Script: selectAnnotations(); addPixelClassifierMeasurements("Tumour vs stroma", "Tumour vs stroma") ----------------------------------------------------------------------------------------- Pixel classifier Tumor vs stroma: { "metadata": { "inputPadding": 0, "inputResolution": { "pixelWidth": { "value": 1.7667454340672688, "unit": "µm" }, "pixelHeight": { "value": 1.7667454340672688, "unit": "µm" }, "zSpacing": { "value": 1.0, "unit": "z-slice" }, "timeUnit": "SECONDS", "timepoints": [] }, "inputWidth": 512, "inputHeight": 512, "inputNumChannels": 3, "outputType": "CLASSIFICATION", "outputChannels": [ { "name": "Stroma", "color": -8745193 }, { "name": "Tumour", "color": -9490209 } ], "classificationLabels": { "0": { "name": "Stroma", "colorRGB": -3342337 }, "1": { "name": "Tumour", "colorRGB": -9490209 } } }, "op": { "type": "data.op.channels", "colorTransforms": [ { "channelName": "Red" }, { "channelName": "Green" }, { "channelName": "Blue" } ], "op": { "type": "op.core.sequential", "ops": [ { "type": "op.core.sequential", "ops": [ { "type": "op.core.split-merge", "ops": [ { "type": "op.filters.multiscale", "features": [ "GAUSSIAN" ], "sigmaX": 1.0, "sigmaY": 1.0 }, { "type": "op.filters.multiscale", "features": [ "GAUSSIAN" ], "sigmaX": 2.0, "sigmaY": 2.0 }, { "type": "op.filters.multiscale", "features": [ "GAUSSIAN" ], "sigmaX": 4.0, "sigmaY": 4.0 } ] }, { "type": "op.ml.feature-preprocessor", "preprocessor": { "normalizer": { "offsets": [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0 ], "scales": [ 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0 ], "missingValue": 0.0 }, "inputLength": 9, "outputLength": 9 } } ] }, { "type": "op.ml.opencv-statmodel", "model": { "class": "ANN_MLP", "statmodel": { "opencv_ml_ann_mlp": { "format": 3, "layer_sizes": [ 9, 2 ], "activation_function": "SIGMOID_SYM", "f_param1": 1.0, "f_param2": 1.0, "min_val": -9.4999999999999996e-01, "max_val": 9.4999999999999996e-01, "min_val1": -9.7999999999999998e-01, "max_val1": 9.7999999999999998e-01, "training_params": { "train_method": "RPROP", "dw0": 1.0000000000000001e-01, "dw_plus": 1.2000000000000000e+00, "dw_minus": 5.0000000000000000e-01, "dw_min": 1.1920928955078125e-07, "dw_max": 50.0, "term_criteria": { "epsilon": 1.0000000000000000e-02, "iterations": 1000 } }, "input_scale": [ 5.2741671550416411e-02, -1.1463322145237823e+01, 4.4396821070724825e-02, -8.0112286466855611e+00, 7.1046781520769833e-02, -1.4699234121210621e+01, 7.3536278283017981e-02, -1.5981545862954265e+01, 5.5817793285706900e-02, -1.0071510732920837e+01, 1.0045817467322164e-01, -2.0782936935121128e+01, 9.4405880129716499e-02, -2.0514497331162495e+01, 6.4797633004168298e-02, -1.1692209967105608e+01, 1.2639511975888446e-01, -2.6148311787538834e+01 ], "output_scale": [ 1.0, 0.0, 1.0, 0.0 ], "inv_output_scale": [ 1.0, 0.0, 1.0, 0.0 ], "weights": [ [ -5.8303761392409514e-01, 1.0101562791966006e+00, 7.5734384662926901e-01, -2.7994046497318609e-01, -1.4056708482771693e-01, -4.5490346304542251e-01, -7.6180330111217343e-01, 1.0687488732716979e+00, -6.6581641354401833e-01, -6.5130209831879848e-01, -4.4383502024941784e-01, 9.7464785829225553e-01, 1.7550302131018132e+00, -8.6436256022431701e-01, 3.4350174966923968e+00, -4.4331599292863144e+00, 4.0983026141139439e-01, -7.8660812985863171e-01, 1.8844117115558163e+00, -3.1231374414552548e+00 ] ] } } }, "requestProbabilities": false }, { "type": "op.core.convert", "pixelType": "UINT8" } ] } } }