break in the DGP. Without loss of generality, the misspecified moment

function (21) can be represented by

m(σ̂η,=)
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Table S.1: Relative efficiency (MSE) of estimators of the target IRFs.

Sample size: T = 500 corr(zt, ε2t)
0.00 0.05 0.15 0.25

IRF1,1 IRF2,1 IRF1,1 IRF2,1 IRF1,1 IRF2,1 IRF1,1 IRF2,1

Panel a) Strong proxy
Model.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model.2 0.95 0.96 1.01 1.02 1.33 1.36 1.95 2.04
Model.3 11.75 7.11 13.34 9.03 16.69 13.36 18.36 15.25
Model.4 5.87 4.10 5.89 4.19 5.94 4.39 6.05 4.54
Model.5 4.62 2.71 5.41 3.37 7.15 5.24 8.51 7.01

Panel b) Local-to-zero proxy
Model.1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Model.2 1.00 1.00 1.00 1.01 1.02 1.03 1.07 1.07
Model.3 1.00 1.00 1.00 1.00 1.00 0.99 1.00 0.99
Model.4 5.80 3.86 5.95 3.93 5.69 3.90 5.72 3.94
Model.5 13.27 11.92 11.12 10.77 7.26 7.86 5.85 7.05

NOTES: Results are based on N = 10, 000 Monte Carlo simulations, see Section S.7 for

details on the design. Model.1 denotes results obtained by the stability restrictions approach

discussed in the paper. Model.(2) is the same as Model.1 with the contamination parameters

Υ and ∆Υ set to zero, i.e., imposing proxy exogeneity. Model.3 denotes result obtained by

the change in volatility approach alone, i.e., without including the instrument. Model.4

denotes results obtained by the proxy-SVAR-H approach, see Section S.4, i.e., assuming that

the target IRFs remain constant across the two volatility regimes. Model.5 denotes results

obtained by the external instrument alone, i.e., ignoring the break in volatility. Numbers in

the table correspond to measures of relative efficiency in the estimation of target IRFs based

on Mean Squared Error (MSE), as discussed in Section S.7. Model.1 is used as a benchmark

in the comparison; hence, relative efficiency measures are set to 1 for this model.

Table S.2: Rejection frequencies of the overidentifying restrictions test (5%
nominal).

corr(zt, ε2t)
Υ is set to 0 Υ is unrestricted

0.00 0.05 0.15 0.25 0.00 0.05 0.15 0.25

Sample size Relevance Rejection frequency (5%)

T = 250 Strong 4.06 7.64 40.84 88.30 4.83 4.63 4.42 4.43
Local-to-zero 4.28 8.22 45.73 91.83 4.22 4.72 4.34 4.67

T = 500 Strong 4.68 12.03 75.26 99.80 4.87 4.73 4.55 4.49
Local-to-zero 4.34 13.26 80.48 99.92 4.67 4.93 4.79 5.10

T = 1000 Strong 4.22 21.40 97.64 100.00 5.21 5.04 4.57 5.09
Local-to-zero 4.64 22.62 98.60 100.00 4.74 4.73 5.04 5.06

NOTES: Rejection frequencies are computed across N =10,000 Monte Carlo simulations,

see Section S.7 for details on the design. Estimates of proxy-SVAR parameters are obtained

by the CMD approach discussed in Section 3 of the paper.
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Table S.3: Estimated smallest singular values of the Jacobian J (ς) with asso-
ciated IQR. Full column rank condition holds.

corr(zt, ε2t)
Υ is set to 0 Υ is unrestricted

0.00 0.05 0.15 0.25 0.00 0.05 0.15 0.25

Sample size, relevance Smallest singular value of J(ς)

T = 250, Strong 0.0427
[0.0136]

0.0418
[0.0128]

0.0395
[0.0110]

0.0363
[0.0099]

0.0020
[0.0008]

0.0022
[0.0009]

0.0028
[0.0011]

0.0033
[0.0012]

T = 250, Local-To-Zero 0.0077
[0.0025]

0.0077
[0.0024]

0.0076
[0.0023]

0.0076
[0.0023]

0.0061
[0.0017]

0.0061
[0.0017]

0.0058
[0.0017]

0.0052
[0.0017]

T = 500, Strong 0.0443
[0.0099]

0.0430
[0.0094]

0.0405
[0.0081]

0.0374
[0.0071]

0.0018
[0.0005]

0.0021
[0.0006]

0.0026
[0.0007]

0.0032
[0.0009]

T = 500, Local-To-Zero 0.0071
[0.0015]

0.0070
[0.0015]

0.0069
[0.0015]

0.0066
[0.0014]

0.0062
[0.0012]

0.0062
[0.0012]

0.0058
[0.0012]

0.0051
[0.0012]

T = 1000, Strong 0.0449
[0.0071]

0.0437
[0.0069]

0.0412
[0.0058]

0.0378
[0.0050]

0.0018
[0.0004]

0.0020
[0.0004]

0.0025
[0.0005]

0.0031
[0.0006]

T = 1000, Local-To-Zero 0.0067
[0.0010]

0.0067
[0.0009]

0.0066
[0.0009]

0.0063
[0.0009]

0.0063
[0.0008]

0.0063
[0.0008]

0.0058
[0.0009]

0.0050
[0.0009]

NOTES: Numbers in the table are averages of estimates obtained across N =10,000 Monte

Carlo simulations, see Section S.7 for details on the design. Bold entries indicate that the

magnitude of the estimated smallest singular value is greater than 2×IQR.
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Table S.4: Estimated smallest singular values of the Jacobian J (ς) with asso-
ciated IQR. Full column rank condition holds. Shrinking covariance matrices,
%T ∼ o(T−1/2).

Shrinking shifts corr(zt, ε2t)
Υ is set to 0 Υ is unrestricted

0.00 0.05 0.15 0.25 0.00 0.05 0.15 0.25

Sample size, relevance Smallest singular value of J(ς)

T = 250, Strong 0.0591
[0.0131]

0.0593
[0.0131]

0.0638
[0.0139]

0.0750
[0.0157]

0.0010
[0.0009]

0.0010
[0.0009]

0.0010
[0.0009]

0.0009
[0.0008]

T = 250, Local-To-Zero 0.0075
[0.0064]

0.0068
[0.0054]

0.0109
[0.0087]

0.0199
[0.0130]

0.0012
[0.0011]

0.0012
[0.0011]

0.0012
[0.0011]

0.0012
[0.0010]

T = 500, Strong 0.0598
[0.0093]

0.0599
[0.0093]

0.0646
[0.0100]

0.0760
[0.0113]

0.0005
[0.0004]

0.0005
[0.0004]

0.0005
[0.0004]

0.0005
[0.0004]

T = 500, Local-To-Zero 0.0040
[0.0035]

0.0037
[0.0028]

0.0086
[0.0062]

0.0185
[0.0095]

0.0006
[0.0005]

0.0006
[0.0005]

0.0006
[0.0005]

0.0006
[0.0005]

T = 1000, Strong 0.0600
[0.0065]

0.0601
[0.0066]

0.0648
[0.0071]

0.0754
[0.0080]

0.0003
[0.0002]

0.0003
[0.0002]

0.0002
[0.0002]

0.0003
[0.0002]

T = 1000, Local-To-Zero 0.0020
[0.0017]

0.0022
[0.0016]

0.0073
[0.0044]

0.0175
[0.0069]

0.0003
[0.0003]

0.0003
[0.0003]

0.0003
[0.0003]

0.0003
[0.0003]

NOTES: Numbers in the table are averages of estimates obtained across N =10,000 Monte

Carlo simulations, see Section S.7 for details on the design. Bold entries indicate that the

magnitude of the estimated smallest singular value is greater than 2×IQR.
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