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A B S T R A C T
Path following for underwater vehicles remains a significant challenge due to underactuation in the
sway and heave directions. Most existing approaches rely on line-of-sight guidance to address this
issue. In this paper, we explore an alternative approach using kinematic guidance, based on virtual
reference point guidance, wherein a fictitious point offset from the vehicle’s center of rotation is used to
reformulate the kinematic control problem and mitigate underactuation constraints. While this concept
has been explored to some extent, previous works have largely overlooked the impact of the vehicle’s
attitude. To address this limitation, we propose a solution that simultaneously accounts for the vehicle’s
attitude while minimizing cross-track error by defining the error dynamics in the body reference frame,
which enables direct control of yaw and sway through yaw rate actuation. A model predictive controller
is designed to optimize both attitude stabilization and trajectory tracking performance and is enhanced
with an adaptive extended Kalman filter-like observer to estimate the sideslip caused by ocean currents
and external disturbances. The proposed controller is evaluated under the influence of ocean currents
and modeling uncertainties, and compared to an existing method from the literature, demonstrating
its effectiveness in maintaining path-following accuracy while stabilizing the attitude.

1. Introduction
Autonomous Marine Vehicles (AMVs) are increasingly

vital as they allow for long-duration, high-risk, or repetitive
tasks to be conducted without direct human presence, signif-
icantly reducing costs and increasing safety. AMVs include
Autonomous Surface Vehicles (ASVs) and Autonomous
Underwater Vehicles (AUVs) that perform various missions
including oceanographic surveys [1], environmental mon-
itoring [2], infrastructure inspection[3], search and rescue
[4], and military operations [5]. Their autonomy enables
exploration of hazardous or remote regions, such as deep-
sea environments or areas affected by severe weather, that
would otherwise be inaccessible. A common characteristic
of many AMVs, especially those designed for practical and
energy-efficient operations, is that they are underactuated,
meaning they possess fewer control inputs than degrees
of freedom that need to be controlled. This design choice
often simplifies construction, reduces energy consumption,
and improves endurance, but it also introduces substantial
challenges for precise maneuvering and control [6].

This article focuses on a class of underactuated marine
vehicles that operate primarily in the horizontal plane, such
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as ASVs and AUVs, which maintain depth through dedi-
cated depth controllers [7], with minimal pitching or vertical
motion affecting their horizontal dynamics. The primary
challenge for these vehicles lies in the path-following prob-
lem, where the objective is to ensure that the vehicle con-
verges to and follows a predefined spatial path, independent
of the time along that path [8]. This capability is essential
for a wide range of missions, including systematic seabed
mapping, pipeline or cable inspection, and environmental
sampling, where spatial coverage and precision are critical.
Path-following is particularly challenging for underactuated
vehicles due to their limited control authority and the influ-
ence of external disturbances such as ocean currents [9].

To address the path-following problem in underactuated
marine vehicles, various guidance laws have been proposed
to generate desired headings that steer the vehicle along a
predefined path. Among the most widely used are Line-of-
Sight (LOS)-based methods [10, 11], which compute a de-
sired heading that minimizes the cross-track error, typically
using a scalar variable that parametrizes the path. These
guidance commands result in yaw rotations that indirectly
induce sway motion, thereby compensating for the lack
of direct lateral actuation in underactuated systems. The
Proportional LOS (PLOS) method introduces a look-ahead
distance to improve stability, with a formulation allowing
for uniform global stability proposed in [12]. Time-varying
look-ahead distance strategies have also been developed to
achieve better transient performance and compensate for
external disturbances [13, 14].

However, PLOS may still exhibit steady-state errors un-
der persistent disturbances such as constant ocean currents.
To address this limitation, the Integral LOS (ILOS) method
[15, 16] incorporates an integral term of the cross-track error
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into the guidance law. This integral action allows the system
to reject constant biases and ensures zero steady-state cross-
track error [17]. In more advanced scenarios, Adaptive LOS
(ALOS) strategies [18, 19] integrate real-time estimates
of sideslip angles are used in the guidance computation.
These methods have been shown to achieve uniform semi-
global stability [18]. However, the performance of ALOS
depends on the tuning of the adaptation gain: while higher
gains can improve convergence speed, they may also lead to
undesirable oscillations during transient phases. To mitigate
such issues, Extended State Observer-based LOS (ELOS)
methods have been proposed [20]. ELOS leverages an ob-
server framework to estimate both unmeasured states and
disturbances, feeding this information back into the guidance
system for real-time compensation. Compared to ILOS and
ALOS, ELOS offers a more systematic and robust approach
to disturbance rejection, particularly when facing complex
or time-varying environmental conditions.

Beyond LOS-based approaches, vector field guidance
strategies have gained attention for their ability to construct
smooth vector fields that guide the vehicle toward the path
using gradient-like behaviors [21]. A comparison between
vector field and LOS guidance methods is presented in [22].
For a comprehensive review of recent advances in LOS
guidance strategies, readers are referred to [23].

While most existing path-following approaches define
the control objective relative to the vehicle’s pivot point
(center of rotation), an alternative concept found in the liter-
ature is the use of a Virtual Reference Point (VRP). The VRP
is usually placed at the bow of the vehicle, ahead of the pivot
point, and offers both theoretical and practical advantages.
As demonstrated in [24, 25], selecting a forward-positioned
VRP can have a naturally stabilizing effect on the guidance
dynamics. This idea is analogous to the intuitive observation
that pulling a trolley leads to more stable behavior than push-
ing it, as discussed in [26]. Beyond its stabilizing role, the
VRP framework is advantageous in applications requiring
sensor-driven navigation. For example, in seabed scanning
or inspection tasks, sensors such as cameras or sonar are
typically mounted at a location offset from the vehicle’s
center of rotation. By choosing the VRP to coincide with the
sensor location, as suggested in [27], the guidance law can
directly regulate the path of the sensor itself, enabling more
accurate coverage and improving mission performance.

Another significant advantage of the VRP lies in its
ability to help address the underactuation problem by lever-
aging the kinematic coupling introduced by the displacement
between the VRP and the vehicle’s pivot point. As illustrated
conceptually in [28], let 𝑃 denote the pivot point, and 𝑃𝑣denote the virtual reference point located a distance𝐸 ahead
as shown in Figure 1. A surge force applied at 𝑃 results
in a corresponding motion at 𝑃𝑣 in the surge direction.
Similarly, applying a yaw torque around point 𝑃 induces a
sway component at 𝑃𝑣 due to the offset 𝐸. This coupling
effect allows sway-like actuation to emerge from the avail-
able inputs—despite the vehicle being underactuated. This

Figure 1: Schematic representation of the VRP located ahead
of the pivot point by a distance 𝐸, introducing kinematic
coupling between yaw and sway motions in underactuated
marine vehicles

concept has been further explored in [29], where a control-
oriented "handy matrix" formulation is proposed to map
available actuation to the dynamics at the VRP, effectively
exploiting this coupling to overcome underactuation. How-
ever, this mapping may yield multiple solutions, not all of
which are physically meaningful or robust for control, as
discussed in [30]. Moreover, using the VRP enables the ve-
hicle’s kinematics to be modeled similarly to nonholonomic
systems, thus allowing the application of a wide range of
nonlinear control strategies developed for such systems. For
example, output feedback linearization can be employed by
selecting the VRP as the output point, as demonstrated in
[28, 27, 30]. This modeling approach not only enhances
controllability but also integrates naturally with perception-
driven navigation tasks.

To the best of the authors’ knowledge, existing literature
on guidance of underactuated AMVs using VRP guidance
has primarily focused on the path-following problem, with-
out explicitly addressing attitude tracking. In works such
as [26, 29], the vehicle’s attitude is assumed to remain
stable due to the internal dynamics, but it is not regulated
to follow a desired orientation. Similarly, in the output
feedback linearization frameworks proposed in [28, 27, 30],
the attitude dynamics are treated as internal and proven to
be bounded, but not necessarily tracking a reference. In this
work, we aim to bridge this gap by introducing a Nonlinear
Model Predictive Control (NMPC) strategy that explicitly
addresses both path-following and attitude regulation. The
motivation for using an NMPC framework stems from the
inherent kinematic coupling induced by the VRP, where
sway and yaw motions are interdependent and influenced by
a common set of control inputs. While previous approaches
focused primarily on sway control and treated yaw behavior
as a secondary or bounded effect, the proposed controller
jointly optimizes both sway and yaw dynamics to achieve
coordinated motion. Furthermore, we develop an Adaptive
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Extended Kalman Filter (AEKF)-based observer to estimate
the unknown sideslip angle, which is critical for accurate
attitude tracking and compensation under environmental
disturbances, such as ocean currents.

The remainder of this paper is organized as follows.
Section 2 presents the dynamic model of the AMVs consid-
ered in this study. Section 3 formulates the path-following
problem using the VRP framework. Section 4 describes
the design of the AEKF observer used to estimate the
sideslip angle. Section 5 details the two-loop control strat-
egy—comprising the guidance and control loops—with a
primary focus on the NMPC. Section 6 provides simulation
results demonstrating the effectiveness of the proposed
method under ocean current conditions, using the a AUV
called "Blucy" as a case study. Finally, Section 7 concludes
the paper and outlines directions for future work.

2. Vehicle Model
In this study, we consider a planar three-degree-of-

freedom (3-DOF) model [31], suitable for a class of AUVs
and ASVs that predominantly move in the horizontal plane.
Vertical dynamics are excluded from this model under
the assumption that they are either negligible or managed
independently by a separate depth control system.

The vehicle’s motion is defined in the North-East-Down
(NED) inertial frame ⟨

𝐼
⟩, where the position and orienta-

tion vector is given by 𝜂 = [𝑥, 𝑦, 𝜓]𝑇 ∈ ℝ3. The body-fixed
velocity vector is 𝜈 = [𝑢, 𝑣, 𝑟]𝑇 ∈ ℝ3, representing surge,
sway, and yaw rate, respectively. The rotation matrix that
transforms velocities from the body frame ⟨𝑏⟩ to the inertial
frame is defined as:

𝐽 (𝜓) =
⎡

⎢

⎢

⎣

cos𝜓 − sin𝜓 0
sin𝜓 cos𝜓 0
0 0 1

⎤

⎥

⎥

⎦

, 𝐽 (𝜓) ∈ 𝑆𝑂(2) (1)

where 𝑆𝑂(2) denotes the special orthogonal group of
planar rotations.

The vehicle dynamics are described by the standard
marine model as follows:

�̇� = 𝐽 (𝜓)𝜈 (2a)
𝑀�̇� + 𝐶(𝜈)𝜈 +𝐷(𝜈)𝜈 = 𝜏𝑝 + 𝑑(𝑡) (2b)

where 𝑀 ∈ ℝ3×3 is the total inertia matrix composed of
rigid-body inertia and added mass; 𝐶(𝜈) is the Coriolis-
centripetal matrix including added mass effects; 𝐷(𝜈) is the
hydrodynamic damping matrix, incorporating both linear
and nonlinear terms; 𝜏𝑝 = [𝜏𝑢, 0, 𝜏𝑟]𝑇 ∈ ℝ3 is the control
input vector; and 𝑑(𝑡) = [𝑑𝑢, 𝑑𝑣, 𝑑𝑟]𝑇 ∈ ℝ3 represents
unknown environmental disturbances such as ocean currents
and unmodeled dynamics. The absence of a control input
in the sway direction reflects an underactuated configuration
common in many marine vehicles.

To facilitate control design, we adopt the following as-
sumptions:

Assumption 1. The vehicle exhibits port-starboard symme-
try, i.e., its dynamics are invariant under reflection about its
longitudinal axis.

Remark 1. This symmetry is typical of marine vehicles
with streamlined hulls. It allows the neglect of certain off-
diagonal terms in the added mass and damping matrices,
simplifying the dynamic equations [31].
Assumption 2. Hydrodynamic damping is considered to be
linear with respective to the velocity of the Vehicle.

Remark 2. Linear hydrodynamic damping is reasonable in
low-speed operating conditions where nonlinear effects are
minimal. Furthermore, the nonlinear damping terms, while
neglected in this model, generally have a stabilizing effect,
as they introduce energy dissipation that naturally enhances
system stability.
Assumption 3. The external disturbances 𝑑(𝑡) are bounded
such that |𝑑𝑛| ≤ 𝑑𝑛 for 𝑛 = 𝑢, 𝑣, 𝑟, where 𝑑𝑛 are unknown
but finite constants.

Remark 3. This models real-world effects like current,
wind, or wave-induced forces that, although uncertain, are
naturally constrained by environmental limits.

Under Assumptions 1–3, and by resolving the vector-
matrix equations into scalar components, the vehicle model
can be reformulated as:

�̇� = 𝑢 cos𝜓 − 𝑣 sin𝜓 (3a)
�̇� = 𝑢 sin𝜓 + 𝑣 cos𝜓 (3b)
�̇� = 𝑟 (3c)

�̇� = 𝐹𝑢(𝑢, 𝑣, 𝑟) + 𝜏𝑢 + 𝑑𝑢 (4a)
�̇� = 𝑌 (𝑢)𝑣 +𝑋(𝑢)𝑟 + 𝑑𝑣 (4b)
�̇� = 𝐹𝑟(𝑢, 𝑣, 𝑟) + 𝜏𝑟 + 𝑑𝑟 (4c)

where the functions 𝐹𝑢, 𝐹𝑟, 𝑋(𝑢), and 𝑌 (𝑢) are defined
as:

𝐹𝑢(𝑢, 𝑣, 𝑟) =
1
𝑚11

(𝑚22𝑣 + 𝑚23𝑟)𝑟 −
𝑑11
𝑚11

𝑢

𝐹𝑟(𝑢, 𝑣, 𝑟) =
𝑚23𝑑22 − 𝑚22(𝑑32 + (𝑚22 − 𝑚11)𝑢)

𝑚22𝑚33 − 𝑚2
23

𝑣

+
𝑚23(𝑑23 + 𝑚11𝑢) − 𝑚22(𝑑33 + 𝑚23𝑢)

𝑚22𝑚33 − 𝑚2
23

𝑋1 =
𝑚11𝑚33 − 𝑚2

23

𝑚22𝑚33 − 𝑚2
23

, 𝑋2 =
𝑑33𝑚23 − 𝑑23𝑚33

𝑚22𝑚33 − 𝑚2
23

𝑌1 =
(𝑚11 − 𝑚22)𝑚23

𝑚22𝑚33 − 𝑚2
23

, 𝑌2 =
𝑑22𝑚33 − 𝑑32𝑚23

𝑚22𝑚33 − 𝑚2
23

𝑋(𝑢) = −𝑋1𝑢 +𝑋2, 𝑌 (𝑢) = −𝑌1𝑢 − 𝑌2 (5)
Here, 𝑚𝑖𝑗 and 𝑑𝑖𝑗 denote the entries of the inertia matrix

𝑀 and the damping matrix 𝐷.
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3. Problem Formulation
Let 𝑃 = [𝑥, 𝑦]𝑇 ∈ ℝ2 denote the position of the pivoting

point expressed in the inertial frame ⟨𝐼⟩. Traditionally, this
point is used for path-following problems. In this study, the
VRP, denoted by 𝑃𝑣 ∈ ℝ2, is used for path following. The
relation between 𝑃 and 𝑃𝑣 is given by:

𝑃𝑣 = 𝑃 + 𝑅(𝜓)𝐸 (6)
where 𝐸 = [𝐸𝑥, 𝐸𝑦]𝑇 ∈ ℝ2 represents the position vector
from the pivoting point 𝑃 to the virtual point 𝑃𝑣 in body
frame ⟨

𝑏
⟩. It is chosen such that 𝐸𝑥 > 0 and 𝐸𝑦 = 0,

placing the VRP at the bow of the vehicle. The matrix
𝑅(𝜓) ∈ 𝑆𝑂(2) represents the rotation matrix from body to
inertial frame and is expressed as:

𝑅(𝜓) = 𝑅 =
[

cos𝜓 − sin𝜓
sin𝜓 cos𝜓

]

(7)

Consider a reference path  parameterized as 𝑃𝑑 =
[

𝑥𝑑(𝜍), 𝑦𝑑(𝜍)
]𝑇 ∈ ℝ2, with a scalar path variable 𝜍 ∈ ℝ

that moves along the path with velocity 𝑈𝑑 > 0.
Assumption 4. The reference path  is smooth and at least
twice differentiable (𝐶2) to ensure well-defined curvature
and tangent vectors.

Let the frame ⟨

𝑃
⟩, referred to as the local path-tangent

frame, is defined such that its x-axis is aligned with the
tangent to the path at 𝑃𝑑(𝜍) and its y-axis is normal to the
path. This frame moves along the path with velocity𝑈𝑑 , and
the variable 𝜍 is updated according to:

�̇� =
𝑈𝑑

√

𝑥′𝑑
2(𝜍) + 𝑦′𝑑

2(𝜍)
(8)

This ensures that the frame ⟨

𝑃
⟩ continuously tracks the

motion along the path, providing a convenient moving refer-
ence. The angle between this frame and inertial frame ⟨

𝐼
⟩

is denoted by 𝛾𝑑 , and it is computed as:
𝛾𝑑 = atan2(𝑦′(𝜍), 𝑥′(𝜍)) (9)

where 𝑥′(𝜍) = 𝑑𝑥𝑑
𝑑𝜍 and 𝑦′(𝜍) = 𝑑𝑦𝑑

𝑑𝜍 . The associated rotation
matrix 𝑅𝑝(𝛾𝑑) ∈ 𝑆𝑂(2) is given by:

𝑅𝑝(𝛾𝑑) = 𝑅𝑝 =
[

cos 𝛾𝑑 − sin 𝛾𝑑
sin 𝛾𝑑 cos 𝛾𝑑

]

(10)

The path-following error between the vehicle’s VRP and
the desired path, expressed in the body frame, is defined as:

𝜀 = 𝑅(𝜓)𝑇 (𝑃𝑑 − 𝑃𝑣) (11)
where 𝜀 = [𝑥𝑒, 𝑦𝑒]𝑇 ∈ ℝ2, with 𝑥𝑒 referred to as the along-
track error and 𝑦𝑒 as the cross-track error.

Taking the time derivative of 𝜀, the error dynamics are
given by:

�̇� = �̇�𝑇 (𝑃𝑑 − 𝑃𝑣) + 𝑅𝑇 (�̇�𝑑 − �̇�𝑣) (12)

where:
�̇� = 𝑅𝑆 (13)

and:
𝑆 =

[

0 −�̇�
�̇� 0

]

, with 𝑆 = −𝑆𝑇 (14)
The derivative of the desired path is:

�̇�𝑑 = 𝑅𝑝

[

𝑈𝑑
0

]

(15)

and:
�̇�𝑣 = �̇� + �̇�𝐸 (16)

From (3) and (13), the above equation can be rewritten as:

�̇�𝑣 = 𝑅
[

𝑈
0

]

+ 𝑅𝑆𝐸 (17)

where 𝑈 =
√

𝑢2 + 𝑣2 is the vehicle’s resultant velocity.
Substituting (13–17) into (12) yields:

�̇� = (𝑅𝑆)𝑇 (𝑃𝑑 − 𝑃𝑣) + 𝑅𝑇
(

𝑅𝑝

[

𝑈𝑑
0

]

− 𝑅𝑆
[

𝐸𝑥
0

])

= 𝑆𝑇 𝜀 + 𝑅𝑇𝑅𝑝

[

𝑈𝑑
0

]

− 𝑆
[

𝐸𝑥
0

] (18)

Expanding in scalar form:
�̇�𝑒 =𝑈𝑑(cos(𝜓 − 𝛾𝑑) cos 𝛽 − sin(𝜓 − 𝛾𝑑) sin 𝛽)

+ �̇�𝑦𝑒 − 𝑈, (19a)
�̇�𝑒 =𝑈𝑑(sin(𝜓 − 𝛾𝑑) cos 𝛽 + cos(𝜓 − 𝛾𝑑) sin 𝛽)

− �̇�𝑥𝑒 − 𝐸𝑥𝑟 (19b)
The quantity 𝛽 = atan2(𝑣, 𝑢) represents the sideslip

angle, which arises from external disturbances or a non-
zero sway velocity during a turn, causing a deviation in the
vehicle’s orientation 𝜓 as explained in [32].
Assumption 5. In this work, the sideslip angle 𝛽 is assumed
to be small, such that sin 𝛽 ≈ 𝛽 and cos 𝛽 ≈ 1.

Under Assumption 5, equations (19) simplify to:
�̇�𝑒 =𝑈𝑑 cos(𝜓 − 𝛾𝑑) − 𝑈𝑑 sin(𝜓 − 𝛾𝑑)𝛽 + �̇�𝑦𝑒 − 𝑈 (20a)
�̇�𝑒 =𝑈𝑑 sin(𝜓 − 𝛾𝑑) + 𝑈𝑑 cos(𝜓 − 𝛾𝑑)𝛽 − �̇�𝑥𝑒 − 𝐸𝑥𝑟(20b)

The objective of the controller is to drive 𝑥𝑒 → 0 and
𝑦𝑒 → 0, aligning the vehicle’s heading tangentially with
the reference path. Accordingly, the desired heading 𝜓𝑑 is
defined as:

𝜓𝑑 = 𝛾𝑑 − 𝛽 (21)
Remark 4. Note that the sideslip angle 𝛽 appears in both
equations (20) and (21). However, 𝛽 is an unknown quantity
that must be estimated. Moreover, the attitude error dynam-
ics �̇�𝑒 have not yet been explicitly addressed. These aspects
will be discussed in the following sections.
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4. Adaptive Observer Design
In this section, an AEKF-like observer is designed, in-

spired by [33] to estimate the sideslip angle 𝛽. Although the
design procedure is identical, the considered dynamics differ
slightly.

To construct the adaptive observer, equation (20) is
rewritten in a state-affine form:

�̇� = 𝐴(𝑡)𝜀 + 𝜑(𝑡) + Φ(𝑡)𝛽 (22a)
𝑦 = 𝐶𝜀 (22b)

where 𝜑(𝑡) = [𝑈𝑑𝑐𝑜𝑠(𝜓 − 𝛾𝑑) −𝑈,𝑈𝑑𝑠𝑖𝑛(𝜓 − 𝛾𝑑) −𝐸𝑥𝑟]𝑇 ,
Φ(𝑡) = [−𝑈𝑑𝑠𝑖𝑛(𝜓 − 𝛾𝑑), 𝑈𝑑𝑐𝑜𝑠(𝜓 − 𝛾𝑑)]𝑇 , 𝐶 = 𝐼2×2, and
𝐴(𝑡) =

[

0 ̇𝛾𝑑
− ̇𝛾𝑑 0

]

.
To ensure that the proposed AEKF observer accurately

estimates the states and the sideslip angle 𝛽, the system is
required to satisfy certain observability conditions. Specif-
ically, the Uniform Observability Condition and the Persis-
tent Excitation Condition are imposed.
Definition 1 (Uniform Observability Condition). [34] The
system (22) is said to satisfy uniform observability if there
exist constants 0 < 𝛼1 < 𝜎1 and 𝑇1 > 0 such that:

𝛼1𝐼 ≤ ∫

𝑡+𝑇1

𝑡
Ψ(𝜏)𝑇𝐶𝑇Σ𝐶Ψ(𝜏)𝑑𝜏 ≤ 𝜎1𝐼, ∀𝑡 ≥ 𝑡0 (23)

for some 𝑡0 ≥ 0 and a bounded positive definite matrix
Σ, where Ψ(𝑡) is the transition matrix of the system: �̇� =
𝐴(𝑡)𝜀, 𝑦 = 𝐶𝜀.

Definition 2 (Persistent Excitation Condition). [34] The
function Φ(𝑡) is said to be persistently exciting if there
exists a vector function Λ(𝑡), which is a solution of Λ̇ =
[𝐴(𝑡) −𝐾(𝑡)𝐶(𝑡)] Λ + Φ(𝑡), where 𝐾(𝑡) is a time-varying
feedback gain that stabilizes the system (22). The function
Λ(𝑡) satisfies the persistence excitation condition if there
exist constants 0 < 𝛼2 < 𝜎2 and 𝑇2 > 0 such that:

𝛼2𝐼 ≤ ∫

𝑡+𝑇2

𝑡
Λ(𝜏)𝑇𝐶𝑇Σ𝐶Λ(𝜏)𝑑𝜏 ≤ 𝜎2𝐼, ∀𝑡 ≥ 𝑡0, (24)

for some 𝑡0 ≥ 0 and a bounded positive definite matrix Σ.

Following [35] and [34], the AEKF is designed as fol-
lows:
̇̂𝜀 = 𝐴(𝑡)�̂� + 𝜑(𝑡) + Φ(𝑡)𝛽

+
[

Λ𝑆−1
𝛽 Λ𝑇𝐶𝑇 + 𝑆−1

𝜀 𝐶𝑇
]

Σ(𝑦 − 𝐶�̂�) (25a)
̇̂𝛽 = 𝑆−1

𝛽 Λ𝑇𝐶𝑇Σ(𝑦 − 𝐶�̂�) (25b)
Λ̇ =

[

𝐴(𝑡) − 𝑆−1
𝜀 𝐶𝑇Σ𝐶

]

Λ + Φ(𝑡) (25c)
�̇�𝜀 = −𝜌𝑥𝑆𝜀 − 𝐴(𝑡)𝑇𝑆𝜀 − 𝑆𝜀𝐴(𝑡) + 𝐶𝑇Σ𝐶, 𝑆𝜀(0) > 0

(25d)
�̇�𝛽 = −𝜌𝛽𝑆𝛽 + Λ𝑇𝐶𝑇Σ𝐶Λ, 𝑆𝛽(0) > 0 (25e)

where �̂� and 𝛽 denote the estimates of the tracking errors
and the sideslip angle, respectively. The terms Λ ∈ ℝ2,
𝑆𝜀 ∈ ℝ2×2, and 𝑆𝛽 ∈ ℝ are adaptive gains with adaptive
laws (25c) - (25e). 𝜌𝜀 and 𝜌𝛽 are sufficiently large constants.
The matrix Σ is a bounded positive definite matrix.

By defining �̃� = �̂� − 𝜀 and 𝛽 = 𝛽 − 𝛽, equations (25a)
and (25b) can be written as:

̇̃𝜀 =
(

𝐴(𝑡) −
[

Λ𝑆−1
𝛽 Λ𝑇 + 𝑆𝜀

]

𝐶𝑇Σ𝐶
)

�̃� + Φ(𝑡)𝛽 (26a)
̇̃𝛽 = −𝑆−1

𝛽 Λ𝑇𝐶𝑇Σ�̃� (26b)
Remark 5. It can be verified that the considered system
satisfies the conditions of uniform observability and persis-
tence excitation. The function Ψ yields a rotation matrix,
thus the term Ψ𝑇𝐶𝑇Σ𝐶Ψ has the same eigenvalues as Σ.
Since Σ is a bounded positive definite matrix the system
satisfies the (23). The system (22), which is stabilized by
𝐾 = 𝑆−1

𝜀 𝐶𝑇Σ𝐶 , satisfies the upper bound of (24) since Φ(𝑡)
is bounded. For the lower bound, note that since the system
is stable, Λ̇ ≈ Φ for 𝑡0 > 0. Since Φ is non zero at time
𝑡 > 𝑡0,Λ also remains nonzero. This ensures thatΛ𝑇𝐶𝑇Σ𝐶Λ
remains positive definite, thereby satisfying the lower bound
condition in (24).
Lemma 1. Consider the adaptive observer defined by (25a)
- (25e). If the system satisfies the Uniform Observability
Condition (23) and the Persistent Excitation Condition (24),
then the estimation errors �̃� = �̂�− 𝜀 and 𝛽 = 𝛽 − 𝛽 are Uni-
formly Globally Exponentially Stable (UGES). Specifically,
there exist positive constants 𝜎, 𝜎, 𝜌 > 0 such that:

‖�̃�(𝑡)‖2+|𝛽(𝑡)|2 ≤ 𝜎
𝜎
𝑒−𝜌(𝑡−𝑡0)(‖�̃�(𝑡0)‖2+|𝛽(𝑡0)|2), ∀𝑡 ≥ 𝑡0.

(27)
PROOF. Refer to [33] for a detailed proof.

The results of Lemma 1 can be expressed more com-
pactly by defining 𝜁 = [�̃�𝑇 𝛽]𝑇 ∈ ℝ3, as follows:

‖𝜁 (𝑡)‖ ≤
√

𝜎
𝜎
𝑒−

𝜌
2 (𝑡−𝑡0)

‖𝜁 (𝑡0)‖ (28)
This result establishes that the estimation errors �̃� and 𝛽 de-
cay exponentially to zero, ensuring the UGES of the adaptive
observer. The rate of decay is governed by the parameter
𝜌 = 𝑚𝑖𝑛(𝜌𝜀, 𝜌𝛽), which depends on the observer gains. The
parameters 𝜎 and 𝜎 denote the smallest and largest singular
values of the matrix 𝑑𝑖𝑎𝑔 (𝑆𝜀, 𝑆𝛽

) The ratio 𝜎
𝜎 quantifies

how the initial estimation errors influence the convergence
rate.
Theorem 1. The observer error 𝜁 (𝑡) satisfy the exponential
bound in (28) for all 𝑡 ≥ 𝑡0, where 𝜌 > 0 is the convergence
rate and 𝜎

𝜎 is a positive constant.
Then, for any 𝑘𝑐𝑜𝑛𝑣 > 0 and sampling time 𝛿 > 0, there

exists a maximum estimation error bound 𝜁max such that:

‖𝜁 (𝑡)‖ ≤ 𝜁max, ∀𝑡 ≥ 𝑘𝑐𝑜𝑛𝑣𝛿, (29)
where 𝑘𝑐𝑜𝑛𝑣 > 0 is a fixed number of sampling instants.
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Figure 2: Block diagram of the proposed two-stage control architecture. The outer LNMPC based kinematic guidance loop
generates reference signals for the inner surge and yaw rate controller.

PROOF. From Lemma 1, the observer error 𝜁 (𝑡) satisfies the
exponential convergence bound as in (28). Fix any 𝑘𝑐𝑜𝑛𝑣 > 0
and sampling time 𝛿 > 0, and consider that:

𝑡 = 𝑡0 + 𝑘𝑐𝑜𝑛𝑣𝛿. (30)
Substituting (30) into (28) yields the following expression:

‖𝜁 (𝑡0 + 𝑘𝑐𝑜𝑛𝑣𝛿)‖ ≤
√

𝜎
𝜎
𝑒−

𝜌
2𝑘𝑐𝑜𝑛𝑣𝛿

‖𝜁 (𝑡0)‖. (31)

Now, defining the maximum estimation error bound as fol-
lows:

𝜁max ∶=
√

𝜎
𝜎
𝑒−

𝜌
2𝑘𝑐𝑜𝑛𝑣𝛿

‖𝜁 (𝑡0)‖. (32)
Since the right-hand side of (28) is monotonically decreasing
in 𝑡, for all 𝑡 ≥ 𝑡0 + 𝑘𝑐𝑜𝑛𝑣𝛿 it follows that:

‖𝜁 (𝑡)‖ ≤ ‖𝜁 (𝑡0 + 𝑘𝑐𝑜𝑛𝑣𝛿)‖ ≤ 𝜁max. (33)
This proves the existence of a finite bound 𝜁max such that

‖𝜁 (𝑡)‖ ≤ 𝜁max, ∀𝑡 ≥ 𝑘𝑐𝑜𝑛𝑣𝛿, (34)
completing the proof.

5. Main Results
In this section, the main results are presented. The so-

lution to the path-following problem introduced in Section
3 is addressed using a two-stage control strategy as shown
in Figure 2. This strategy consists of an outer kinematic
guidance loop that provides a reference velocity to an inner
surge and yaw rate controller.
5.1. Kinematic Guidance Loop

The objective of the guidance loop is to drive both 𝜀 and
𝜓𝑒 to zero. Previous studies employing the VRP approach
have often overlooked the influence of the vehicle’s attitude
𝜓 in the path-following problem [26, 29]. In most cases, it
is only shown that 𝜓 remains bounded due to the system’s

internal dynamics [28, 27]. However, in many marine vehi-
cle applications such as docking, station keeping, or visual
servoing, large deviations in 𝜓 can lead to mission failure or
safety violations

To address this, the error dynamics of 𝜓𝑒, defined as
𝜓𝑒 = 𝜓𝑑 − 𝜓 , are considered. Its time derivative is given
by:

�̇�𝑒 = �̇�𝑑 − 𝑟 (35)
where𝜓𝑑 is defined in equation (21). In equation (21), 𝛽 is an
unknown parameter that is estimated as 𝛽 using the adaptive
observer as in (25).

Equations (35) and (20) together yield the complete error
dynamics, expressed as follows:

�̇�𝑒 = 𝑟𝑦𝑒 + 𝑈𝑑 cos(𝜓𝑒) − 𝑈 (36a)
�̇�𝑒 = −𝑟𝑥𝑒 + 𝑈𝑑 sin(𝜓𝑒) − 𝑟𝐸𝑥 (36b)
�̇�𝑒 = �̇�𝑑 − 𝑟 (36c)

At this point, the advantages of the proposed virtual point
guidance method are highlighted. In traditional LOS guid-
ance, 𝑦𝑒 is minimized by selecting an appropriate heading
reference 𝜓𝑑(𝑦𝑒). However, with virtual point guidance, 𝑦𝑒can be directly influenced through 𝑟, as it explicitly appears
in (36b). Furthermore, 𝜓𝑒 is also regulated via 𝑟, meaning
that both errors are minimized using the same virtual input.
This coupling necessitates an optimal control approach to
balance their simultaneous reduction.

To accomplish this, a NMPC framework is employed.
This framework optimally adjusts 𝑟 while respecting system
constraints, offering improved performance. Moreover, the
NMPC formulation is integrated with a Controlled Lya-
punov Function (CLF) to retain global stability guarantees,
following the approach in [36].

Since the sideslip angle 𝛽 is not directly measurable, the
estimation 𝛽 by the AEKF is used in the error dynamics,
forming the basis for the NMPC problem. Thus, the NMPC
optimization relies on the estimated state vector �̂�(𝑡𝑖) ∈
ℝ3 at time 𝑡𝑖. While not all states need to be estimated,
the NMPC uses the available estimates to achieve optimal
performance while maintaining constraint adherence.
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To formulate the CLF-based NMPC (LNMPC), the error
dynamics in equation (36) are rewritten compactly as:

�̇� = 𝑓 (𝜒, 𝑢), (37)
where 𝜒 = [𝑥𝑒, 𝑦𝑒, 𝜓𝑒]𝑇 ∈ ℝ3 is the state vector, and
𝑢 = [𝑈, 𝑟]𝑇 ∈ ℝ2 is the virtual control input.
Assumption 6. The function 𝑓 (𝜒, 𝑢) is assumed to be lo-
cally Lipschitz continuous in both 𝜒 and 𝑢 on a domain
containing the origin. Specifically, there exists a constant
𝐿 > 0 such that for all 𝜒1, 𝜒2 ∈ ℝ3 and 𝑢1, 𝑢2 ∈ ℝ2:

‖𝑓 (𝜒1, 𝑢1) − 𝑓 (𝜒2, 𝑢2)‖ ≤ 𝐿‖𝜒1 − 𝜒2‖ (38)
where 𝐿 is the Lipschitz constant associated with 𝑓 (𝜒, 𝑢).
The origin is an equilibrium point for the nominal system,
i.e., 𝑓 (0, 0) = 0.

Given the error system (37) and the adaptive observer
(25), the open-loop optimization problem at each time in-
stant 𝑡𝑖 (𝑖 ≥ 0) is formulated as:

min
�̄�(⋅)

𝐽
(

�̂�(𝑡𝑖), �̄�(⋅)
)

= ∫

𝑡𝑖+𝑇𝑝

𝑡𝑖

(

‖

‖

�̄�(𝑡𝑖, 𝜏)‖‖
2
𝑄

+ ‖

‖

�̄�(𝑡𝑖, 𝜏)‖‖
2
𝑅

)

𝑑𝜏 (39a)
subject to:

̇̄𝜒(𝜏) = 𝑓 (�̄�(𝑡𝑖, 𝜏), �̄�(𝑡𝑖, 𝜏)), (39b)
�̄�(𝑡𝑖) = �̂�(𝑡𝑖) (39c)
�̄�(𝜏) ∈  , (39d)

𝜕𝑉1
𝜕𝜒

𝑓 (�̄�(𝑡𝑖, 𝜏), �̄�(�̂�(𝑡𝑖), 𝜏)) ≤
𝜕𝑉1
𝜕𝜒

𝑓 (�̄�(𝑡𝑖, 𝜏), �̃�(�̂�(𝑡𝑖), 𝜏))

(39e)
The objective is to minimize the cost function 𝐽 , which

includes a weighted sum of the state error and control
effort over the prediction horizon 𝑇𝑝. The function 𝑓 (�̄� , �̄�)
describes the system dynamics, while �̄�(𝑡𝑖, 𝜏) and �̄�(𝑡𝑖, 𝜏)denote predicted state and input trajectories. The matrices
𝑄, 𝑅, and 𝑃 are positive definite weights penalizing state
deviation, control effort, and terminal error, respectively.
The control constraint set is defined as  = {𝑢 ∈ ℝ2 ∣
𝑢min ≤ 𝑢𝑖 ≤ 𝑢max} for 𝑖 = 1, 2. Here, 𝑉1(⋅) is the CLF,
and �̃� is the auxiliary controller ensuring satisfaction of the
constraint (39e), presented in the later part of this section.

At each sampling instant, the LNMPC solves the opti-
mization problem to determine the optimal control sequence.
Based on the observer-estimated state �̂� , the system’s future
behavior is predicted using 𝑓 (�̄� , �̄�). After solving the opti-
mization problem, only the first control input �̄�∗(⋅, �̂�(𝑡𝑖)) is
applied. This receding horizon approach enhances robust-
ness against model uncertainty and external disturbances.
Auxiliary Lyapunov based controller

To design the auxiliary controller introduced in the LN-
MPC problem is addressed here. Let the Lyapunov function
be defined as:

𝑉1(𝜒) =
1
2
(𝑥2𝑒 + 𝑦

2
𝑒) (40)

Taking the time derivative of 𝑉1 along the system dynamics
yields:

�̇�1 = 𝑥𝑒�̇�𝑒 + 𝑦𝑒�̇�𝑒 (41)
Substituting the system dynamics, we obtain:

�̇�1 = 𝑥𝑒(�̇�𝑦𝑒 + 𝑈𝑑 cos(𝜓𝑒) − 𝑈 )
+ 𝑦𝑒(−�̇�𝑥𝑒 + 𝑈𝑑 sin(𝜓𝑒) − 𝑟𝐸𝑥)

(42)

Now by choosing the feedback control law �̃� = [𝑈, 𝑟]𝑇 given
as:

𝑈 = 𝑈𝑑 cos𝜓𝑒 + 𝑘1𝑥𝑒 (43a)
𝑟 =

𝑈𝑑 sin𝜓𝑒 + 𝑘2𝑦𝑒
𝐸𝑥

(43b)

Finally, substituting the control law (43) in �̇�1 we obtain:
�̇�1 = −𝑘1𝑥2𝑒 − 𝑘2𝑦

2
𝑒

= −𝛼𝑉1
(44)

where 𝛼 is min(𝑘12 ,
𝑘2
2 ). Thus, if 𝑘1 > 0 and 𝑘2, > 0 any

states𝜒 ∈  (will be defined later), the system states remain
bounded and asymptotically converge to equilibrium.

Note that 𝜓𝑒 is not included in the Lyapunov function.
This is because orientation error 𝜓𝑒 remains bounded under
the proposed control law, even though it is not directly
included in the Lyapunov function. From the closed-loop
dynamics, we have

�̇�𝑒 = �̇�𝑑 − 𝑟 = �̇�𝑑 −
𝑈𝑑 sin𝜓𝑒 + 𝑘2𝑦𝑒

𝐸𝑥
(45)

where �̇�𝑑 is the desired angular rate and it is bound
such that there exits a |�̇�𝑑(𝑡)| ≤ �̇�max

𝑑 . Define the auxiliary
function 𝑉2 = 1 − cos𝜓𝑒, which is positive definite and
radially unbounded with respect to 𝜓𝑒. Taking the time
derivative yields

�̇�2 = sin𝜓𝑒 ⋅ �̇�𝑒 = sin𝜓𝑒

(

�̇�𝑑 −
𝑈𝑑 sin𝜓𝑒 + 𝑘2𝑦𝑒

𝐸𝑥

)

(46)

This simplifies to

�̇�2 = �̇�𝑑 sin𝜓𝑒 −
𝑈𝑑
𝐸𝑥

sin2 𝜓𝑒 −
𝑘2
𝐸𝑥
𝑦𝑒 sin𝜓𝑒. (47)

Since �̇�𝑑 is bounded and 𝑦𝑒(𝑡) → 0 as 𝑡 → ∞, the last
term vanishes asymptotically. For sufficiently large 𝑡, �̇�2 is
bounded by

�̇�2 ≤ �̇�max
𝑑 | sin𝜓𝑒| −

𝑈𝑑
𝐸𝑥

sin2 𝜓𝑒 (48)

This expression defines a concave quadratic in | sin𝜓𝑒| with
a maximum, implying that for large enough 𝜓𝑒, the dissipa-
tive term dominates, and �̇�2 < 0. Thus, 𝑉2(𝑡) cannot increase
indefinitely, and 𝜓𝑒(𝑡) must remain bounded. Therefore,
under the proposed control law, the heading error𝜓𝑒 remains
bounded for all time.
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Now the level set, where the system is expected to
converge, is chosen as:

𝐶 =
{

(𝑥𝑒, 𝑦𝑒, 𝜓𝑒) ∣ 𝑉1(𝜒) ≤ 𝐶
} (49)

If the proposed controllers (43) satisfy the input con-
straints  , then the upper bound on 𝛿 is given by:

𝐶 ≤ min

(

(𝑈max − 𝑈𝑑 cos(𝜓𝑒))2

2𝑘21
,
(𝑟max𝐸𝑥 − 𝑈𝑑 sin𝜓𝑒)2

2𝑘22

)

(50)
The choice of the level set is crucial because it ensures

recursive feasibility, provided disturbances remain within
allowable bounds.
Stability of the LNMPC

The stability of the closed-loop LNMPC combined with
an AEKF observer is based on the existence of a continuous
value function that remains inherently robust to the state
estimation error introduced by the AEKF. This estimation
error acts as a disturbance in the closed-loop system but does
not destabilize it as proven in the following theorem.
Theorem 2. Consider the error dynamics (37) subject to
the LNMPC scheme defined in (39), where the estimated
state �̂�(𝑡) is provided by an AEKF. Suppose the following
conditions hold:

• The true system dynamics satisfy the Lipschitz conti-
nuity condition stated in Assumption 6.

• There exists a control Lyapunov function 𝑉1(𝜒) sat-
isfying the CLF condition (39e) under the auxiliary
control law (43), within the set 𝐶 = {(𝑥𝑒, 𝑦𝑒, 𝜓𝑒) ∣
𝑉1(𝜒) ≤ 𝐶}.

• The observer satisfies the bounded estimation error
condition ‖𝜒(𝑡𝑖) − �̂�(𝑡𝑖)‖ ≤ 𝜁max for all 𝑡𝑖 ≥ 𝐾conv𝛿,
where 𝐾conv denotes the observer convergence time.

Then, for all sampling times 𝛿 ≤ 𝛿max and estimation
error bounds 𝜁 ≤ 𝜁max satisfying the bounds (52) and (60),
the following properties hold:

1. (Recursive Feasibility) The LNMPC optimization prob-
lem remains feasible at all sampling instants 𝑡𝑖.

2. (Convergence) For any initial condition 𝜒(0) ∈
𝐶0

⊂𝐶 , the closed-loop trajectory 𝜒(𝑡) converges
to the set 𝛼∕2 ⊂𝛼 ⊂𝐶 , and remains within 𝛼
thereafter.

PROOF. Step 1: Recursive Feasibility: Consider any sam-
pling instant 𝑡𝑖 at which a feasible solution exists i.e.,
(�̄�∗(⋅, 𝜒(𝑡𝑖))), meaning the LNMPC problem has an optimal
solution that ensures both constraint satisfaction and proper
system dynamics evolution.

Between 𝑡𝑖 and 𝑡𝑖+1, the control input applied to the
system is �̄�∗(⋅, 𝜒(𝑡𝑖)). The remainder of the optimal input
sequence, �̄�∗(𝜏, 𝜒(𝑡𝑖)), for 𝜏 ∈ [𝑡𝑖+1, 𝑡𝑖 + 𝑇𝑝], continues to
satisfy the system constraints. Furthermore, for all 𝜒(𝑡𝑖 +

𝑇𝑝) ∈ 𝐶 , there exists an auxiliary control law �̃�(⋅) such
that, the CLF condition (39e) and the control constraint (39d)
are satisfied. For any time 𝑡𝑖+𝜎, where 𝜎 ∈ (0, 𝑡𝑖+1− 𝑡𝑖], the
control input is defined as:

�̄�(𝜏, 𝜒(𝑡𝑖+𝜎)) =

{

�̄�∗(𝜏, ̂𝜒(𝑡𝑖)), for 𝜏 ∈ [𝑡𝑖+1, 𝑡𝑖 + 𝑇𝑝],
�̃�(𝜏 − 𝑡𝑖 − 𝑇𝑝), for 𝜏 ∈ (𝑡𝑖 + 𝑇𝑝, 𝑡𝑖 + 𝑇𝑝 + 𝜎].

(51)
Since �̄�(⋅, 𝜒(𝑡𝑖+1)) satisfies all state and input constraints and
preserves the CLF condition due to the terminal auxiliary
control law �̃�, recursive feasibility of the LNMPC optimiza-
tion problem at time 𝑡𝑖+1 is guaranteed.

Step 2: Convergence The convergence is proven in two
parts.

Part one: For any initial state 𝜒(0) ∈ 𝐶0
, which

is strictly contained within 𝐶 , the state will reach a set
𝐶1

where 𝐶1 = 𝐶0 + (𝐶 − 𝐶0)∕2 after some 𝑇𝐶0𝐶1
. The

existence of such a 𝑇𝐶0𝐶1
is guaranteed under the assumption

(6), because ∀𝜒(𝜏) ∈ 𝐶 then, we have ‖𝜒(𝜏) − 𝜒(0)‖ ≤
∫ 𝜏0 ‖𝑓 (𝜒(𝑡), 𝑢(𝑡))‖ 𝑑𝑡 ≤ 𝐾𝐶

𝑡 where the 𝐾𝐶
is a constant

depending on the Lipschitz constant of 𝑓 (𝜒, 𝑢) and the
bound on 𝑢. Let 𝑇𝐶0𝐶1

be the minimum time required to reach
the boundary of 𝐶1

, from any point 𝜒(0) ∈ 𝐶0
allowing

𝑢(𝑡) to take admissible values in  . By similar arguments,
there also exists a time 𝑇𝐶2𝐶 such that for all 𝜒(𝑡𝑖) ∈ 𝐶2

,
the state 𝜒(𝜏) ∈ 𝐶 for all 𝜏 ∈ [𝑡𝑖, 𝑡𝑖 + 𝑇𝐶2𝐶 ). where
𝐶2 = 𝐶1+(𝐶−𝐶1)∕2. We now pick the maximum sampling
time 𝛿𝑚𝑎𝑥 as

𝛿𝑚𝑎𝑥 = min
{

𝑇𝐶0𝐶1
∕𝑘𝐶𝑜𝑛𝑣, 𝑇𝐶2𝐶

}

(52)
Thus, any initial state in 𝐶0

does not leave the level set
𝐶 during the convergence of observer 𝐾conv𝛿𝑚𝑎𝑥.

part two: Since the Lyapunov function 𝑉1(𝜒) is contin-
uously differentiable and radially unbounded, we can apply
converse Lyapunov theorems there exists a functions 𝛽1, 𝛽2and 𝛽3 that belongs to ∞ such that the following inequali-
ties hold:

𝛽1(‖𝜒‖) ≤ 𝑉1(𝜒) ≤ 𝛽2(‖𝜒‖) (53a)
𝜕𝑉1
𝜕𝜒

𝑓 (𝜒, �̃�) ≤ −𝛽3(‖𝜒‖) (53b)

Furthermore from the (39e) and (39d) we have the fol-
lowing inequality:

𝜕𝑉1
𝜕𝜒

𝑓 (�̄�(𝑡𝑖, 𝜏), �̄�∗(�̂�(𝑡𝑖), 𝜏)) ≤
𝜕𝑉1
𝜕𝜒

𝑓 (�̄�(𝑡𝑖, 𝜏), �̃�(�̂�(𝑡𝑖), 𝜏))

≤ −𝛽3(‖𝜒‖) (54)
Now, for any 𝜒(𝑡𝑖) ∈ 𝐶1

, the time derivative of the
Lyapunov function along the trajectory state trajectory 𝜒(𝜏)
of the system, ∀𝜏 ∈ [𝑡𝑖, 𝑡𝑖 + 1)

�̇�1(𝜒(𝜏)) =
𝜕𝑉1
𝜕𝜒

𝑓 (𝜒(𝜏), �̄�∗(�̂�(𝑡𝑖), 𝜏)) (55)
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By adding and subtracting the term 𝜕𝑉1
𝜕𝜒 𝑓 (�̄�(𝑡𝑖, 𝜏),−

�̄�∗(�̂�(𝑡𝑖), 𝜏)) and taking (54) into consideration, one gets:

�̇�1(𝜒(𝜏)) =
𝜕𝑉1
𝜕𝜒

𝑓 (𝜒(𝜏), �̄�∗(�̂�(𝑡𝑖), 𝜏))

+
𝜕𝑉1
𝜕𝜒

𝑓 (�̄�(𝑡𝑖, 𝜏), �̄�∗(�̂�(𝑡𝑖), 𝜏))

−
𝜕𝑉1
𝜕𝜒

𝑓 (�̄�(𝑡𝑖, 𝜏), �̄�∗(�̂�(𝑡𝑖), 𝜏))

= −𝛽3(‖𝜒‖) +
𝜕𝑉1
𝜕𝜒

𝑓 (𝜒(𝜏), �̄�∗(�̂�(𝑡𝑖), 𝜏))

−
𝜕𝑉1
𝜕𝜒

𝑓 (�̄�(𝑡𝑖, 𝜏), �̄�∗(�̂�(𝑡𝑖), 𝜏))

(56)

Since function 𝑓 (𝜒, 𝑢) is Lipschitz continuous (Assumption
6) and 𝑉1 is continuously differentiable, then 𝜕𝑉1

𝜕𝑥 𝑓 (⋅) is also
Lipschitz. Thus we have:

�̇�1(𝜒(𝜏)) = −𝛽3(‖𝜒‖) + 𝐿𝑉 ‖

‖

𝜒(𝜏) − �̄�(𝑡𝑖, 𝜏)‖‖ (57)
here,𝐿𝑉 is the Lipschitz constant associated with 𝜕𝑉1

𝜕𝜒 𝑓 (𝜒, 𝑢).The prediction error between 𝜒(𝜏) and �̄�(𝑡𝑖, 𝜏) is related
to the state estimation error and it can be bounded using the
Grönwall-Bellman inequality as follows:

‖

‖

𝜒(𝜏) − �̄�(𝑡𝑖, 𝜏)‖‖ ≤ 𝑒𝐿𝑓 𝜏 ‖
‖

𝜒(𝑡𝑖) − �̂�(𝑡𝑖)‖‖ (58)
where 𝐿𝑓 is the Lipschitz constant associated with 𝑓 (⋅). We
thus obtain the bound on �̇�1(𝜒(𝜏)):

�̇�1(𝜒(𝜏)) = −𝛽3(‖𝜒‖) + 𝐿𝑉 𝑒
𝐿𝑓 𝜏 ‖

‖

𝜒(𝑡𝑖) − �̂�(𝑡𝑖)‖‖ (59)
Now assuming that 𝑥(𝜏) ∉ 𝛼∕2 i.e., ‖𝜒‖ ≥ 𝛼∕2 and

since 𝛽3 ∈ 𝐾∞, we have 𝛽3(‖𝜒‖) ≥ 𝛽3(𝛼∕2). Hence for any
𝜒 to converge to the set 𝛼∕2, From Theorem 1, there exists
a bound |𝜒(𝑡𝑖) − �̂�(𝑡𝑖)| ≤ 𝜁max, and the observer parameter
𝜁max should be chosen such that:

𝐿𝑉 (𝑒
𝐿𝑓 𝜏𝜁𝑚𝑎𝑥) ≤ 𝛽3(𝛼∕2) (60)

where 𝑒𝑚𝑎𝑥 the maximum estimation error after the conver-
gence time 𝐾𝑐𝑜𝑛𝑣𝛿.

Integrating both sides over the interval [𝑡𝑖, 𝑡𝑖+1], we get:
𝑉1(𝜒(𝑡𝑖 + 1)) − 𝑉1(𝜒(𝑡𝑖)) ≤ −𝛽3(𝛼∕2) (61)

which implies:
𝑉1(𝜒(𝑡𝑖 + 1)) ≤ 𝑉1(𝜒(𝑡𝑖)) − 𝛽3(𝛼∕2) (62)

By recursively applying the inequality, we conclude that
if any 𝜒(0) ∈ 𝐶0

will converge to 𝛼∕2 in a finite
time without leaving the admissible set 𝐶 if the observer
parameters satisfies (52) and (60). Once the system reaches
𝛼∕2, it will remain inside 𝛼 . this statement holds because
the 𝛼∕2 ⊆𝛼 .

5.2. Kinetic Control Loop
At the kinetics level, the virtual desired velocities gen-

erated by the guidance stage are tracked by designing the
input thrusts. To achieve this, we employ a neural adaptive
sliding mode control strategy as proposed in [37]. We define
the tracking errors as 𝑢𝑒 = 𝑢 − 𝑢𝑟 and 𝑟𝑒 = 𝑟 − 𝑟𝑟, and
introduce the following sliding surfaces:

𝑠𝑢𝑒 = 𝑢𝑒 + 𝜆𝑢𝑒 ∫ 𝑢𝑒 𝑑𝑡 (63a)

𝑠𝑟𝑒 = 𝑟𝑒 + 𝜆𝑟𝑒 ∫ 𝑟𝑒 𝑑𝑡 (63b)

where 𝜆(⋅) are positive design constants. The time derivatives
of the sliding surfaces are given by:

�̇�𝑢𝑒 = �̇�𝑒 + 𝜆𝑢𝑒𝑢𝑒
= 𝑓𝑢(𝑢, 𝑣, 𝑟) + Δ𝑓𝑢 + 𝜏𝑢 + 𝑑𝑢 − �̇�𝑟 + 𝜆𝑢𝑒𝑢𝑒 (64a)

�̇�𝑟𝑒 = �̇�𝑒 + 𝜆𝑟𝑒𝑟𝑒
= 𝑓𝑟(𝑢, 𝑣, 𝑟) + Δ𝑓𝑟 + 𝜏𝑟 + 𝑑𝑟 − �̇�𝑟 + 𝜆𝑟𝑒𝑟𝑒 (64b)

where Δ(⋅) represent model uncertainties and unmodeled
dynamics. These uncertainties are approximated using Ra-
dial Basis Function Neural Networks (RBF-NNs) as Δ̂(⋅) =
�̂�(⋅)𝜇(⋅), where �̂�(⋅) are the estimated neural network weights,
and 𝜇(⋅) are Gaussian basis functions. The weight estimation
error is denoted by �̃�(⋅) = �̂�(⋅) − 𝑊 ∗

(⋅), where 𝑊 ∗ are the
ideal weights.

To enforce convergence, the sliding surface dynamics are
designed to follow the following reaching law:

�̇�𝑢𝑒 = −𝑘𝑢𝑒𝑠𝑢𝑒 −𝐷𝑢𝑒𝑠𝑖𝑔𝑛(𝑠𝑢𝑒 ) (65a)
�̇�𝑟𝑒 = −𝑘𝑟𝑒𝑠𝑟𝑒 −𝐷𝑟𝑒𝑠𝑖𝑔𝑛(𝑠𝑟𝑒 ) (65b)

where 𝑘(⋅) are positive gains and 𝐷(⋅) are disturbance com-
pensation terms. These are estimated adaptively to account
for external disturbances 𝑑(⋅) and approximation errors of the
neural network. Let �̂�(⋅) denote the estimates of these terms,
and �̃�(⋅) = �̂�(⋅) − 𝑑(⋅) their estimation errors.

By combining (64) and (65), the control inputs 𝜏𝑢 and 𝜏𝑟are designed to enforce the reaching law as follows:
𝜏𝑢 = −𝑓𝑢(𝑢, 𝑣, 𝑟) − Δ̂𝑓𝑢 + �̇�𝑟 − 𝜆𝑢𝑒𝑢𝑒 − 𝑘𝑢𝑒𝑠𝑢𝑒 − �̂�𝑢𝑒𝑠𝑖𝑔𝑛(𝑠𝑢𝑒 )(66a)
𝜏𝑟 = −𝑓𝑟(𝑢, 𝑣, 𝑟) − Δ̂𝑓𝑟 + �̇�𝑟 − 𝜆𝑟𝑒𝑟𝑒 − 𝑘𝑟𝑒𝑠𝑟𝑒 − �̂�𝑟𝑒𝑠𝑖𝑔𝑛(𝑠𝑟𝑒 )(66b)
Stability of the Control Loop

To analyze the stability of the proposed adaptive sliding
mode controller, we define a Lyapunov function candidate
as:
𝑉 =1

2
𝑠2𝑢𝑒 +

1
2
𝑠2𝑟𝑒 +

1
2

tr (�̃� ⊤
𝑢 Γ−1𝑢 �̃�𝑢

)

+ 1
2

tr (�̃� ⊤
𝑟 Γ−1𝑟 �̃�𝑟

)

+ 1
2
�̃�2
𝑢𝑒
+ 1

2
�̃�2
𝑟𝑒 (67)
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Γ(⋅) are positive-definite learning rate matrices.
Taking the time derivative of 𝑉 yields:

�̇� =𝑠𝑢𝑒 �̇�𝑢𝑒 + 𝑠𝑟𝑒 �̇�𝑟𝑒 + tr
(

�̃� ⊤
𝑢 Γ−1𝑢

̇̃𝑊𝑢

)

+ tr
(

�̃� ⊤
𝑟 Γ−1𝑟

̇̃𝑊𝑟

)

+ �̃�𝑢𝑒
̇̃𝐷𝑢𝑒 + �̃�𝑟𝑒

̇̃𝐷𝑟𝑒 (68)
Using the error dynamics and control laws from Eq. (64)

and Eq. (65), we substitute:
�̇�𝑢𝑒 = −𝑘𝑢𝑒𝑠𝑢𝑒 −𝐷𝑢𝑒sign(𝑠𝑢𝑒 ) + Δ̃𝑓𝑢 + �̃�𝑢𝑒sign(𝑠𝑢𝑒 ) (69)
�̇�𝑟𝑒 = −𝑘𝑟𝑒𝑠𝑟𝑒 −𝐷𝑟𝑒sign(𝑠𝑟𝑒 ) + Δ̃𝑓𝑟 + �̃�𝑟𝑒sign(𝑠𝑟𝑒 ) (70)

Substituting these into �̇� :
�̇� = −𝑘𝑢𝑒𝑠

2
𝑢𝑒
− 𝑘𝑟𝑒𝑠

2
𝑟𝑒
+ 𝑠𝑢𝑒Δ̃𝑓𝑢 + 𝑠𝑟𝑒Δ̃𝑓𝑟 + �̃�𝑢𝑒 |𝑠𝑢𝑒 |

+ �̃�𝑟𝑒 |𝑠𝑟𝑒 | + tr
(

�̃� ⊤
𝑢 Γ−1𝑢

̇̃𝑊𝑢

)

+ tr
(

�̃� ⊤
𝑟 Γ−1𝑟

̇̃𝑊𝑟

)

+ �̃�𝑢𝑒
̇̃𝐷𝑢𝑒 + �̃�𝑟𝑒

̇̃𝐷𝑟𝑒 (71)
To cancel the NN approximation and disturbance terms,

we define the adaptive update laws:
̇̂𝑊𝑢 = Γ𝑢𝑠𝑢𝑒𝜇𝑢 (72a)
̇̂𝑊𝑟 = Γ𝑟𝑠𝑟𝑒𝜇𝑟 (72b)
̇̂𝐷𝑢𝑒 = 𝛾𝐷𝑢 |𝑠𝑢𝑒 | (72c)
̇̂𝐷𝑟𝑒 = 𝛾𝐷𝑟 |𝑠𝑟𝑒 | (72d)

Substituting these into the Lyapunov derivative leads to:
�̇� = −𝑘𝑢𝑒𝑠

2
𝑢𝑒
− 𝑘𝑟𝑒𝑠

2
𝑟𝑒
≤ 0 (73)

Since �̇� ≤ 0, the Lyapunov function is non-increasing
and bounded below. Thus, sliding surface is asymptotically
stable, i.e,

lim
𝑡→∞

𝑠𝑢𝑒 (𝑡) = 0, lim
𝑡→∞

𝑠𝑟𝑒 (𝑡) = 0 (74)

Because of (63), we also have:
lim
𝑡→∞

𝑢𝑒(𝑡) = 0, lim
𝑡→∞

𝑟𝑒(𝑡) = 0 (75)

Therefore, the proposed controller guarantees that all
signals remain bounded, and the tracking errors asymptot-
ically converge to zero in the presence of modeling uncer-
tainty and bounded external disturbances.
Remark 6. Note that the sway dynamics (𝑣), are not ex-
plicitly included in the stability analysis. However, it can be
shown that 𝑣 remains uniformly bounded for any 𝑌1, 𝑌2 ≥
0 in (4b), provided that the surge velocity 𝑢, yaw rate 𝑟,
and disturbance 𝑑𝑣 are bounded, as demonstrated in [38].
Moreover, most AMVs are designed such that the conditions
𝑌1, 𝑌2 ≥ 0 are naturally satisfied (see Remark 3 in [28]).

Remark 7. The overall stability of the closed-loop system,
comprising both the guidance loop and the kinetic control
loop discussed above, can be analyzed using singular per-
turbation theory (See [39], Chapter. 11). In this framework,
the control loop operates on a faster timescale compared
to the guidance loop, owing to the relative separation in
their dynamic responses. By treating the guidance system
as a slow subsystem and the control dynamics as a fast
subsystem, one can demonstrate that the composite system
remains stable under the Tikhonov theorem conditions (See
[39], Chapter. 11, Section 2). This entails proving that both
the reduced slow system and the boundary-layer fast system
are stable in isolation and that the fast subsystem converges
quickly to a quasi-steady state. However, for brevity, this
detailed analysis is omitted here as the primary focus of this
work is on the VRP-based guidance strategy.

6. Case study: Blucy
Blucy is an underactuated underwater vehicle used

for non-invasive underwater monitoring. The vehicle is
equipped with six thrusters, as shown in Fig. 3: two lon-
gitudinal thrusters for surge, two lateral thrusters for yaw
control, and two vertical thrusters for depth and heave
control without inducing pitch.

The pitch and roll dynamics are inherently stable due
to hydrostatic restoring forces resulting from the vertical
offset between the center of gravity (CoG) and the center
of buoyancy (CoB). This design satisfies all assumptions
outlined in Section 2 for the 3-DOF planar motion model.
The physical parameters of the vehicle were experimentally
identified and validated by the authors in [40].

Figure 3: Blucy underwater vehicle with 6-thruster configura-
tion.

6.1. Simulation Results
The proposed guidance and control framework is im-

plemented and tested in a MATLAB/Simulink environment.
The LNMPC guidance scheme is compared against the
method proposed in [26] in two scenarios: (i) straight-line
path following, and (ii) curved path following — both in the
presence of external disturbances.
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Parameter Settings: The observer and controller param-
eters used in simulation are as follows: - The adaptive
observer parameters: 𝜌𝑧 = 5, 𝜌𝛽 = 0.2 and Σ = 1.5𝐼2×2.
The LNMPC parameters: The sampling period 𝛿 = 0.1,
the prediction horizon is 𝑇𝑝 = 5. The weight matrices
𝑄 = 𝑑𝑖𝑎𝑔(5, 5, 2), and 𝑅 = 𝑑𝑖𝑎𝑔(3, 3) and the limit on
the 𝑈 = [0, 1]𝑚∕𝑠𝑒𝑐 and 𝑟 = [−0.01, 0.01]𝑟𝑎𝑑∕𝑠𝑒𝑐, the
auxiliary control gain 𝑘1 = 0.8 and 𝑘2 = 1.The control loop
parameters: 𝜆𝑢𝑒 = 0.1, 𝜆𝑟𝑒 = 0.2, 𝛾𝐷𝑢 = 3, 𝛾𝐷𝑟 = 5, Γ𝑢 = 10
and Γ𝑟 = 10. The virtual reference point 𝐸𝑥 = 0.8𝑚 and
𝐸𝑦 = 0.
(i) Straight-Line Path: In this scenario, the vehicle is
tasked with following a straight-line path at a constant depth
of 5 m, defined parametrically as:

𝑥(𝜍) = 𝑥0 + 𝜍,
𝑦(𝜍) = 𝑦0 + 0.5𝜍,

where 𝜍 is the arc-length parameter along the path, and
the slope of the trajectory in the (𝑥, 𝑦)-plane is 0.5. This
corresponds to a desired heading angle 𝜓 of approximately
26.6 deg.

The initial conditions for the vehicle are set as: 𝑥0 = 0m,
𝑦0 = 5 m, 𝜓0 = 0 deg, 𝑢0 = 0 m/s, 𝑣0 = 0 m/s, and
𝑟0 = 0 deg/s.The total simulation time is 150 seconds.

To evaluate the robustness of the guidance scheme, an
external wind disturbance is introduced. It is modeled as a
constant velocity field with wind speed of 0.1 m/s, flowing
from 180◦ (i.e., southward) in the inertial reference frame.

Figure 4: Trajectory comparison for straight-line path following
under wind disturbance.

Figure 5: Sideslip angle 𝛽 estimated using the AEKF observer.

(a) Position error: 𝑥𝑒.

(b) Position error: 𝑦𝑒.

(c) Heading angle error: 𝜓𝑒.

(d) Surge velocity error: 𝑢𝑒.

(e) Yaw rate error: 𝑟𝑒.
Figure 6: Tracking performance comparison : Position (𝑋𝑒,
𝑌𝑒), heading angle (𝜓𝑒), and velocity errors (𝑢𝑒, 𝑟𝑒) between
the proposed LNMPC and the method in [26].

The simulation results for the straight-line path-following
scenario underscore the effectiveness of the proposed LN-
MPC approach, particularly in enhancing attitude regulation
while maintaining comparable position tracking perfor-
mance. As shown in Figure 4, both the LNMPC and the ref-
erence controller from [26] successfully follow the desired
trajectory despite the presence of steady wind disturbances.

: Preprint submitted to Elsevier Page 11 of 14



Figure 7: Trajectory comparison for curved path following
under wind disturbances.

Figure 8: Sideslip angle 𝛽 estimated using the AEKF observer.

However, the LNMPC demonstrates reduced lateral devia-
tion during transients and achieves smother convergence to
the desired path.

Figure 5 presents the estimation of the sideslip angle
𝛽 using the AEKF observer, which provides critical feed-
back for attitude control. Accurate real-time estimation of
𝛽 enhances the heading feedback and contributes to the
performance of the LNMPC in attitude regulation.

The LNMPC achieves faster alignment with the desired
heading and maintains more stable behavior compared to the
baseline controller. This improvement is supported by the
heading error 𝜓𝑒 in Figure 6c, where the LNMPC signifi-
cantly reduces steady state error and oscillations, resulting
in a more reliable heading response.

In contrast, the position errors𝑋𝑒 and 𝑌𝑒 (Figures 6a,6b)
as well as velocities errors 𝑢𝑒 and 𝑟𝑒 (Figures 6d,6e) are sim-
ilar in magnitude between the two controllers. Nonetheless,
the LNMPC displays smoother error transients and better
damping characteristics, indicative of improved closed-loop
behavior.
(ii) Curved Path: In this scenario, the vehicle is com-
manded to follow a curved trajectory defined by a circular arc
in the horizontal plane. The path is described parametrically
as:

𝑥(𝜍) = 𝑅 cos(𝜍),
𝑦(𝜍) = 𝑅 sin(𝜍),

where 𝑅 = 20 m is the radius of the circular path and
𝜍 is the path parameter representing angular progression
along the arc. The vehicle is initialized at position (𝑥0, 𝑦0) =

(a) Position error: 𝑥𝑒.

(b) Position error: 𝑦𝑒.

(c) Heading angle error: 𝜓𝑒.

(d) Surge velocity error: 𝑢𝑒.

(e) Yaw rate error: 𝑟𝑒.
Figure 9: Tracking performance comparison: Position (𝑋𝑒, 𝑌𝑒),
heading angle (𝜓𝑒), and velocity errors (𝑢𝑒, 𝑟𝑒) between the
proposed LNMPC and the method in [26].

(20 m, 5 m) with an initial heading 𝜓0 = 90◦, and with zero
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Path Term LNMPC [26] Improvement (%)

Straight
Line

Position 171.4 176.4 2.84%
Heading 30.16 58.4 48.34%

Curved Position 227 241 5.81%
Heading 33.29 73.7 54.83%

Table 1
Quantitative analysis of tracking error comparison between
the proposed LNMPC method and the approach in [26] using
integrated absolute errors. The improvement column indicates
the percentage reduction in error achieved by LNMPC relative
to the reference method, where lower values signify better
tracking performance.

surge velocity and yaw rate: 𝑢0 = 0 m/s, 𝑟0 = 0 rad/s. The
total simulation duration is 250 seconds.

As in the straight-line case, a steady wind disturbance of
0.1 m/s from 180◦ (southward direction in the inertial frame)
is applied to evaluate the robustness of the controller under
environmental influences. This scenario challenges both the
position tracking and the vehicle’s ability to continuously
adapt its heading as the curvature of the path evolves. The
goal is to test the controller’s capability to maintain precise
attitude regulation while following a dynamically changing
reference orientation.

Figure 7 shows the trajectory tracking performance un-
der this curved path scenario. Both controllers are able to
follow the desired circular path, but the proposed LNMPC
demonstrates faster convergence and reduced initial path
deviation, especially near regions of higher curvature. The
trajectory produced by the LNMPC is smoother and less
oscillatory in response to wind disturbance, confirming the
robustness of the approach.

The heading dynamics are further analyzed in Figure 8,
which presents the sideslip angle 𝛽 estimated using the
AEKF observer. The LNMPC maintains more stable and
bounded 𝛽 dynamics compared to the controlled method in
[26], reflecting improved estimation consistency and better
adaptation to environmental effects.

Figure 9 details the error dynamics. While both methods
eventually settle to similar steady-state tracking accuracy
for position errors (𝑥𝑒, 𝑦𝑒), the LNMPC shows smoother
transient responses. Most notably, Figure 9c highlights a
substantial improvement in heading error 𝜓𝑒, where the
proposed controller maintains faster convergence, smaller
amplitude oscillations and lower steady state error. In terms
of velocities (Figures 9d, 9e), LNMPC provides better damp-
ing in the transient regime while maintaining comparable
steady-state behavior to the controller proposed in [26].

These results are further supported by the quantitative
analysis using time-integrated absolute errors presented in
Table 1. The most significant improvements are observed
in heading control, with error reductions of 48.34% and
54.83% for the straight and curved paths, respectively. While
position errors also decreased—by 2.84% and 5.81%—the

performance gains in this case are more modest. These find-
ings highlight the effectiveness of the LNMPC in enhancing
heading tracking accuracy, particularly in complex path-
following scenarios.

7. Conclusion
This paper presented a VRP guidance strategy as an

alternative to traditional LOS guidance for a class of AMVs.
Unlike conventional VRP-based methods, which typically
do not explicitly account for attitude dynamics, this work
attempts to control the neglected attitude regulation in the
presence of ocean currents and environmental disturbances.
We show that by explicitly addressing the heading dynamics
within the control design, more accurate and robust path
following can be achieved.

To address this challenge, we formulated the tracking er-
ror dynamics in the body-fixed reference frame and demon-
strated that both cross-track and heading errors can be si-
multaneously regulated via yaw rate control. Accordingly,
we proposed a LNMPC that optimally minimizes position
and heading errors. This controller is augmented by an
AEKF observer that estimates the sideslip angle 𝛽, a quantity
for accurate attitude representation in the presence ocean
currents and disturbances.

By incorporating 𝛽 into the prediction model, the LN-
MPC achieves improved heading accuracy and robustness to
external disturbances, as demonstrated through high-fidelity
simulation results. The proposed method shows superior
performance in attitude regulation compared to the control
strategy from [26], while maintaining comparable position
tracking accuracy.

Future work will focus on experimental validation of
the controller on a physical marine vehicle and extending
the framework to accommodate more advanced scenarios,
such as obstacle avoidance and time-varying path planning.
Additionally, the proposed methodology can be adapted to
vehicles with vertical control (e.g., using pitch to regulate
depth), where attitude control becomes even more critical.
As discussed in [26], VRP-based guidance has the potential
to address underactuation via kinematic coupling, but it may
lead to undesirable attitude configurations (e.g., inverted
tracking). The proposed approach offers a robust solution to
such issues and enables VRP guidance to be effectively ap-
plied to reconfigurable and more complex marine vehicles.
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