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Abstract

Both the demand for skilled labor and the skill wage premium have become increasingly

dispersed across the United States. This paper examines how technological change within

occupations drives these uneven local developments. Combining a novel measure of tech-

nological change—capturing shifts in task intensities within 430 detailed occupations—with

patent data and microdata, I demonstrate that innovation reallocates labor toward cognitive-

intensive tasks, especially in densely populated areas. Motivated by this, I show that greater

exposure to technological change increases the relative employment of college-educated work-

ers while causing within-occupation wage declines for less-educated workers, widening the

college wage premium.
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Non-Technical Summary

Why does the wage gap between college-educated workers and less educated workers rise faster

in densely populated areas in the United States? Why do workers holding only a high school

degree or no degree fall behind in those regions—even within the same kinds of jobs? This study

provides a new answer: it is not just the demand for different jobs that is changing, but what

people do within those jobs—especially in places where technological change advances quickly.

This paper builds on the observation that as technology evolves, it subtly reshapes the tasks

workers perform within occupations. For example, an administrative assistant today may spend

less time filing papers and more time managing digital calendars or analyzing data. These task

shifts tend to favor abilities and skills that are more concentrated among college-educated workers,

such as problem-solving and reasoning. To measure this process, the study introduces a new way

of tracking changes in the nature of work within detailed occupations by leveraging time-varying

data on ability requirements from the Occupational Information Network (O*NET). Consistent

with task-based theories and historical evidence, this new approach shows that jobs in the twenty-

first century have become more cognitive-intensive.

Turning to local labor markets, the second part of this study shows that the uneven spread of

innovation across regions—measured by the diffusion of patents through industries—drives the

local differences in how work evolves. Urban areas, where new technologies and skilled workers

are more concentrated, see a greater shift toward cognitive tasks within occupations. In numbers,

every 10 percent increase in population density amplifies the positive effect of innovation on the

growing importance of cognitive tasks by 8.3 percentage points. As a result, they attract more

college-educated workers and widen the wage gap between college and non-college workers—even

when those workers hold the same job title. This reveals an important channel through which

technological change manifests unevenly across space, contributing to rising wage inequality.

The most alarming finding of this study is that the rise in wage inequality is mainly driven

by falling wages among the least educated workers—namely, high school graduates and dropouts.

While these workers are also increasingly squeezed into low-paying service occupations, deeper

investigations show that around 80 percent of their wage losses in regions more exposed to tech-

nological change can be explained by declining wages within detailed occupations. The study

applies advanced shift–share methodologies to ensure that these patterns are not simply driven

by other regional differences in labor market characteristics—such as initial education levels,

demographic composition, or pre-existing trends in population or wage growth. Although the

sensitivity analysis identifies an important role for earlier population growth trends across local

labor markets, the main findings remain robust and highly significant.

Overall, the study highlights the importance of considering fine-grained changes in the task

content of occupations when analyzing how wage growth and inequality diverge across regions.

Occupations are the natural units through which workers are reassigned to tasks, adjusting skill

prices and reshaping the wage structure across groups. The local developments uncovered in this

study—developments that disadvantage low-skilled workers most—provide critical information

for policymakers. Reskilling initiatives that target low-skilled workers, especially in densely pop-

ulated areas, could help mitigate the negative, skill-biased wage effects induced by the cognitive-

biased nature of technological change within occupations.



1 Introduction

The college wage premium has not risen uniformly across space in the twenty-first century. In-

stead, relative skill prices have increased disproportionately in more populous regions. This pat-

tern is illustrated in Figure 1, which shows a differential increase of approximately four percentage

points in the college wage premium between regions with the lowest and highest population den-

sity in the United States. As the more rapid growth in wage inequality in dense cities alone

accounts for one-quarter of the recent rise in national wage inequality (Baum-Snow and Pavan

2013), understanding the underlying forces shaping local labor markets is crucial for designing

effective policies, improving job–worker matching, and reskilling displaced workers.
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Figure 1: College Wage Premium Evolution for U.S. Regions with Different Population Densities

Notes: 1,078 consistent Public Use Microdata Areas (PUMAs) from IPUMS ACS data (Ruggles et al. 2023) are
ranked by population density in 2005–07 and divided into three groups: bottom 20%, middle 60%, and top 20%.
For each group, full-time, year-round workers (working more than 35 hours per week and more than 40 weeks per
year) are pooled. Log college wage premiums are calculated for each year from 2006 to 2018 using a 3-year moving
average. In Panel A, the college premium is defined as the average wage of college graduates (4-year bachelor’s
degree) relative to that of high school graduates and dropouts (excluding those with some college experience). In
Panel B, the non-college group includes all workers without a 4-year bachelor’s degree. ACS individual weights are
multiplied by annual working hours to construct the weighted wage premium series.

There is broad consensus that technological change is a key driver of recent divergences in

local employment and wage trends (e.g., Autor and Dorn 2013; Moretti 2013; Baum-Snow et al.

2018; Autor 2019). However, how it manifests across local labor markets remains relatively un-

derexplored. While traditional studies often proxy technological change using parametric time

trends (e.g., Tinbergen 1974; Katz and Murphy 1992), more recent empirical work usually focuses

on the adoption of specific technologies (e.g., computers, robots, AI) or relies on static occupa-

tion descriptors from sources such as the Dictionary of Occupational Titles (DOT) or O*NET.
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Although occupations are dynamic and serve as the natural units through which technological

change reorganizes labor across tasks—affecting skill demand and relative wages—the within-

occupation channel remains largely overlooked, particularly in the spatial economics literature.

This paper addresses this gap by constructing a novel measure of within-occupation cognitive-

biased technological change (WOCBTC, henceforth), linked to U.S. patent data and localized

microdata. The analysis shows that stronger diffusion of innovation increases the local input of

cognitive-intensive tasks predominantly in densely populated regions where labor is abundant. In

turn, greater exposure to WOCBTC increases the employment of college-educated workers while

depressing the wages of less-educated workers. As a result, local wage inequality between skill

groups widens.

The theoretical task-based model of Acemoglu and Restrepo (2018; 2019) posits that changes

in the task input mix depend on two factors: first, the automation of tasks; and second, the

emergence of new tasks, which tend to be more cognitive-intensive compared to existing tasks.

In the first part of this paper, I build on this intuition to conceptualize a novel approach to

measuring within-occupation technological change. A key challenge for this approach is the

consistent measurement of task changes (see, e.g., Autor 2013), which is essential to gauge the

net impact of task automation and task creation. To overcome this hurdle, I rely on the revised

ability rating procedure of the Occupational Information Network (O*NET), which dynamically

evaluates occupations’ ability requirements (e.g., mathematical reasoning or manual dexterity)

by comparing their task content over time. To make systematic use of the high-dimensional

ability data, I derive five broader task intensity dimensions using factor analysis. Combined with

spatial differences in occupational composition, the computed task intensity changes are used to

construct a measure of cognitive-biased technological change across local labor markets.

The second part of this paper investigates whether and how cognitive-biased task demand

shifts within occupations relate to the localized diffusion of innovation. Answering this question

is essential to ensure that the WOCBTC measure truly reflects occupations’ adaptation to new

technologies. To measure innovation across regions, I combine data on patent grants from the

U.S. Patent and Trademark Office (USPTO) with a patent-to-industry crosswalk developed by

Goldschlag et al. (2020). Exploiting differences in industrial specialization, I show that the dif-

fusion of patents strongly predicts local labor markets’ occupational task evolution. I confirm

this relationship by using breakthrough patents from Kelly et al. (2021) to instrument the con-

temporary diffusion of patents with the time-lagged diffusion of patents that are novel and have

a long-term impact. Importantly, the unveiled relationship between innovation and WOCBTC
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is not uniform across local labor markets but varies systematically with the initial population

density: while a 10 percent increase in patent diffusion is associated with a 2.3 percent higher

exposure to WOCBTC, each 10 percent rise in population density amplifies this relationship

by an average of 8.1 percent. This finding reveals a so-far overlooked channel through which

densely populated regions may evolve at a faster rate into cognitive-intensive hubs (see, e.g.,

Rossi-Hansberg et al. 2019).

Motivated by this new evidence, the third part of the study empirically tests whether cogni-

tive task upgrading within occupations translates into faster local employment and wage growth.

To establish causality, I use a Bartik-style shift–share design (Bartik 1991) to exploit exogenous

variation in occupational task changes within industries. Recent advances in shift–share method-

ologies and inference (Adao et al. 2019; Borusyak et al. 2022) also enable me to address the

spatial correlation of shocks across regions with similar industrial structures. Alongside comput-

ing standard errors using the industry-level inference method by Adao et al. (2019), I confirm the

robustness of the main results through various shock-balance tests and an extensive sensitivity

analysis as proposed by Borusyak et al. (2022). Despite the demonstration of notable group

heterogeneity and an important role of preceding local population trends, the overall patterns

remain robust across the different checks.

The empirical findings show that WOCBTC leads to a significant increase in overall employ-

ment, driven almost entirely by high-skilled workers: a 10 percent increase in regional exposure to

WOCBTC corresponds to a 2.8 percent rise in full-time equivalent college employment. Despite

the employment growth, the wages of college-educated workers remain relatively stable across

labor markets. This finding aligns with Topel (1986) and Beaudry et al. (2010), who argue that

workers anticipate localized changes in skill demand, leading to geographic mobility and wage

equalization. By contrast, wage adjustments are not uniform for the least educated, who are

typically also the least mobile group in the labor market (Topel 1986; Bound and Holzer 2000;

Wozniak 2010; Notowidigdo 2020). Specifically, the wages of high school graduates and dropouts

fall by a substantial 0.4 percent for every 10 percent increase in WOCBTC. Correcting the esti-

mated effects for different compositional shifts reveals that the primary mechanism driving this

pattern is that low-skilled workers in more exposed labor markets experience faster wage dete-

rioration within detailed occupations. Systematic re-sorting into low-paying occupations plays

a comparatively minor role. This economic result underpins the novel approach to measuring

technological change in this study, which exploits exclusively variation within occupations.

This study contributes to three strands of literature. First, it adds to research emphasizing
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task and wage changes within occupations (Autor et al. 2003; Spitz-Oener 2006; Antonczyk et

al. 2009; Firpo et al. 2011; Ross 2017; Hershbein and Kahn 2018; Atalay et al. 2020; Freeman

et al. 2020; Cortes et al. 2021). Consistent with this literature, I show that demand for cognitive

skills has continued to rise in the twenty-first century, challenging the popular “great reversal”

hypothesis (Beaudry et al. 2016), which focuses on the slowdown in the growth of non-routine

cognitive occupations but overlooks changes occurring within occupations. My study advances

the within-occupation literature by highlighting the local dimension of task changes and related

labor market dynamics. A closely related study is conducted by Hershbein and Kahn (2018),

who examine regional shifts in skill demand during the Great Recession using localized job va-

cancy data. My analysis differs in that it investigates the long-run impact of within-occupation

technological change and links it to persistent features of local labor markets—such as industrial

structure and population density—rather than to a single, though important, economic event.

Second, this study contributes to the literature that highlights the role of technological change

in driving spatial worker sorting and wage changes (Berry and Glaeser 2005; Beaudry et al. 2010;

Autor and Dorn 2013; Baum-Snow and Pavan 2013; Moretti 2013; Giannone 2017; Baum-Snow

et al. 2018; Autor 2019). Many of these studies show that shifts in the relative skill demand

occur more rapidly in densely populated areas, disproportionately benefiting college-educated

workers. In this context, Baum-Snow et al. (2018) show that the disproportionate increase in

high- relative to low-skilled workers accounts for nearly all of the more rapid rise in skill prices

in large cities. In another study, Autor (2019) provides descriptive evidence that the declining

relative wages of non-college workers in denser cities have recently coincided with a trend of these

workers being squeezed into low-paying occupations. While these insights are enlightening, they

leave unresolved the question of what fundamentally drives these uneven local developments.

This paper sheds new light on this issue by demonstrating the important role of task changes

within occupations.

Lastly, this paper also contributes to a small body of research on the origins and spatial distri-

bution of “new work” precipitated by technological change. Previous studies find that innovation

primarily generates new work in larger cities (Lin 2011; Berger and Frey 2016), consistent with

my finding that the impact of innovation on cognitive-biased task restructuring is more substan-

tial in densely populated areas. Compared to a more recent study by Autor et al. (2024), my

approach builds on the same theoretical framework developed by Acemoglu and Restrepo (2018;

2019), but differs in that it examines how the interplay between task automation and task cre-

ation reshapes work within narrowly defined occupations, rather than focusing on the emergence
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of new micro-titles within broader occupational categories. In line with a key finding of Autor

et al. (2024), this study shows that new cognitive-intensive work within occupations penalizes

low-skilled workers.

The remainder of this paper is organized as follows. Section 2 describes the construction of

the within-occupation technological change measure and illustrates the systematic task changes

within occupations in the twenty-first century. Section 3 investigates the relationship between

localized task shifts within occupations and the diffusion of innovation, highlighting the role

of population density. Section 4 presents the results of the main analysis, including effects on

employment growth, skill composition, and the college wage premium across local labor markets.

Section 5 concludes the study and discusses relevant implications.

2 Within-Occupation Cognitive-Biased Technological Change

It is a well-established economic fact that technological change over recent decades has increased

the cognitive task input in the economy, benefiting high-skilled workers who have a comparative

advantage in such tasks (e.g., Tinbergen 1974; Katz and Murphy 1992; Acemoglu 1998; Autor

and Katz 1999; Autor et al. 2003; Acemoglu and Autor 2011).

The novel approach adopted in this study is to construct a measure that effectively isolates

cognitive-biased task changes within detailed occupations. To do so, one would ideally compare

all task changes directly. However, this presents a major challenge, as representative data sources

typically do not collect consistent information on job tasks (Autor 2013). Rather than relying

on static occupation-level measures—which are only indirectly related to potential technology

exposure and overlook the fact that most task changes occur within rather than between occupa-

tions (Atalay et al. 2020; Freeman et al. 2020)—this study adopts a different strategy by drawing

on the revised O*NET ability rating procedure (Fleisher and Tsacoumis 2012). Specifically, a

newly implemented feature enables O*NET job analysts to incorporate fine-grained changes in

over 19,000 tasks between consecutive rating cycles to evaluate occupations’ ability requirements.

As a result, the measured changes in ability requirements accurately reflect the evolving task

composition of occupations—a fundamental improvement over the original rating procedure, in

which analysts assessed information only at a single point in time. Further details on the revised

rating procedure are provided in Section B.3 of the Appendix.
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2.1 O*NET Occupation Data

The O*NET ability domain comprises 52 abilities (see Appendix Section B.2) that are updated

in rating cycles. To identify long-distance changes in occupations’ ability requirements, I use

data from O*NET versions 16.0 (July 2011) and 25.0 (August 2020). Because only a portion of

occupations is updated in each cycle, I follow Freeman et al. (2020) and center each database

around the average year of the latest updates. As a result, the two datasets reflect occupations’

ability requirements in 2008 and 2017, respectively.

Before linking the O*NET ability data with pooled microdata from the American Commu-

nity Survey, obtained via IPUMS (Ruggles et al. 2023), I undertake two additional steps. First, I

construct a post-2000 balanced panel of 430 occupations in the ACS. This step is essential to iso-

late task changes within consistently defined occupations. Although balanced occupation panels

are available (e.g., Meyer and Osborne 2005; Dorn 2009), they are based on 1990 classifications.

While these are preferable for analyses beginning in the twentieth century, my updated panel

more accurately reflects the contemporary labor market, as it is based on the 2010 Standard

Occupational Classification (SOC). In the second step, I match the finer O*NET occupations to

the panel using an employment-weighted crosswalk. After assigning the ability scores to the oc-

cupation panel, nearly all occupations have undergone at least one update between the two focal

years, while most occupations have been updated multiple times. Following Autor et al. (2003),

I treat the 15 out of 430 occupations with no updates as having unchanged ability requirements.1

2.2 Factor Analysis

This section extracts broader task dimensions from the multidimensional ability data. There are

two approaches to achieving this goal: (i) constructing composite task measures using a subset of

preselected abilities in principal component analysis (PCA), and (ii) evaluating the variation in all

abilities simultaneously using factor analysis (FA).2 The first approach assumes that only a subset

of abilities is relevant for explaining a particular task dimension. This requires prior knowledge of

how abilities are assigned to tasks in the labor market, which is a limitation given the complexity

of some ability measures. For example, memorization or time-sharing abilities may be crucial

for a wide array of different tasks. Factor analysis offers a data-driven approach to uncover the

underlying structure of abilities without presupposing which abilities map to which tasks. This

1Appendix Sections B.1 and F document the panel construction and the crosswalk implemented in the ACS.
The matching process for O*NET occupations to the occupation panel is described in Section B.4 of the Appendix.

2The first approach is used by Autor et al. (2003), Yamaguchi (2012), Caines et al. (2017), Guvenen et al.
(2020), and Aghion et al. (2023). The second approach is used, for example, by Ingram and Neumann (2006),
Poletaev and Robinson (2008), and Robinson (2018).
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is particularly useful in the context of complex ability measures, where prior assumptions about

their mapping to task categories may not hold. Therefore, this paper draws on the more flexible

second approach.

Let x = (x1, x2, . . . , xp)
′ be a p-dimensional vector of observed ability measures. Factor

analysis assumes that each observed ability is a linear function of a smaller number of unobserved

common factors (task dimensions) plus an ability-specific error term. Formally, the model is

specified as:

x = µ+Λf + ϵ (1)

where µ is a p×1 vector of means, Λ is a p×k matrix of factor loadings, f is a k×1 vector of latent

common factors, and ϵ is a p×1 vector of unique factors (errors)—the components of each ability

that are not explained by the common factors. These errors are assumed to be uncorrelated

with f and across observed abilities. To ensure that the factor scores accurately represent the

occupational structure of the U.S. workforce, I weight occupations using employment shares from

the 2008 ACS. Then, I assign both 2008 and 2017 ability scores to each individual in the sample

while keeping the occupational distribution constant. This yields occupation-year-specific factor

scores relative to the 2008 employment-weighted mean, enabling the computation of interpretable

changes in factor scores within occupations, net of shifts in occupation shares.3

Table 1 summarizes the factor analysis output. By construction, the five derived factors are

orthogonal, representing different task dimensions.4 The factor with the highest explanatory

power (27%) reflects the cognitive intensity of occupations, with problem-solving and reasoning

abilities as the highest factor loadings. The second factor (26%) relates to physical abilities such

as body strength and flexibility. The third factor (25%) is associated with sensory-perceptual

abilities that are critical for coordination-intensive tasks. The two remaining factors account for

7% and 6% of the variation. These two factors appear to capture the manual and communication

intensity of occupations, respectively. The task dimensions represented by the five factors are

broadly in line with Ingram and Neumann (2006) and Robinson (2018). To confirm the plau-

sibility of the self-selected factor definitions, I additionally check each factor’s highest-ranked

occupations. For example, physicists, architects, and engineers score highest in cognitive inten-

3Alternative factor analysis strategies have been explored, all yielding economically uninterpretable results.
For example, conducting two separate factor analyses for 2008 and 2017 produces different factor loadings across
years, making within-occupation comparisons infeasible.

4Orthogonality is achieved using the principal factor method with varimax factor rotation (Fabrigar et al. 1999;
Costello and Osborne 2005). The five factors, which are selected based on the Kaiser rule that their eigenvalue is
greater than one (Kaiser 1960), explain 90% of the total variation in the 52-dimensional ability data.
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sity, while dancers, fitness workers, and construction workers rank highest in physical intensity.

The highest-ranked occupations further indicate that the fifth factor is associated with routine

communication tasks, such as making announcements via telephone or other electronic equip-

ment and providing standardized explanations. It is important to note that this differs from the

non-routine interpersonal task dimension conceptualized by Autor et al. (2003), which requires a

high level of social skill (see, e.g., Deming 2017).

A picture of how the five task intensities (cognitive, manual, communication, physical, and

coordination) are distributed across the employed U.S. workforce can be gathered from Figure 2.

In addition to plotting the employment-weighted intensity distributions of 2008 and 2017, the

figure also highlights a counterfactual distribution, representing the within-occupation margin.

The aggregate task intensity decompositions are computed following Atalay et al. (2020):

TIi,2017 = TIi,2008 +

K∑
k=1

θk,2008 × (T̃ Ii,k,2017 − T̃ Ii,k,2008) +

K∑
k=1

(θk,2017 − θk,2008)× T̃ Ii,k,2017 (2)

where T̃ Ik,2008 and T̃ Ik,2017 denote the year-specific task intensities of occupation k, while θk,2008

and θk,2017 are the corresponding supply-adjusted employment shares. Based on equation 2, the

weighted average intensity i in 2017 equals the average intensity in 2008 (addend 1 ), adjusted

by within-occupation intensity changes (addend 2 ) and shifts in occupations’ relative shares

of total working hours between 2008 and 2017 (addend 3 ). It is evident from Figure 2 that the

distributions of the intensive margin (addend 1 + addend 2 ) closely mirror the 2017 task intensity

distributions, implying that the observed shifts are primarily driven by within-occupation changes.

Panel A of Figure 2 shows a notable increase in cognitive intensity of 0.07 standard devi-

ation units between 2008 and 2017.5 The most pronounced shifts are observed in manual and

communication intensities, each declining by 0.27 standard deviation units. In addition, the co-

ordination intensity decreases by 0.08 standard deviation units, primarily visible in the upper

tail. This suggests an intensity decline among occupations where coordination-intensive tasks are

most relevant. Perhaps the most unexpected result is the rightward shift in physical intensity

by 0.08 standard deviation units in Panel D, suggesting that physically demanding tasks have

become more central in the labor market. While surprising at first glance, this observation aligns

with Ingram and Neumann (2006), who document rising returns to physical tasks in the U.S.

5To aid interpretation, the measured changes in standardized task intensities (factors) can be evaluated, for
example, relative to their 75/25 employment-weighted percentile values in 2008: cognitive [−0.84:0.82]; physical
[−0.93:0.77]; manual [−0.56:0.84]; communication [−0.59:0.86]; coordination [−0.62:0.57].
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Table 1: Highest Ability Factor Loadings and Highest Ranked Occupations by Factor

Highest Factor Loadings Factor Scores

O*NET Ability Loading Highest Ranked Occupations in 2008 2008 2017

Factor 1: Cognitive Intensity

Deductive Reasoning 0.880 1. Astronomers and physicists 2.76 2.74

Problem Sensitivity 0.877 2. Architects (except naval) 2.65 2.46

Inductive Reasoning 0.859 3. Environmental engineers 2.26 1.57

Speed of Closure 0.845 4. Physical scientists, n.e.c. 2.02 2.06

Flexibility of Closure 0.840 5. Marine engineers and naval architects 2.00 1.96

Factor 2: Physical Intensity

Stamina 0.898 1. Dancers and choreographers 4.30 4.39

Gross Body Coordination 0.880 2. Recreation and fitness workers 2.30 2.67

Trunk Strength 0.842 3. Structural iron and steel workers 2.22 2.30

Dynamic Strength 0.836 4. Masons and reinforcing ironworkers 2.16 2.06

Extent Flexibility 0.834 5. Massage therapists 2.09 2.19

Factor 3: Coordination Intensity

Night Vision 0.942 1. Aircraft pilots and flight engineers 4.88 4.83

Peripheral Vision 0.939 2. Taxi drivers and chauffeurs 4.22 3.82

Glare Sensitivity 0.908 3. Bus drivers 4.17 3.89

Spatial Orientation 0.905 4. Ship and boat captains and operators 3.80 3.74

Sound Localisation 0.893 5. Motor vehicle operators, n.e.c. 3.70 3.37

Factor 4: Manual Intensity

Finger Dexterity 0.686 1. Data entry keyers 4.28 2.60

Wrist-Finger Speed 0.547 2. Dentists 3.76 3.61

Perceptual Speed 0.513 3. Optometrists 3.17 2.87

Arm-Hand Steadiness 0.470 4. Medical and dental laboratory technicians 3.12 2.80

Control Precision 0.467 5. Aircraft pilots and flight engineers 2.91 2.72

Factor 5: Communication Intensity

Speech Recognition 0.616 1. Announcers 3.32 3.12

Speech Clarity 0.591 2. Telephone operators 2.96 2.96

Time Sharing 0.587 3. Communication equipment operators, n.e.c. 2.78 3.01

Oral Expression 0.527 4. Switchboard operators 2.75 3.02

Oral Comprehension 0.510 5. Bailiffs, correctional officers and jailers 2.45 2.26

Notes: 52 standardized O*NET ability scores are assigned to 430 consistently defined occupations. Factor anal-
ysis is conducted on the employed population sample from the 2008 ACS. To hold the occupational distribution
constant, each individual is duplicated and assigned both 2008 and 2017 ability scores. Principal factor extraction
with varimax rotation is used to derive orthogonal factors; all factors with an eigenvalue greater than one are re-
tained. The Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy is 0.96. Factors are standardized such that
factor scores represent standard deviations from the 2008 employment-weighted mean.
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Figure 2: Task Intensity Distributions of the U.S. Workforce: 2008, Intensive Margin and 2017

Notes: The five kernel density distributions represent occupation-year-specific task intensity scores smoothed over
the employed U.S. workforce in 2008 and 2017. The within-occupation margin holds the occupational employment
distribution constant at 2008 and uses occupations’ task intensities from 2017. For a representative illustration
of the density distributions, ACS individual weights are multiplied by individuals’ annual working hours. The
bandwidth used for plotting the distributions is 0.3.
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2.3 Occupation-Level Measure

Based on Acemoglu and Restrepo (2018; 2019), the aggregate task composition evolves over time

due to two forces driven by technological progress: first, the replacement of tasks through au-

tomation; and second, the emergence of new tasks. Autor et al. (2024) shows that the aggregate

model can naturally be extended to a multi-sector setting, where sectors correspond to occupa-

tions that differ in their task intensities. Building on this framework, I make use of an additional

conjecture that is consistent with both the model and recent historical evidence: technological

change expands the pool of cognitive-intensive tasks while narrowing the pool of other tasks. Put

differently, technological change within occupations is cognitive-biased.

To put more structure on the observed task intensity changes within occupations, I define

occupations as bundles of tasks (Acemoglu and Autor 2011). To measure the cognitive bias

in task changes, it is sufficient to represent each occupation using two task bundles: cognitive-

intensive and non-cognitive-intensive tasks. While the cognitive task intensity can be directly

drawn from the factor analysis, the assumption of factor orthogonality allows me to classify

the remaining four task intensities (manual, communication, physical, and coordination) as non-

cognitive. Accordingly, the cognitive bias in task intensity changes for occupation k between 2008

and 2017 can be defined as follows:

∆WOCBk = (flCTIk,2017 −flCTIk,2008)︸ ︷︷ ︸
Direct Effect

−
N∑

n=1

(·�NCTIk,2017 −·�NCTIk,2008)×
1

N︸ ︷︷ ︸
Replacement Effect

(3)

where ∆WOCBk is the change in within-occupation cognitive bias, which can be decomposed

into a direct effect and a replacement effect.6 The direct effect is occupation k′s change in

cognitive task intensity (∆flCTIk). The replacement effect is k′s average change in non-cognitive

task intensities (∆·�NCTIk) with N = 4. By construction, the bias is zero if both effects move in

the same direction and with the same magnitude. However, if the increase in cognitive intensity

is larger than the increase in non-cognitive intensity, or if the non-cognitive intensity decreases,

task changes within occupation k are positively cognitive-biased.

Figure 3 summarizes the direct, replacement, and total effects by aggregating detailed occupa-

tions at the intermediate SOC level. The direct cognitive effect is most pronounced in construction

and extraction occupations, while the replacement of non-cognitive-intensive tasks is strongest in

transportation and material-moving occupations. Notably, the total change is positive across all

6Note that equivalent measures capturing the bias of any other task dimension could be constructed by rear-
ranging the five factors.
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Figure 3: Cognitive and Non-Cognitive Task Intensity Changes Within Occupations

Notes: 430 detailed occupations are aggregated to the SOC intermediate occupation level using 2008 supply-
adjusted employment shares as weights. An occupation’s cognitive bias is calculated as the direct effect minus
the replacement effect, as defined in equation 3. The average change in within-occupation cognitive bias across
occupation groups is expressed in standard deviation units relative to the 2008 employment-weighted mean.

occupation groups except for office and sales occupations.7 The declining relative importance of

cognitive-intensive tasks in office and sales occupations may seem surprising at first, as it runs

counter to the general direction of technological change. Moreover, it is not in line with the

observation by Hershbein and Kahn (2018) that the demand for skill rose most noticeably in

routine cognitive occupations after the Great Recession. However, as the authors note, their data

reflect employers’ stated skill requirements in job advertisements rather than realized changes in

skill demand. Crucially, post-crisis shifts in stated skill requirements may have resulted from an

oversupplied labor market, allowing employers to be pickier.

Complementing the summarized changes across occupational groups, Table B.1 in the Ap-

pendix documents the largest shifts among all 430 occupations. Two key takeaways emerge from

Figure 3 and Table B.1. First, the cognitive-biased task intensity changes within occupations

7Note that the net effect of cognitive relative to non-cognitive task shifts also depends on how the measure is
constructed. Based on equation 3, I assign equal weight to occupations’ cognitive intensity change (direct effect) and
the average change of the four non-cognitive intensities (replacement effect). I also experimented with alternative
weighting schemes, including assigning equal weights to all task intensities. These adjustments do not alter the
general patterns presented in Figure 3.
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exhibit substantial variation, which can be exploited to construct a measure at the local level.

Second, although there are apparent differences between broader occupational groups, the direc-

tion of change is not driven by one specific group alone. In fact, most of the variation arises from

differences between detailed occupations within the same higher-level occupation categories.

2.4 Local Labor Markets’ Exposure to WOCBTC

To define local labor markets, I draw on the widely used concept of commuting zones (CZs, here-

after), introduced by Tolbert and Sizer (1996). This concept provides a meaningful representation

of local labor markets, as workers are highly likely to both live and work within the same CZ.8

The 741 CZs used in this study span the entirety of the United States, including Alaska and

Hawaii, while excluding Puerto Rico and other island areas with insufficient population counts.

Local labor markets are specialized in different industries, which in turn shapes the demand

for workers across occupations (see, e.g., Autor and Dorn 2013). I exploit the spatial variation in

occupational composition, combined with the computed within-occupation changes in cognitive

task bias, to construct the following measure:

WOCBTCl,t =

K∑
k=1

Φl,k,t

î
(flCTIk,t+1 −flCTIk,t)− (·�NCTIk,t+1 −·�NCTIk,t)

ó
(4)

where the local exposure to WOCBTCl,t depends on the shares of total working hours Φl,k,t for

occupations k = 1, ...,K within CZ l, and the occupation-specific changes in cognitive task bias

measured between t and t + 1. As defined in the previous section, these changes are composed

of the change in cognitive task intensity and the average change in non-cognitive task intensities

between 2008 and 2017. Since the occupation shares of total working hours within each CZ

are held constant at their initial levels, the constructed measure captures CZ l’s exposure to

cognitive-biased technological change coming solely from expected within-occupation task shifts.

Although the local exposure measure is grounded in systematic data transformations and

theory-consistent assumptions, alternative specifications may also be plausible. Therefore, I test

the robustness of the main results in Section 4 using various modifications of the WOCBTC

measure. The robustness checks are documented in Section D.1 of the Appendix. They include

estimating the direct and replacement effects separately, assigning equal weights to all task inten-

sities, and using ability classifications directly from O*NET instead of deriving task intensities

with the help of factor analysis. Overall, the effects remain robust to these modifications.

8The procedure used to map ACS microdata to commuting zones (CZs) follows Dorn (2009) and is described
in Section A.2 of the Appendix.
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Figure 4: Local Labor Markets’ Exposure to WOCBTC

Notes: The map displays 741 CZs based on the classification of Tolbert and Sizer (1996), covering the entire United
States. Alaska and Hawaii are shown separately in the bottom left due to their geographic distance. The CZ-level
WOCBTC measure is constructed as in equation 4. CZs are grouped into seven equally sized bins; darker shades
indicate greater WOCBTC exposure. WOCBTC exposure is the average within-occupation change in standard
deviation units relative to the 2008 employment-weighted mean.

Figure 4 visualizes the variation in exposure to cognitive-biased task shifts across the 741

CZs in the U.S., with darker colors indicating higher exposure to WOCBTC.9 CZ-level exposure

ranges from 0.091 in a rural area of Alaska to 0.194 in a metropolitan area of California. The local

exposure scores are positive across all CZs, reflecting the overall shift toward cognitive-intensive

tasks in the U.S. economy. The map also reveals regional clustering, with CZs in the western

and eastern parts of the country exhibiting notably higher exposure. To account for this in the

main analysis, I focus on between-CZ, within-state variation. In addition, I apply state-of-the-art

shift–share inference methods that allow for potential error term correlation between regions with

similar industrial structures (Adao et al. 2019; Borusyak et al. 2022), as explained in Section 4.1.

3 Innovation, WOCBTC and the Role of Population Density

The WOCBTC measure constructed in the previous section rests on the inherent assumption

that cognitive-biased task intensity changes reflect the adaptation to new technologies. As this

is a plausible but strong assumption, this section empirically tests whether the cognitive-biased

task shifts are truly spurred by technological progress. To do so, I first construct a local measure

of patent diffusion, following Lin (2011). Using the local diffusion of patents allows me to explore

9For comparison, Figure E.1 in the Appendix presents two separate maps showing CZs’ exposure to changes
in within-occupation cognitive intensity (direct effect) and non-cognitive intensity (replacement effect).
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a potential link between innovation and task intensity changes, as patents often relate directly

to complementing or automating work processes within occupations. In addition, this section

examines the role of population density in shaping the adaptation to new technologies.

3.1 The Diffusion of Innovation into Local Labor Markets

The patent data are sourced from the United States Patent and Trademark Office (USPTO)

and are described in detail in Appendix Section A.3. To link patents to CZs, I first construct

an industry-level measure of patent diffusion, drawing on the observation that patents do not

uniformly affect all industries (Goldschlag et al. 2020; Autor et al. 2024). For example, a patent

related to the invention of a new excavation machine would most likely fall under the CPC

subclass “soil working in agriculture or forestry.” While the adoption of such a machine may

impact industries reliant on soil work, it is unlikely to affect other industries.

To systematically assign patents to industries, I use the CPC-to-industry crosswalk provided

by Goldschlag et al. (2020).10 By combining fine-grained patent classifications with six-digit

industry codes, the crosswalk yields a linkage matrix containing probabilities between zero and

one, indicating the likelihood that patents within a given CPC subclass influence industry j.11

This is denoted by the matrix A. Next, I aggregate patents granted between 2005 and 2019

by CPC subclass, denoted by the one-column matrix B. The CPC-level patent counts are then

multiplied by the J × CPC linkage matrix A to construct a weighted measure of industry-level

patent diffusion. Finally, I exploit differences in industrial composition across CZs to derive a

local-level measure of patent diffusion, defined as:

Innl,t =

J∑
j=1

Ωl,j,t [AJ,CPC ⊗BCPC,1] (5)

where Ωl,j,t denote industry employment shares, which are multiplied by the weighted industry-

level patent diffusion and aggregated over all industries in CZ l.

Goldschlag et al. (2020) show that industries’ exposure to innovation is highly persistent,

suggesting that the local diffusion through industries over time is endogenous. To address this

and gain a clearer view of local labor markets’ exposure to long-term innovation, I construct

a second measure using only “breakthrough innovations,” as classified by Kelly et al. (2021).12

10CPC refers to the Cooperative Patent Classification. This crosswalk updates the earlier IPC-to-industry
mapping by Lybbert and Zolas (2014), using probabilistic linkages derived from text mining of patent abstracts
and industry classification descriptions.

11Since Goldschlag et al. (2020) use the NAICS industry classification system, I map the resulting patent diffusion
probabilities to the broader but compatible IND1990 classification used in the IPUMS Census and ACS data.

12Kelly et al. (2021) classify U.S. patents by decade as breakthrough or non-breakthrough based on their novelty
and long-run impact on future patents, using natural language processing tools.
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Specifically, I use the top 10% of lagged breakthrough patents granted in the 1980s and 1990s,

combined with lagged local industry compositions from the 2000 Census. While the diffusion of

innovation appears more concentrated in the East and on the West Coast, it is worth noting that

these regions are simultaneously the most populated in the U.S. This relationship, along with the

link between innovation and WOCBTC, is analyzed in the next section.13

3.2 Empirical Results

Figure 5 illustrates the raw relationships between innovation diffusion, population density, and

WOCBTC.14 CZs are sorted into percentiles for each measure and weighted by their population

shares relative to the total U.S. population in 2005–07. Panels A and B reveal a strong positive

relationship between innovation diffusion and cognitive-biased task shifts within occupations.

As expected, this relationship remains robust whether innovation is measured using all patents

granted between 2005 and 2019 or the top 10% of lagged breakthrough patents, reflecting the

persistence of innovation over time. Panel C shows a strong positive correlation between CZs’

population density and WOCBTC exposure, while the relationship between population density

and the diffusion of innovation in Panel D is somewhat weaker but still clearly positive. Although

purely descriptive, the figure suggests that population agglomeration may play a crucial role in

the local adoption of new technologies within occupations. To better disentangle the effect of

CZs’ initial population density from that of innovation, I estimate models of the form:

WOCBTCl,s,t = αt + β1 Innl,s,t + β2 Denl,s,t0 + γ Xl,s,t0 + δs + el,s,t (6)

where the dependent variable is the normalized WOCBTCl,s,t exposure in CZ l in state s. Innl,s,t

is the log innovation diffusion based on patents granted between 2005 and 2019, and Denl,s,t0 is l’s

log population density in 2005–07. The control vector Xl,s,t0 captures CZs’ initial college worker

share, the share of offshorable occupations, manufacturing share, routine task intensity, and

employment shares of the five major occupation groups.15 In addition, the model includes a vector

of state dummies, δs, to account for state-dependent institutional factors such as unionization,

13Figures E.2 and E.3 in the Appendix visualize the diffusion of patents across industries, as well as the geo-
graphical contemporary and long-term patent diffusion across CZs.

14See Section A.2 of the Appendix for details on how the CZ-level population density is calculated. For the
construction of the worker sample using ACS data, see Appendix Section A.1.

15The selection of the covariates is based on the literature on routine-biased technological change and trade
competition in the U.S. (see, e.g., Autor and Dorn 2013; Autor et al. 2013; Autor et al. 2015), as well as task
offshorability (see, e.g., Blinder et al. 2009; Grossman and Rossi-Hansberg 2008; Firpo et al. 2011). Including
these labor market controls mitigates bias by reducing variation in the error term correlated with WOCBTC and
the explanatory variables of interest. For brevity, the control variable coefficients are omitted from the presented
tables.
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Figure 5: Relationships between Patent Diffusion, Exposure to WOCBTC and
Population Density across Local Labor Markets

Notes: The figure presents relationships across 741 CZs. Panel A plots WOCBTC exposure against the log
diffusion of patents (2005–2019). Panel B plots WOCBTC exposure against the lagged log diffusion of the top
10% breakthrough patents (1981–2000) from Kelly et al. (2021). Panel C displays the relationship between log
population density and WOCBTC exposure, while Panel D plots log population density against the log diffusion
of patents. WOCBTC is constructed as in equation 4. Local patent diffusion is measured via industry-level flows,
using the crosswalk by Goldschlag et al. (2020) and CZs’ industrial composition, following equation 5. CZs are
grouped into percentiles, weighted by their population shares in 2005–07.

minimum wages, and labor laws. Standard errors are clustered at the state level.

I begin with a baseline OLS model that includes only a constant and patent diffusion as

independent variables. For ease of interpretation, all variables are normalized to range between

zero and one. The coefficient in column (1) of Table 2 suggests that a 10% increase in log patent

diffusion is associated, on average, with a 5.29% higher exposure to WOCBTC. Notably, spatial

differences in patent diffusion account for approximately one-quarter of the total variation in

within-occupation cognitive-biased task intensity shifts across CZs, as reflected by an R2 of 0.24.

The strong predictive power reassures that the novel measure of WOCBTC is genuinely linked

to technological progress.

Including population density as an explanatory variable (column (2)) reveals that a 10%
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increase in log population density is associated with a 3.43% higher exposure to WOCBTC.

However, when the full set of controls is introduced (column (4)), this relationship becomes

both statistically and economically insignificant. This likely reflects omitted variable bias in

columns (1)–(3), stemming from the fact that metropolitan areas differ from less-dense suburban

and rural areas across several dimensions, including skill endowment and occupational structure.

Controlling for initial labor market characteristics is therefore important to capture the under-

lying relationship between local population density and WOCBTC. In contrast, the association

between innovation and WOCBTC remains positive and statistically significant—albeit slightly

attenuated—when population density and additional controls are included. Furthermore, includ-

ing control variables improves the precision of the point estimate related to innovation, reinforcing

the robustness of the observed positive relationship with WOCBTC.

The final column extends equation 6 by additionally including an interaction term between

innovation diffusion and population density (Innl,s,t×Denl,s,t0), allowing the effect of innovation

on WOCBTC to vary with the degree of agglomeration across CZs.16 The results indicate that

population agglomeration has no direct effect on WOCBTC but significantly amplifies the impact

of innovation. Taken at face value, a 10% increase in innovation diffusion is associated with a

2.46% rise in WOCBTC exposure. This effect is amplified by 6.21 times the centered value of

a CZ’s population density. For example, at the 90th percentile, where the centered population

density of a CZ is 0.22, the total effect of innovation reaches 3.83% (2.46% + 0.22 × 6.21%).

These findings complement earlier work by Beaudry et al. (2010) and Berger and Frey (2016),

who highlight the importance of relative skill concentration (i.e., the amount of high- relative to

low-skilled workers) in the adoption of computer capital. In contrast, my results underscore the

broader influence of population density (i.e., the abundance of skills) on technology adoption.

To address the previously mentioned endogeneity of patent flows, I follow Autor et al. (2024)

and instrument the contemporary patent diffusion with the diffusion of the top 10% breakthrough

patents from the two preceding decades.17 The intuition behind this strategy is that breakthrough

patents stimulate downstream innovation within the same patent class, whereas contemporary

patent flows do not trigger immediate breakthrough developments (Kelly et al. 2021; Autor et al.

16To improve interpretability, all covariates are mean-centered. This means that the coefficients on innovation
and population density represent average partial associations (i.e., when the interacting variable is at its mean).
As noted by Wooldridge (2016), mean-centering also helps reduce multicollinearity between interaction and main
effects without affecting the interaction term itself. To maintain consistency with this terminology, the description
of the OLS results in this paragraph intentionally uses “effect language,” which here refers to associational effects
rather than causal effects.

17Autor et al. (2024) implement this identification strategy at the broad occupation and industry level. I extend
their approach to the local labor market level. The 2SLS results reported in this section remain highly robust when
varying the breakthrough threshold (e.g., 5% or 20%) and/or the time lags.
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Table 2: The Impact of Innovation Diffusion and Population Density on WOCBTC
(Dependent Variable: Local Labor Markets’ Exposure to WOCBTC)

(1) (2) (3) (4) (5)

Panel A. OLS Estimates

Innovation 0.529*** 0.437*** 0.481*** 0.371*** 0.246***
(0.117) (0.111) (0.100) (0.073) (0.064)

Pop Density 0.343*** 0.315*** -0.061 -0.035
(0.094) (0.049) (0.074) (0.071)

Innovation×Pop Density 0.621***
(0.214)

R2 0.24 0.35 0.70 0.81 0.81

Panel B. 2SLS Estimates

Innovation 0.666*** 0.510*** 0.534*** 0.401*** 0.226**
(0.123) (0.111) (0.111) (0.099) (0.097)

Pop Density 0.326*** 0.301*** -0.058 -0.025
(0.078) (0.053) (0.070) (0.066)

Innovation×Pop Density 0.813***
(0.261)

F -stat. (Innovation) 842.48 662.27 639.97 402.03 214.76

F -stat. (Innovation×Pop Density) 431.31

Census state dummies X X
√ √ √

Labor market controls X X X
√ √

Notes: The dependent variable is CZs’ exposure to WOCBTC, based on the local occupational structure in 2005–07.
In Panel A, innovation diffusion is the log diffusion of patents through industries into CZs between 2005 and 2019,
using CZs’ industrial composition in 2005–07. In Panel B, patent diffusion is instrumented by the log diffusion of
the top 10% of breakthrough patents (1981–2000) from Kelly et al. (2021), based on CZs’ industrial structure in
2000. Other covariates include log population density, college share, exposure to offshoring, manufacturing share,
routine intensity, and the employment shares of the five major occupation groups, all measured at 2005–07 levels.
All variables are normalized to range between 0 and 1. All models include Census state dummies and a constant.
Models are weighted by the population shares of CZs in 2005–07. Robust standard errors clustered at the state
level are shown in parentheses. ***/**/* represent the 1%, 5%, and 10% significance levels.

2024). Constructed at the CZ level based on predetermined industrial structures, the resulting

spatial variation captures plausibly exogenous differences in long-term innovation exposure.

The 2SLS estimates in Panel B of Table 2 closely mirror the OLS results. This is not surpris-

ing, given the high persistence of patent flows through industries and the simultaneous stability

of local industrial composition over time—reflected by F -statistics well above 100 in the first-

stage regressions. The only notable difference is a larger interaction effect compared to the OLS

results, indicating that every 10% increase in population density amplifies the long-term impact

of innovation on cognitive-biased task intensity changes by a substantial 8.13%.

The significant interaction term in Table 2 indicates that the local adaptation to new tech-

nologies varies systematically across CZs with different population densities. To further unpack

this relationship, I divide CZs into metropolitan and non-metropolitan labor markets, classifying
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a CZ as metropolitan if at least one household resides in a Census-defined metropolitan area.18

Estimating equation 6 for metropolitan and non-metropolitan labor markets separately also helps

to isolate the effect of innovation on WOCBTC from unobserved location differences not captured

by population density. In addition, Table 3 presents the estimated effects of innovation on the five

task intensity changes individually to provide better insight into the channels through which in-

novation shapes the cognitive-biased local task evolution. All estimations follow the specification

in column (4) of Table 2, including state fixed effects and the labor market control vector.

Across all labor markets, innovation increases the relative cognitive intensity within occupa-

tions, with both the direct and replacement effects contributing substantially to this technology-

driven task evolution. With the exception of coordination intensity, all estimated effects reported

in Table 2 are highly significant and closely align with the broader task intensity trends in the

U.S. economy illustrated in Figure 2, confirming the strong link between innovation and within-

occupation task shifts. Quantitatively, a 10% increase in innovation diffusion raises the localised

cognitive intensity by 3.83%, while manual and communication intensities decline by 3.53% and

4.09%, respectively. Interestingly, even the unexpected overall increase in physical intensity iden-

tified in the previous section appears to be significantly associated with innovation (2.87%)—a

promising avenue for future research, though beyond the scope of this study.

When estimating the effect of innovation on WOCBTC separately for metropolitan and non-

metropolitan labor markets, it becomes evident that metropolitan areas drive the overall sig-

nificant and positive relationship. In areas without a metropolitan core, the effect becomes

both statistically and economically insignificant when using the lagged diffusion of breakthrough

patents for identification. Moreover, the task intensity effects differ substantially between the

OLS and 2SLS estimates, with the effect on communication intensity even reversing from neg-

ative to positive. Overall, the findings clearly suggest a weaker relationship between innovation

diffusion and WOCBTC in non-metropolitan areas.19

The key takeaway from this section is that the uneven diffusion of innovation dispropor-

tionately increases within-occupation cognitive task input in densely populated labor markets.

Intuitively, this pattern may help to explain recent local divergences in skill premiums shown in

Figure 1. To substantiate this link, it is necessary to demonstrate that WOCBTC influences both

the supply of skills and local wage setting. The next section investigates this hypothesis.

18The results are robust under alternative classifications—for example, requiring all households to live in a
metropolitan area or setting the threshold at a 50% metropolitan share.

19When interpreting the results in columns (5) and (6), it is important to consider that the occupational and
industrial composition in non-metropolitan CZs, by construction, contains greater measurement error compared to
CZs encompassing a large share of Census-defined metropolitan areas. As discussed in Appendix Section A.2, this
stems from the incongruities between ACS PUMA and CZ boundaries in less populated areas.
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Table 3: The Impact of Innovation Diffusion on WOCBTC for Different Local Labor Markets
(Dependent Variables: Expected Change in Local Labor Markets’ Cognitive Task Bias & Task Intensities)

All LLMs Metropolitan Non-Metropolitan

OLS 2SLS OLS 2SLS OLS 2SLS

A: WOCBTC 0.371*** 0.401*** 0.400*** 0.439*** 0.220* 0.028
(Total Effect) (0.073) (0.099) (0.084) (0.105) (0.130) (0.207)

R2 / F -stat. 0.81 402.03 0.84 262.96 0.51 141.96

B: ∆ Cognitive 0.370*** 0.383*** 0.423*** 0.436*** 0.313** 0.250
(Direct Effect) (0.092) (0.110) (0.108) (0.118) (0.147) (0.316)

R2 / F -stat. 0.72 402.03 0.77 262.96 0.54 141.96

C: ∆ Non-Cognitive -0.167*** -0.207*** -0.144*** -0.202** 0.041 0.319
(Replacement Effect) (0.039) (0.071) (0.052) (0.083) (0.128) (0.205)

R2 / F -stat. 0.72 402.03 0.78 262.96 0.42 141.96

D: ∆ Manual -0.225*** -0.353*** -0.235** -0.363** 0.172 0.079
(0.073) (0.135) (0.094) (0.154) (0.161) (0.280)

R2 / F -stat. 0.76 402.03 0.80 262.96 0.51 141.96

E: ∆ Communication -0.323*** -0.409*** -0.334*** -0.451*** -0.166 0.207
(0.069) (0.096) (0.085) (0.107) (0.178) (0.185)

R2 / F -stat. 0.68 402.03 0.76 262.96 0.47 141.96

F: ∆ Physical 0.208*** 0.287** 0.268*** 0.365*** 0.169 0.009
(0.073) (0.112) (0.082) (0.111) (0.146) (0.242)

R2 / F -stat. 0.70 402.03 0.76 262.96 0.55 141.96

G: ∆ Coordination 0.028 0.081 0.047 0.083 -0.016 0.341
(0.048) (0.068) (0.060) (0.081) (0.142) (0.265)

R2 / F -stat. 0.50 402.03 0.62 262.96 0.45 141.96

Census state dummies
√ √ √ √ √ √

Labor market controls
√ √ √ √ √ √

Broad occ emp. shares
√ √ √ √ √ √

Observations 741 741 378 378 363 363

Notes: CZs are classified as metropolitan if at least one household in the designated CZ resides in a Census-defined
metropolitan area, and as non-metropolitan otherwise. The dependent variables are WOCBTC exposure (Panel
A) and predicted task intensity changes (Panels B–G), based on the local occupational composition in 2005–07. In
the OLS regressions, innovation diffusion is the log diffusion of patents through industries into CZs between 2005
and 2019, using CZs’ industrial composition in 2005–07. In the 2SLS regressions, patent diffusion is instrumented
by the log diffusion of the top 10% of breakthrough patents (1981–2000) from Kelly et al. (2021), based on CZs’
industrial structure in 2000. Other covariates include log population density, college share, exposure to offshoring,
manufacturing share, routine intensity, and the employment shares of the five major occupation groups, all mea-
sured at 2005–07 levels. All variables are normalized to range between 0 and 1. All models include Census state
dummies and a constant. Models are weighted by the population shares of CZs in 2005–07. Robust standard errors
clustered at the state level are shown in parentheses. ***/**/* represent the 1%, 5%, and 10% significance levels.
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4 Labor Market Analysis

4.1 Shift–Share IV

The main challenge in identifying the long-term impact of WOCBTC on differential employment

and wage developments lies in the endogenous nature of technological change. Recall that the

WOCBTC exposure measure constructed in Section 2.4 is based on two components: first, task-

intensity changes within occupations, and second, CZs’ initial occupational composition. The

occupational structure observed in 2005–07 is likely influenced by contemporaneous economic

disturbances, introducing measurement error and potential bias in either direction. To isolate

more exogenous variation that is correlated with WOCBTC but uncorrelated with contemporary

confounders, I adopt the identification strategy used by Autor and Dorn (2013). Specifically,

I construct a Bartik-style shift–share instrument (Bartik 1991) by interacting local industrial

specialization with predetermined national occupation shares within industries:¤�WOCBTCl,t =

J∑
j=1

Ωj,l,2000 × E [WOCBTCj,−l,2000] (7)

where the employment share Ωj,l of each industry j in CZ l is calculated using the lagged in-

dustrial composition from the 5% sample of the 2000 Census.20 The second factor in equation 7

captures each industry’s expected change in cognitive task bias, constructed by multiplying na-

tional occupation shares within industries by the associated within-occupation cognitive-biased

task intensity changes derived in Section 2. Following Autor and Duggan (2003), I exclude the

state containing CZ l when computing the industry-specific WOCBTC exposure to avoid mechan-

ical correlation between the instrument and the original exposure measure. This leave-one-out

correction is denoted by the subscript −l. Aggregating the product of local industry shares and

expected WOCBTC across industries yields a predicted measure of CZ l’s exposure to WOCBTC.

The identifying assumption is that industries employing occupations with larger technology-

induced cognitive-biased task intensity changes are not differentially affected by other labor mar-

ket shocks. This follows Adao et al. (2019) and Borusyak et al. (2022), who propose a framework

that leverages exogenous variation in shocks while allowing exposure shares to be endogenous

(“shock exogeneity”). In a different approach, Goldsmith-Pinkham et al. (2020) assumes exoge-

nous exposure shares but endogenous shocks (“share exogeneity”). Although I strengthen the

identification using predetermined local industry shares, these may not be fully exogenous be-

20Workers are assigned to 224 detailed industries using the consistent industry classification IND1990 available
in IPUMS Census data.
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cause other unobserved shocks could potentially influence CZ-level outcomes through the same

mixture of persistent industries. Shock exogeneity seems more plausible, especially given the

prior section’s finding that cognitive-biased task shifts within occupations are closely linked to

breakthrough innovations from earlier decades.

To assess whether the cognitive-biased demand shocks are quasi-randomly assigned to CZs,

I conduct shock-balance tests (see, e.g., Dauth et al. 2021; Borusyak et al. 2022) by regressing

potential confounders on the shift–share instrument and a constant. The results are reported

in Table 4. For comparability, all shock-balance variables are standardized to have a mean of

zero and a standard deviation of one. Panel A presents estimates corresponding to initial local

labor market characteristics in 2005–07, which are identical to the control variables used in the

fully specified model presented in the following section. Overall, only two out of eight variables

exhibit a significant relationship with the shift–share IV. However, the significant associations

with the share of foreign-born workers and workers near retirement age suggest that these groups

may experience different labor supply dynamics. In numbers, a 10% higher predicted exposure to

WOCBTC is associated with a 0.55 standard deviation higher share of foreign-born workers and

a 0.22 standard deviation lower share of individuals aged over 55. Besides controlling for these

characteristics in the model, I further examine their role by splitting the sample by age, gender,

and country of birth in a robustness check in Appendix Section D.2. Despite noticeable hetero-

geneity—particularly across age groups—the overall employment and wage patterns presented in

the following sections remain clear and consistent.

Panel B of Table 4 assesses the role of various pre-trends, capturing changes from 1990 to 2000

in skill intensification (college share), worker agglomeration (working-age population), exposure

to trade shocks (manufacturing share), and worker productivity (average wages). An obvious

threat to the identifying assumption is that a faster preceding increase in relative skill supply in

some regions may have induced technological progress to become more skill-complementary (Ace-

moglu 1998). If such a supply-driven technology effect were sufficiently strong, it could influence

the long-run relative wage evolution of differently skilled workers. However, the economically and

statistically insignificant coefficient for the change in the share of college-educated workers pro-

vides no empirical evidence for this concern. Put differently, historical variation in relative skill

supply across CZs does not predict their subsequent exposure to cognitive-biased task intensity

changes. Likewise, the shift–share IV shows no significant relationship with lagged changes in

local manufacturing employment or average wages, although these estimates are somewhat larger

than those for lagged relative skill supply changes.
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Table 4: Shock-Balance Tests at the Commuting Zone Level
(Dependent Variables: Standardised CZ Characteristics)

Regional Balance Variable Estimate SE

Panel A. Initial labor market characteristics in 2005–07

% of college-educated 2.353 [2.775]

% of employment among women -0.309 [0.741]

% of foreign-born 5.485 [3.208]

% of working-age population ≥ 55 -2.197 [1.040]

% of manufacturing employment -2.169 [1.466]

Occupation offshoribility 2.799 [2.594]

Routine task intensity -2.319 [1.558]

Log population density 1.391 [2.349]

Panel B. Pre-trends: 1990-2000

∆ share college-educated 0.153 [0.626]

∆ share manufacturing employment 0.786 [0.511]

∆ log working-age population 5.057 [2.199]

∆ log average wages 1.786 [1.114]

Notes: N = 741 CZs. The table reports shock-balance estimates from bivariate 2SLS re-
gressions of CZ-level characteristics on the shift–share IV. The instrumented WOCBTC
measure is normalized to range between 0 and 1. All dependent variables are standard-
ized to have zero mean and unit standard deviation. Panel A presents estimates for ini-
tial labor market characteristics. The occupation offshorability index follows Firpo et al.
(2011), and the routine task intensity measure is an updated version of the manual routine
index by Autor and Dorn (2013). Both indices are originally defined at the occupation
level. CZ-level exposure is then calculated using occupation shares from the ACS 2005–07
sample. Panel B shows estimates for pre-trends, constructed from changes in CZ-level av-
erages between 1990 and 2000 using Census 5% samples. All models include a constant
and are weighted by the population shares of CZs in 2005–07. Exposure-robust standard
errors are clustered at the broad industry level, using the approach of Adao et al. (2019).

The only pre-trend that stands out as a significant predictor of CZs’ exposure to cognitive-

biased task intensity changes in the twenty-first century is the preceding growth in the working-

age population. This pre-trend is strongly correlated with the shift–share IV at the 1% level

and economically substantial: a 10% greater predicted exposure to WOCBTC is associated with

a 0.51 standard deviation higher population growth rate between 1990 and 2000. Although

the sensitivity analysis in Appendix Section D.3 shows that accounting for agglomeration pre-

trends dampens the estimated effects of WOCBTC on relative employment and wage growth,

this finding supports the prior suggestion that agglomeration effects and technological change

positively influence each other rather than undermining the study’s overall conclusions. However,

due to the lack of historically time-varying occupation-level data, I cannot directly determine

whether uneven population growth between 1990 and 2000 caused the divergent cognitive task
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intensity developments across CZs a decade later, or whether the persistence of technological

progress independently shaped long-term spatial agglomeration. While this study assumes the

latter to uphold the identifying assumption, it also highlights the possibility that local labor

markets have been caught in a self-reinforcing cycle of cognitive-biased technological change and

population growth over recent decades.

Another key challenge in using a shift–share IV lies in statistical inference, as CZs with

similar industrial structures are prone to correlated error terms (Adao et al. 2019; Borusyak et al.

2022). This correlation risks understating conventional standard errors. Recent methodological

advances in shift–share IV inference address this issue. In particular, Adao et al. (2019) propose

computing exposure-robust standard errors by first estimating IV regressions at the industry

level (i.e., shock level) and then applying the resulting standard errors at the local level. I adopt

this approach in the following empirical analysis. Throughout the remainder of the paper, I

report both conventional state-clustered and exposure-robust industry-clustered standard errors

for comparison.21

4.2 Employment Effects

I classify workers into three skill groups based on their educational attainment. Low-skilled

workers comprise high school dropouts and high school graduates without college experience.

Middle-skilled workers have some college education but no bachelor’s degree, while high-skilled

workers hold at least a four-year bachelor’s degree.22 In this section, I begin by examining the

effects on employment growth. The estimated model, which is applied interchangeably to relative

skill supply and wage growth outcomes, takes the following form:

100 × ∆ Empl,s,t = αt + β WOCBTCl,s,t + γ Xl,s,t0 + δs + el,s,t (8)

where the dependent variable is the decennial change in log worker counts or log full-time equiva-

lent (FTE) employment23 in CZ l in state s. The key explanatory variable, WOCBTCj,s,t, mea-

sures within-occupation cognitive-biased technological change. In the 2SLS model, this measure

21The exposure-robust standard errors based on Adao et al. (2019) are conceptually similar to those in Borusyak
et al. (2022). In theory, Adao et al. (2019) standard errors are slightly more conservative, as their construction
relies on one additional assumption.

22The three-group skill classification is motivated by the well-established economic insight that technological
change in recent decades has primarily crowded out middle-skilled jobs, which have been more susceptible to
automation (e.g., Autor et al. 2003; Goos et al. 2009; Autor and Dorn 2013). Categorizing workers into three
skill groups—instead of distinguishing only between high- and low-skilled workers—allows for the identification of
potential polarization effects.

23Following Autor et al. (2024), I calculate FTE employment by summing annual working hours of individuals
in a CZ and dividing them by the product of 35 working hours and 50 weeks.
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is instrumented using the shift–share IV. The coefficient of interest is β. Census state dummies,

δs, are included to isolate variation between CZs within states. Additionally, I control for initial

local labor market characteristics, summarized by Xj,s,t0 . This set of controls corresponds to the

same variables examined in Panel A of Table 4. To account for differences in labor market size,

all models are weighted by CZs’ initial population shares in 2005–07.

Table 5 reports the OLS and 2SLS estimates, with coefficients multiplied by 100 to approxi-

mate percentage changes. Beginning with näıve OLS estimation without controls, the results in

columns (1) and (4) suggest that a 10% increase in WOCBTC exposure is associated with a 3.14%

differential rise in worker counts and a 2.79% increase in FTE employment. Noteworthy is the

high explanatory power, as WOCBTC exposure alone accounts for 36% and 30% of the cross-CZ

variation in employment growth. To reassure that the observed positive relationship is not driven

by a particular type of local labor market, Figure E.4 in the Appendix splits the CZ sample

by initial size and skill endowment, showing that neither of these characteristics systematically

biases the relationship between WOCBTC exposure and employment growth.

Notably, the point estimates drop after controlling for initial labor market characteristics

in columns (3) and (6). Simultaneously, including the full set of controls reveals substantial

heterogeneity across skill groups. The results clearly indicate that the estimated employment

gains are concentrated among higher-skilled workers with at least some college education. This

is consistent with the nature of technological progress in the twenty-first century, which increases

the importance of cognitive-intensive tasks—tasks in which higher-skilled workers tend to have a

comparative advantage. By contrast, the effect on employment growth among the least educated

is weaker and, at most, statistically significant at the 10% level.

The 2SLS estimates qualitatively mirror the OLS results but are larger in magnitude. This

upward adjustment likely reflects the correction of attenuation bias arising from contemporaneous

local labor market confounders. A similar pattern is observed in the closely related study by

Autor and Dorn (2013), which employs the same identification strategy. In the fully specified

2SLS model, a 10% higher exposure to WOCBTC leads to a 1.54% differential increase in total

FTE employment, with corresponding skill-specific growth rates of 2.81%, 1.64%, and 0.93% for

high-, middle-, and low-skilled workers, respectively. When accounting for potential correlation in

the error term across CZs with similar industrial structures, the use of exposure-robust standard

errors (shown in square brackets) renders the low-skill employment effect statistically insignificant.

By contrast, the effects on total and high-skill employment remain highly significant under the

exposure-robust inference approach of Adao et al. (2019).
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Table 5: Effect of WOCBTC on Employment Growth across Local Labor Markets
(Dependent Variable: Decennial Change in Log Worker Counts & Log FTE Employment)

∆ Raw Worker Counts ∆ FTE Employment

(1) (2) (3) (4) (5) (6)

Panel A. All Workers

OLS 31.42*** 28.39*** 10.85*** 27.90*** 26.94*** 8.88***
(3.70) (3.53) (2.99) (3.76) (3.57) (3.28)

R2 0.37 0.65 0.80 0.30 0.63 0.78

Shift–Share IV 36.77*** 28.16*** 17.84*** 33.11*** 26.53*** 15.43***
(5.13) (3.24) (3.82) (5.51) (2.76) (3.48)

[6.00] [8.46] [7.14] [5.58] [8.35] [6.92]

Panel B. High-Skill Workers (College+)

OLS 29.10*** 30.82*** 19.80*** 25.95*** 29.25*** 18.25***
(4.30) (3.55) (4.49) (4.39) (3.24) (4.78)

R2 0.23 0.51 0.58 0.19 0.48 0.53

Shift–Share IV 34.67*** 31.86*** 29.31*** 31.58*** 30.77*** 28.11***
(6.24) (4.33) (5.62) (6.25) (4.09) (5.89)

[8.07] [6.79] [9.39] [8.13] [6.20] [9.70]

Panel C. Medium-Skill Workers (Some College)

OLS 15.09*** 7.90 12.37*** 9.94 6.52 9.60**
(5.61) (4.91) (4.31) (5.99) (4.49) (3.99)

R2 0.08 0.64 0.72 0.04 0.64 0.72

Shift–Share IV 28.96*** 11.56 21.61*** 23.51*** 9.22 16.42***
(8.12) (7.25) (5.42) (8.34) (6.20) (4.89)

[16.97] [9.80] [9.01] [16.85] [9.01] [9.12]

Panel D. Low-Skill Workers (High School and Dropouts)

OLS 28.88*** 18.93*** 5.54* 25.40*** 15.70*** 3.92
(3.64) (3.79) (3.25) (3.74) (3.99) (3.39)

R2 0.26 0.62 0.74 0.20 0.62 0.72

Shift–Share IV 36.00*** 18.33*** 10.55* 33.52*** 15.25*** 9.32*
(5.17) (3.91) (5.53) (5.72) (3.78) (5.33)

[7.63] [7.18] [7.73] [8.03] [6.53] [7.23]

F -stat. 86.46 77.47 160.60 86.46 77.47 160.60

Census state dummies X
√ √

X
√ √

Labor market controls X X
√

X X
√

Notes: N = 741 CZs. The table reports OLS and 2SLS estimation results. The WOCBTC measure is normalized
to range between 0 and 1. In the 2SLS estimations, WOCBTC is instrumented using the shift–share IV defined
in equation 7. The dependent variables are the log changes in raw worker counts (Panel A) and FTE employ-
ment (Panel B) between 2005–07 and 2015–19. The three skill groups are college+ (H ), some college experience
but no bachelor’s degree (M ), and high school graduates and dropouts (L). Outcome variables are multiplied by
100/1.1 to represent decennial percentage changes. Control variables include initial labor market characteristics
(college share, foreign population share, female employment share, exposure to occupation offshorability, routine
task intensity, manufacturing share, and population density), and 50 Census state dummies. All models include a
constant and are weighted by CZs’ population shares in 2005–07. Standard errors clustered at the state level are
shown in parentheses. ***/**/* represent significance at the 1%, 5%, and 10% levels for the state-level cluster
approach. Adao et al. (2019) exposure-robust standard errors clustered at the broad industry level are shown in
square brackets.
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Table 6: Effect of WOCBTC on Changes in Relative Skill Shares across Local Labor Markets
(2SLS. Dependent Variable: Decennial Change in Log Relative FTE Skill Shares)

∆ Rel. Worker Counts ∆ Rel. FTE Employment

ln(H/M) ln(H/L) ln(M/L) ln(H/M) ln(H/L) ln(M/L)

Panel A: Aggregate Changes

7.70* 18.75** 11.05 11.69*** 18.79** 7.09
(4.66) (7.35) (7.43) (4.47) (8.07) (7.41)

[7.08] [6.85] [5.57] [6.78] [8.30] [6.87]

Panel B: Changes Within Broad Occupations

B.1 Management/Business/ 10.36 21.56*** 11.20 12.77* 16.64** 3.87
Science/Arts (6.92) (6.07) (8.70) (6.81) (6.55) (8.67)

[7.92] [10.37] [6.02] [8.09] [11.47] [8.10]

B.2 Service -7.12 3.37 10.49 -2.99 -1.12 1.86
(12.63) (12.26) (8.61) (15.53) (14.83) (9.26)

[8.06] [10.44] [10.62] [8.98] [11.07] [9.98]

B.3 Sales and Office Admin. 13.84* 16.91* 3.08 22.63** 25.57** 2.94
(7.18) (9.34) (7.10) (8.84) (9.95) (7.08)

[6.37] [4.96] [7.70] [7.04] [5.12] [8.01]

B.4 Resources/Construction/ -27.56 1.30 28.86* -36.37 -8.30 28.08
Maintenance (23.46) (15.58) (17.16) (26.43) (18.03) (17.78)

[18.13] [17.64] [11.23] [21.74] [19.76] [13.85]

B.5 Production and Transport. -0.77 16.02 16.79 6.91 17.00 10.08
(17.89) (20.45) (17.61) (16.30) (19.69) (16.09)

[15.41] [13.72] [11.20] [13.43] [16.53] [10.95]

Notes: N = 741 CZs. The table reports 2SLS estimation results. The normalized WOCBTC measure (ranging from
0 to 1) is instrumented using the shift–share IV defined in equation 7. The dependent variables are the log change
in relative raw worker counts (columns (1)–(3)) and relative FTE employment (columns (4)–(6)) between 2005–07
and 2015–19. The three skill groups are college+ (H ), some college (M ), and high school graduates and dropouts
(L). The five occupation groups in Panel B correspond to the SOC 2010 major occupation groups. Outcome vari-
ables are multiplied by 100/1.1 to represent decennial percentage changes. Control variables include initial labor
market characteristics (college share, foreign population share, female employment share, exposure to occupation
offshorability, routine task intensity, manufacturing share, and population density), and 50 Census state dummies.
All models include a constant and are weighted by CZs’ population shares in 2005–07. The first-stage F -statistic
is 160.60. Standard errors clustered at the state level are reported in parentheses. ***/**/* represent significance
at the 1%, 5%, and, 10% levels for the state-level cluster approach. Adao et al. (2019) exposure-robust standard
errors clustered at the broad industry level are shown in square brackets.

Table 6 addresses two further questions arising from the employment growth effects reported

in Table 5. First, are the differential effects strong enough to result in a systematic crowding out

of lower-skilled workers in more exposed CZs? Second, if so, in which major occupation groups

do these shifts occur? To shed light on these questions, I apply the 2SLS model to occupation-

group-specific relative log changes in worker counts and full-time equivalent (FTE) employment

as outcome variables. Panel A of Table 6 shows that a 10% increase in local WOCBTC exposure

raises the relative share of high- to low-skilled workers by 1.88%. The effect is consistent across

both raw worker counts and FTE employment. By contrast, middle-skilled workers with some
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college education experience greater displacement by high-skilled workers in FTE terms, with

a 0.77% relative decline in worker counts and an additional 0.40% (1.17% – 0.77%) drop when

accounting for relative changes in work hours.

In Panel B of Table 6, the skill composition effect is estimated for the five major occupa-

tion groups. Consistent with traditional skill-sorting models based on comparative advantage

(e.g., Roy 1951), high-skilled workers predominantly crowd out lower-skilled workers in cognitive-

intensive occupations. This includes both non-routine cognitive (management, business, sci-

ence, and arts) and routine cognitive occupations (sales and office administration). Notably,

the exposure-robust standard errors are smaller than the state-clustered standard errors for the

crowding-out effect within routine cognitive occupations.

Furthermore, the results in Panel B show that middle-skilled workers increasingly displace

low-skilled workers in resources and construction occupations, with similarly lower exposure-

robust standard errors. From an economic perspective, this rising relative share of middle- to

low-skilled workers is unsurprising, as construction and extraction occupations show the largest

increase in cognitive task intensity among all occupation groups, as demonstrated in Figure 3.

Consequently, firms in the construction sector may become more cautious when hiring workers

without college experience.

4.3 Wage Effects and Skill Premiums

This section examines the differential impact of WOCBTC on local wage growth and changes

in the skill premium. Because observed wage changes may be confounded by concurrent com-

positional shifts across CZs, I follow the literature in constructing composition-adjusted wages

(e.g., Autor et al. 1998; Beaudry et al. 2010; Autor et al. 2024). Specifically, Appendix Table D.2

shows that higher WOCBTC exposure attracts a disproportionately larger share of experienced

workers (aged 50–64). As experience typically entails a positive wage premium, ignoring this

would overstate wage increases and understate wage declines in more exposed CZs. Moreover,

the increase in high-skill employment reported in Tables 5 and 6 likely extends to finer educational

subgroups, further obscuring the impact of WOCBTC on skill-specific wage growth. The con-

struction of composition-adjusted wages is described in Section C of the Appendix. Briefly, I first

estimate Mincer wage regressions to predict skill-specific wages conditional on selected worker

characteristics (gender, six finer education groups, age, foreign-born status, and race). Second,

the predicted wages are collapsed to the CZ level. Finally, CZ-level predicted wage changes are

used to net out compositional shifts from the observed wage changes.
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Table 7: Effect of WOCBTC on Wage & Skill Premium Changes across Local Labor Markets
(Dependent Variables: Decennial Change in Log Wages & Log Skill Premiums)

∆ Wages ∆ Skill Premiums

ln(wall) ln(wh) ln(wm) ln(wl) ln(wh/wm) ln(wh/wl) ln(wm/wl)

Panel A. State fixed effects included

OLS -0.92 1.39* -2.54*** -3.88*** 3.93*** 5.27*** 1.34**
(1.11) (0.71) (0.68) (1.07) (0.38) (0.56) (0.60)

R2 0.58 0.45 0.59 0.61 0.40 0.46 0.24

Shift–Share IV -0.77 1.52 -2.43*** -3.86*** 3.95*** 5.39*** 1.43**
(1.36) (0.97) (0.89) (1.18) (0.44) (0.57) (0.59)

[0.71] [0.92] [0.98] [1.22] [1.51] [1.70] [0.58]

Panel B. All controls included

OLS -1.61** -0.34 -1.54*** -2.72*** 1.20** 2.39*** 1.18**
(0.61) (0.51) (0.56) (0.81) (0.51) (0.78) (0.58)

R2 0.67 0.56 0.66 0.66 0.47 0.54 0.27

Shift–Share IV -2.54*** -0.96 -2.60*** -4.13*** 1.64** 3.17*** 1.53**
(0.80) (0.79) (0.91) (0.93) (0.75) (0.93) (0.72)

[0.88] [0.70] [0.82] [1.27] [1.06] [1.43] [0.70]

Notes: N = 741 CZs. The table reports OLS and 2SLS estimation results. In the 2SLS specifications, the normal-
ized WOCBTC measure (ranging from 0 to 1) is instrumented using the shift–share IV defined in equation 7. The
dependent variables are the log change in average wages (columns (1)–(3)) and skill premiums (columns (4)–(6)) be-
tween 2005–07 and 2015–19. The three skill groups are college+ (H ), some college (M ), and high school graduates
and dropouts (L). Wages are adjusted for differential compositional changes across CZs by gender, six education
groups, a quadratic in age, foreign-born status, and race (White/Black/Other). Outcome variables are multiplied
by 100/1.1 to represent decennial percentage changes. Control variables include initial labor market characteristics
(college share, foreign population share, female employment share, exposure to occupation offshorability, routine
task intensity, manufacturing share, and population density), and 50 Census state dummies. All models include a
constant and are weighted by CZs’ population shares in 2005–07. The first-stage F -statistics are 77.47 (Panel A)
and 160.60 (Panel B). Standard errors clustered at the state level are reported in parentheses. ***/**/* represent
significance at the 1%, 5%, and 10% levels for the state-level cluster approach. Adao et al. (2019) exposure-robust
standard errors clustered at the broad industry level are shown in square brackets.

The estimated effects of WOCBTC on composition-adjusted log hourly wage and skill pre-

mium changes in Table 7 pertain to full-time, year-round workers (i.e., those working more than

35 hours per week and over 40 weeks per year).24 Skill premium changes are measured as de-

cennial log changes in wage ratios between skill groups. Column (1) of Table 7 indicates that

WOCBTC exposure is associated with a negative average wage effect. Including the full set of

controls lowers the point estimates further and increases their precision. Using the shift–share

IV to account for endogeneity strengthens this negative effect. Taking the 2SLS estimates at face

value, a 10% increase in WOCBTC leads to a statistically significant 0.25% local wage decline.

As with the employment results in Table 5, the wage effects vary substantially by skill group.

Low-skilled workers experience the largest differential decline (–0.41%), followed by middle-skilled

24Due to the additional sample restriction (see Section A.1 of the Appendix), only a subset of the worker sample
from the previous section is retained for the wage analysis. The results remain robust when relaxing this restriction.
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workers (–0.26%), while the impact on high-skilled workers is smaller and statistically insignificant

(–0.10%). Notably, the baseline OLS regression result in Panel A suggests an opposite trend

for high-skilled workers, with a 0.14% wage gain. However, this effect becomes statistically

insignificant when using the shift–share identification strategy.

The skill-specific wage changes in columns (2)–(4) translate directly into the differential skill

premium changes shown in columns (5)–(8). According to the fully specified 2SLS model, a

10% increase in WOCBTC exposure raises the log skill premium of college graduates relative to

high school graduates and dropouts by 0.32%. Significant relative wage shifts are also observed

between high- and middle-skilled workers (0.16%) as well as between middle- and low-skilled

workers (0.15%).

While the employment effects discussed in Section 4.2 are intuitive and align with the cognitive-

biased nature of technological change, the wage effects warrant deeper economic reflection. As

noted by Topel (1986), and subsequently by Bound and Holzer (2000) and Notowidigdo (2020),

local wages tend to be most flexible among the least mobile groups, whereas mobility increases

with educational attainment. The initially rising returns to cognitive skills in CZs more exposed

to WOCBTC likely equalized in the medium run due to proportional supply adjustments among

college-educated workers (see, e.g., Topel 1986; Beaudry et al. 2010). By contrast, the geograph-

ically inelastic supply of high school graduates and dropouts may have led to an oversupply

of low-skilled labor in CZs where the task input shifted disproportionately toward cognitive-

intensive tasks. In conjunction with the declining relative demand for low-skilled workers within

occupations, this likely exerted additional downward pressure on their wages—contributing to

the widening college wage premium.

The persistence of these local imbalances raises the question of why low-skilled workers remain

in (or relocate to) CZs that increasingly specialize in cognitive-intensive tasks and simultaneously

pay comparatively lower wages. The next section sheds light on this puzzle by comparing two

potential mechanisms through which low-skilled workers’ wages may systematically decline in

more exposed CZs.

4.4 Wage Changes within Occupations vis-à-vis Occupational Deskilling

The most intuitive mechanism for explaining the decline in low-skilled workers’ wages is that

the returns to non-cognitive skills within occupations deteriorate more rapidly in CZs that are

more exposed to WOCBTC. This, in turn, may lead to slower wage growth within occupations

for low-skilled workers, who are typically specialized in non-cognitive skills. A second potential
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mechanism may stem from supply-side adjustments across occupations. In particular, the faster

inflow of high-skilled workers into CZs that are more exposed to WOCBTC may generate con-

sumption spillovers due to rising demand for low-skilled services (Mazzolari and Ragusa 2013;

Cerina et al. 2023). In addition, it may foster so-called “extreme-skill complementarities” in pro-

duction (Eeckhout et al. 2014). A squeezing of low-skilled workers into lower-wage service and

production occupations would exert further downward pressure on their wages. Related to this

hypothesis, Autor (2019) provides evidence that such occupational deskilling among non-college

workers has been most pronounced in dense urban areas in recent decades.25 Given the strong

positive association between CZs’ exposure to WOCBTC and population density (see Section 3),

this potential mechanism requires closer examination.

To obtain initial insights into the two mechanisms, I isolate the pool of low-skilled workers

(high school graduates and dropouts without college experience) and run two sets of 2SLS re-

gressions using the shift–share identification strategy outlined in Section 4.1. In the first set of

regressions (Panel A of Table 8), the outcome variable is the log wage change for low-skilled work-

ers within the five SOC major occupation groups. These groups provide a broad occupational

classification based on their task content. The results are strikingly clear, revealing substantial

negative wage effects across all occupation groups. Moreover, the point estimates are statisti-

cally significant at the 1% level for routine manual occupations (columns (5) and (6)) and at the

5% level for non-routine cognitive occupations (column (2)). For most estimated wage effects,

standard errors are slightly larger when applying the Adao et al. (2019) inference method—which

accounts for correlated shocks across CZs with similar industrial structures. For routine cognitive

occupations (column (4)), however, exposure-robust standard errors are slightly smaller.

The second set of regressions (Panel B of Table 8) examines occupational supply responses.

Here, the outcome variable is the log change in low-skill FTE employment in occupation group

k relative to total FTE employment of low-skilled workers in a given CZ.26 The point estimate

shown in column (3) implies that every 10% increase in WOCBTC exposure raises the FTE

share of low-skilled workers employed in service occupations by 1.87%. This systematic sorting

into service occupations—the lowest-paying occupation group in the labor market—is consistent

with the consumption spillover hypothesis and also aligns with Autor (2019). In addition, there is

evidence of positive sorting of low-skilled workers into production and transportation occupations

25The term “deskilling” is adopted from Autor (2019), referring to the observation that the set of jobs in which
non-college workers perform specialized work commanding higher pay has increasingly narrowed over time.

26Note that this is conceptually different from Table 6, which reports estimates related to changes in relative
employment shares between skill groups. By contrast, the results in Table 8 refer to relative changes in occupational
employment among low-skilled workers. This provides a clearer picture of their supply adjustments, unconditional
on overall employment changes in CZs and relative employment shifts between skill groups.
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Table 8: Low-Skilled Workers’ Wage Changes within and Resorting between Occupation Groups
(2SLS. Dependent Variables: Decennial Change in Log Wages & Log Occupation Shares)

Man./Bus./ Sales and Res./Cons./ Prod. and
All Sc./Arts. Service Office Maint. Transp.

Panel A. Wage changes within occupation groups

∆ ln(wl) -4.13*** -3.97** -2.37 -1.69 -4.74*** -4.41***
(0.93) (1.71) (1.87) (1.20) (1.70) (1.20)

[1.27] [2.19] [2.41] [0.80] [1.80] [1.29]

Panel B. Changes in relative FTE supply between occupation groups

∆ ln(Lk/L) -10.16 18.74*** -4.90 -13.52 10.74
(9.71) (6.58) (6.66) (9.95) (9.18)

[6.04] [9.60] [5.46] [5.89] [3.97]

Notes: N = 741 CZs. The table reports 2SLS estimation results. The normalized WOCBTC measure (ranging
from 0 to 1) is instrumented using the shift–share IV defined in equation 7. The dependent variable in Panel A
is the composition-adjusted log change in average wages of all low-skilled workers (column (1)) and within SOC
major occupation groups (columns (2)–(6)). In Panel B, the dependent variable is the log change in low-skill FTE
employment across major occupation groups relative to total FTE employment. Wages are adjusted for differential
compositional changes across CZs (gender, detailed education, age, foreign-born status, and race). Outcome vari-
ables are multiplied by 100/1.1 to represent decennial percentage changes. Control variables include initial labor
market characteristics (college share, foreign population share, female employment share, exposure to occupation
offshorability, routine task intensity, manufacturing share, and population density), and 50 Census state dummies.
All models include a constant and are weighted by CZs’ population shares in 2005–07. The first-stage F -statistic is
160.60. Standard errors are clustered at the state level and shown in parentheses. ***/**/* represent significance
at the 1%, 5%, and 10% levels for the state-level cluster approach. Adao et al. (2019) exposure-robust standard
errors clustered at the broad industry level are shown in square brackets.

in more exposed CZs. The estimated positive effect of 1.07% is statistically significant under the

exposure-robust inference strategy proposed by Adao et al. (2019). The low-skill labor supply

in all other occupation groups declines. Although these declines are economically notable, they

are statistically insignificant—likely due, at least in part, to the comparatively small sample sizes

when further disaggregating localized skill-specific employment changes by occupation group.

While Table 8 suggests that both mechanisms may contribute to the decline in low-skilled

workers’ wages, it remains silent on their relative importance. Ideally, one would compare wage

dynamics across CZs with and without occupational supply adjustments. However, counterfac-

tual wage evolutions in the absence of occupational re-sorting are unobserved. To address this

challenge, I extend the strategy used in the previous section and construct composition-adjusted

wages by predicting wages conditional on occupation, in addition to adjusting for demographic

shifts. Specifically, I adjust for occupational re-sorting at two levels. First, I include five dummies

to account for employment shifts across the five major occupation groups. Second, I incorporate

a richer set of dummies capturing all 430 detailed occupations. This finer occupation adjust-

ment additionally conditions on low-skilled workers’ task specialization within major occupation
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Table 9: Adjusted Effect of WOCBTC on Low-Skilled Workers’ Wages and the College Premium
(2SLS. Dependent Variables: Decennial Change in Log Wages & Log College Premium)

Adjusted for + Adjusted for + Adjusted for
demographic comp. broad occ comp. 430 occupations

unadjusted predicted adjusted predicted adjusted predicted adjusted

∆ ln(wL) -3.26*** 0.87 -4.13*** 0.49 -3.75*** -0.01 -3.25***
(0.84) (0.62) (0.93) (0.54) (0.85) (0.45) (0.75)

[0.98] [0.73] [1.27] [0.62] [1.14] [0.46] [0.98]

∆ ln(wh/wl) 2.90*** -0.26 3.17*** 0.22 2.69*** 0.14 2.76***
(0.89) (0.71) (0.93) (0.62) (0.90) (0.54) (0.76)

[1.34] [0.49] [1.43] [0.46] [1.18] [0.59] [1.05]

Notes: N = 741 CZs. The table reports 2SLS estimation results. The normalized WOCBTC measure (ranging
from 0 to 1) is instrumented using the shift–share IV defined in equation 7. The dependent variables are the un-
adjusted, predicted, and composition-adjusted changes in wages and the college wage premium. The college pre-
mium change is defined as the log change in the ratio of average hourly wages between high-skilled (college+) and
low-skilled (high school graduates and dropouts) workers. Columns (2) and (3) present wage changes adjusted for
demographic compositional shifts (gender, detailed education, age, foreign-born status, and race). Columns (4)
and (5) additionally adjust for relative changes in employment shares across the five SOC 2010 major occupation
groups. Columns (6) and (7) adjust for changes across all 430 detailed occupations. Outcome variables are mul-
tiplied by 100/1.1 to represent decennial percentage changes. Control variables include initial local labor market
characteristics (college share, foreign population share, female employment share, exposure to occupation offshora-
bility, routine task intensity, manufacturing share, and population density), and 50 Census state dummies. All
models include a constant and are weighted by CZs’ population shares in 2005–07. The first-stage F -statistic is
160.60. Standard errors are clustered at the state level and shown in parentheses. ***/**/* represent significance
at the 1%, 5%, and 10% levels for the state-level cluster approach. Adao et al. (2019) exposure-robust standard
errors clustered at the broad industry level are shown in square brackets.

groups.27 The precise procedure is documented in Appendix Section C.

Table 9 summarizes the adjusted low-skill wage and college premium effects, which are the

outcomes of the fully specified 2SLS regression model. Column (1) reports the baseline estimates

using unadjusted local average wages. The point estimates in column (3) are reproduced from

Table 7 in the previous section, adjusting only for demographic compositional shifts (gender, six

finer education categories, age, foreign-born status, and race). The wage and college premium

effects shown in columns (5) and (7) additionally adjust for occupational re-sorting at the broad

and detailed occupation levels, respectively. Alongside the unadjusted and composition-adjusted

effects, Table 9 also presents the predicted effects. These reflect the differential compositional

changes across CZs, holding wages within demographic and occupational cells constant. By

construction, the sum of the predicted and composition-adjusted effects equals the unadjusted

effect.

Compared to the point estimates shown in column (3), adjusting wages for differential re-

sorting between the five occupation groups changes the negative wage estimate from –4.13 to

27For illustration, Figure E.5 in the Appendix plots low-skilled workers’ average task intensity evolutions (cog-
nitive, manual, communication, physical, and coordination) for differently exposed CZs, holding task intensities
within occupations constant.
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–3.75. Adjusting instead for differential re-sorting across all 430 detailed occupations further at-

tenuates the estimate to –3.25. In economic terms, the occupational deskilling of low-skilled work-

ers across broad occupation groups accounts for 9.2 percent
Ä
−4.13+3.75

−4.13

ä
of the effect shown in col-

umn (3), while differential re-sorting across all 430 occupations explains 21.3 percent
Ä
−4.13+3.25

−4.13

ä
,

thus adding 12.1 percentage points of explanatory value. Although this is a noticeable proportion,

the major share of 78.7 percent must be attributed to wage declines within detailed occupations.

Similarly, the contributory role of differential occupational adjustments in explaining the

increase in the college wage premium in more exposed CZs is comparatively modest, accounting

for 15.1 percent
(
3.17−2.69

3.17

)
or 12.9 percent

(
3.17−2.76

3.17

)
, depending on the level of occupational

adjustment. These findings underscore that the primary driver of the low-skill wage decline and

the rising college premium induced by WOCBTC is within-occupation wage deterioration. They

suggest that structural changes in the returns to task-related skills within occupations play a

central role in the uneven local wage evolutions of the U.S. labor market.

5 Conclusion

In the twenty-first century, skill premiums have diverged sharply across local labor markets.

While the spatial economics literature attributes this primarily to increasing skill agglomeration

in larger cities, it pays less attention to how technological change manifests differently across

space—driving these parallel trends. Building on the theoretical task-based framework of Ace-

moglu and Restrepo (2018; 2019) and complementing the empirical work of Autor et al. (2024),

this study evaluates the role of task changes within occupations in shaping local skill demand

and wage divergence. Although occupations are the natural unit where task evolution occurs,

empirical research has largely neglected the within-occupation dimension due to measurement

challenges. This study addresses this gap by using a key feature of the revised O*NET ability

rating procedure to construct a novel measure of cognitive-biased technological change, reflecting

the direction of task intensity changes within 430 detailed occupations.

Implementing the new measure at the local level and combining it with patent data and mi-

crodata, I demonstrate that the local diffusion of innovation systematically increases the relative

importance of cognitive-intensive tasks within occupations. Leveraging the diffusion of lagged

breakthrough patents from earlier decades, I establish that this relationship can be considered

causal. An important factor in how rapidly innovation shifts the local task composition toward

cognitive-intensive tasks is the population density of local labor markets. While occupational

adaptation to new technologies is cumbersome in rural and suburban areas—where (skilled) la-
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bor is scarce—every 10 percent increase in population density amplifies the positive impact of

innovation on cognitive-biased occupational task input by 8.13 percent.

Using a Bartik-style shift–share approach to exploit exogenous variation in cognitive-biased

demand shocks, the final part of this study reveals that differential exposure to WOCBTC strongly

predicts local divergences in skill-specific employment and wage developments. While overall labor

demand increases, the employment gains from WOCBTC diminish notably at lower education

levels. At the same time, workers without a college degree experience relative wage losses, pushing

up the local college wage premium by 0.32 percent for every 10 percent increase in WOCBTC

exposure. Comparing two potential mechanisms shows that the bulk of the low-skill wage decline

can be attributed to deteriorating wages within detailed occupations, while deskilling through

systematic re-sorting to lower-paying occupations accounts for only one-fifth of the total negative

wage effect.

The findings of this paper provide empirical evidence that changes in skill demand within

occupations are crucial to understanding regional employment and wage dynamics. The extent

to which inflexible supply responses of low-skilled workers to cognitive-biased demand shifts

amplify these unequal wage effects remains an important area for further research. Given that

metropolitan areas are substantially more exposed to WOCBTC, better local amenities in larger

cities could plausibly contribute to keeping low-skilled workers stuck and generating an oversupply

that further depresses their wages. Although a full understanding of supply dynamics across skill

groups requires further study, this paper lays the groundwork for such analysis at the detailed

occupational level. Especially, focusing on real wage changes—accounting for local differences in

rent and housing prices, as highlighted in the work of Moretti (2013) and Diamond (2016)—could

provide a valuable additional perspective on the findings of this study.

Overall, the relative decline in low-skilled workers’ wages within occupations spurred by tech-

nological change is worrisome, as it places the most disadvantaged group in the labor market

at even greater risk. In addition, this trend likely contributes to the erosion of the non-college

urban wage premium over recent decades, as highlighted by Autor (2019), thereby fueling rising

inequality in large cities. Effective tools to address the decline in low-skilled workers’ wages and

the widening wage gap between skill groups could include occupational reskilling initiatives and

tailored local interventions—particularly in densely populated regions where technological change

manifests at a more rapid rate within occupations.
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Appendices

A Microdata and Patent Data

A.1 American Community Survey (ACS) Data

Addressing the research questions at hand requires the construction of localized information on

employment and wage growth by skill level. As a large sample size is crucial for this purpose,

I use 3-year and 5-year pooled ACS data from 2005–2007 and 2015–2019, drawn from IPUMS

(Ruggles et al. 2023). These periods align with the two focal years of the task intensity measures

derived from O*NET data in Section 2. The pooled samples comprise the U.S. population aged

18–64, excluding individuals residing in institutional group quarters (mental institutions and pris-

ons), those categorized as unpaid family workers, and those employed in military occupations.28

Individuals’ labor supply is measured by multiplying the number of weeks worked during the last

twelve months by their reported usual weekly hours. To construct labor supply weights, I take

the product of the ACS individual sampling weights and the labor supply units.

For the computation of wages and skill premiums, I restrict the sample to full-time, year-round

workers, excluding all self-employed and those who worked less than 35 hours a week or less than

40 weeks during the last twelve months.29 The annual pre-tax salary incomes used to construct

the wage series are top-coded based on state-specific mean salaries and adjusted to constant 2010

U.S. dollars. Hourly wages are calculated by dividing the annual income by total hours worked

(usual weekly hours multiplied by weeks worked). To mitigate outlier effects, I winsorize hourly

wages at the 1st and 99th percentiles of the year-specific national wage distribution, following

Autor and Dorn (2013).

A.2 Commuting Zones

In this study, local labor markets are defined as commuting zones (CZs) following Tolbert and

Sizer (1996). To assign microdata to CZs, I use Public Use Microdata Areas (PUMAs)—the small-

est identifiable geographic units in Census and ACS data—to probabilistically allocate workers to

CZs based on the share of workers falling within the boundaries of a given CZ. In this approach,

the same individuals are potentially assigned to multiple CZs. In such cases, their weights are

28Workers employed in military occupations are excluded due to missing O*NET data for this occupation group.
29The ACS reports the number of weeks worked in the previous calendar year in intervals. I center these intervals

at their midpoint for the calculation of hourly wages. The main reason for excluding individuals who worked less
than 40 weeks is the coarsening of reported intervals in the ACS below this threshold. Those working less than 35
hours per week are excluded to ensure the wage estimates are not confounded by systematic differences in supply
dynamics between full-time and part-time workers.
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adjusted so that the sum of their weights equals the original ACS sampling weight. This strategy

follows Dorn (2009) and has been implemented in various studies (e.g., Autor and Dorn 2013;

Autor et al. 2013).30

Although less than 20 percent of PUMAs overlap with multiple CZs, I note that most

PUMA–CZ overlaps occur in rural areas. As a result, the noise in the data falls disproportion-

ately on sparsely populated CZs. While this must be considered when interpreting the results in

Sections 3 and 4, using the concept of CZs remains advantageous, as it allows for the specification

of local labor markets based on a sound economic definition. This is crucial for analyzing their

skill-specific employment and wage evolution.

One of the key questions in this study is whether technological change manifests at a different

pace across rural, suburban, and metropolitan areas through cognitive-biased task changes. To

investigate this, I use a variable from the IPUMS ACS data that captures the population-weighted

average density of PUMAs.31 Using the described mapping of PUMAs to CZs, I compute the

logarithmic population density for each CZ under scrutiny. While CZs are roughly comparable in

geographic size due to their construction, their log population densities vary markedly, ranging

from 0.61 for a CZ in Alaska to 10.61 for a CZ in a metropolitan area of New York.

A.3 USPTO Patent Data

The United States Patent and Trademark Office (USPTO) has recorded all patent applications

and grants since 1976. To align with the start and end years of the pooled ACS data used

for the labor market analysis, I restrict the data to patents granted between 2005 and 2019 for

constructing the baseline patent diffusion measure in Section 3.1.32 To remain consistent with

the related literature (Lin 2011; Goldschlag et al. 2020; Kelly et al. 2021; Autor et al. 2024), I

focus exclusively on utility patents, which represent the largest share of all patents.

Each patent is classified according to the Cooperative Patent Classification (CPC) system into

nine sections, which are further divided into hundreds of more detailed classes and subclasses. I

30In an earlier version of this paper, I used PUMAs rather than CZs as geographical units. While the results
remain relatively robust across the two geographical designations, the estimates are notably more precise when
using CZs. This likely stems from the fact that over 50 percent of individuals’ residence PUMA does not match
their work PUMA (based on my own explorations), which creates substantial measurement error.

31Population-weighted density differs from unadjusted density by accounting for the local context within
PUMAs. For instance, in a southern Florida PUMA, most residents live in dense coastal areas, while much of
the interior consists of uninhabitable wetlands. Ignoring this leads to a substantially lower overall density estimate
for the PUMA, despite its urban areas being among the densest in the U.S.. To correct for this, the measure
weights each resident’s local density equally. This variable is directly obtained from IPUMS.

32Note that I do not include a lag between the patent data and the microdata or occupation-level data, as I rely
on the patent grant date rather than the application date. Given an expected delay of around two years between
application and grant, it is plausible to assume that innovations are at least partially implemented around the time
of the patent grant.
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exclude patents without abstracts, as these cannot be efficiently classified using the CPC struc-

ture. The USPTO further distinguishes between “inventional” and “additional” patents. I include

only inventional patents, as these are assigned to CPC classes based on disclosed information,

whereas additional patents are often added later solely for search purposes. Each patent can

potentially be assigned to over 600 CPC subclasses, depending on the invention’s general utility.

This key feature of the patent data is exploited in Section 3.1 to construct the weighted measure

of local innovation diffusion. Finally, I drop all patents that have been withdrawn for any reason,

resulting in 5.3 million patents granted between 2005 and 2019.
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B Occupations

B.1 A Contemporary Occupation Panel: occ2010fr

It is crucial to work with a balanced occupation panel in this study, which investigates the local

impact of task intensity changes within occupations over time. While a balanced panel was care-

fully constructed by Dorn (2009), the associated occupation crosswalk ends in 2005. A widely

used strategy among researchers is to extend this panel to accommodate more recent Census or

ACS microdata (e.g., Deming 2017; Cortes et al. 2021). This, however, is not an optimal solution

for this study, as the analysis begins after 2000—a period that marks an important break in the

Census-based occupation classification structure. In particular, the number of tractable occupa-

tions increased substantially to better reflect new job types in the post-millennium knowledge-

based economy. For example, more recent classifications distinguish between computer scientists,

computer programmers, software developers, database administrators, and network and computer

systems specialists, whereas earlier classifications grouped them into a single occupation category

(computer software developers).

To capture the increased occupational granularity of the 2000s, I develop a new occupation

panel, occ2010fr. This panel includes 430 occupations in total—approximately 30 percent more

occupations compared to the panel constructed by Dorn (2009). It is important to note that this

new panel is designed for use with Census and ACS data from 2000 onward and is not suitable

for backward application to earlier decades. Thus, it complements rather than replaces the Dorn

(2009) occupation panel, which remains preferable for studies relying on occupation-level data

before the year 2000. In contrast, the new occupation panel is more suitable for future labor

market research focusing on more recent developments, such as the impact of AI or industrial

robots.33

To align the occ2010fr occupation panel across subsequent classification changes in the 2000s,

I draw on various resources, such as Census and IPUMS crosswalks and conversion rates (see,

e.g., Beckhusen 2020).34 I address three types of changes: (1) the splitting of occupations into

multiple occupations; (2) the merging of multiple occupations into a broader group; and (3) the

emergence of new occupations. To deal with occupation splits, I group the finer occupations

33The balanced occupation panel constructed by Dorn (2009) is based on the 1990 Census occupation classifica-
tion and spans several decades, building on the occupation system developed by Meyer and Osborne (2005). The
new occupation panel constructed for this study is based on the SOC 2010 occupation classification.

34Census occupation conversion rates refer to the weighted distribution of workers transitioning from one occu-
pational code in an earlier classification system to occupational codes in a subsequent system. These rates are based
on dual-coded survey responses in Census or ACS microdata and can be used to harmonize occupation categories
over time.
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under a single category that retains the original broader occupation title and code. For mergers

and the emergence of new occupations, I use official Census and ACS conversion rates to align

occupations across classification revisions.

In cases where single occupations are split and mapped into two or more different occupa-

tion categories, I assign occupations based on the highest employment-weighted conversion rate,

provided it accounts for at least 80% of the original occupation’s workforce. If no single match

reaches the 80% threshold, I construct a broader occupation category to maintain a consistent

classification. Using the same rules, I apply conversion rates to assign newly emerging occupa-

tions to existing occupations or broader occupation categories. In fact, conversion rates exceed

80% in the vast majority of occupation mergers, allowing for a clear one-to-one mapping across

the evolving Census-based classification system. The applied crosswalk strategy is therefore in-

tended to minimize potential measurement error arising from ambiguous occupation classification

changes while simultaneously retaining as much occupational granularity as possible.

Beyond the three types of classification changes, special treatment is required for residual

occupations that are “not elsewhere classified (n.e.c.).” In some cases, I extend these Census-based

occupation categories by including occupations within the same 2-digit or 3-digit occupation code

when they cannot consistently be assigned to more detailed 6-digit occupations due to a structural

break. The complete ACS crosswalk is documented in Section F, while a more detailed crosswalk

version, which illustrates the applied methodology to construct the occ2010fr panel, is available

on my website.35

B.2 O*NET Abilities

O*NET Ability Ability Description

A. O*NET Cognitive Abilities

Selective Attention Concentrate on a task over a period of time without being distracted.

Time Sharing Shift back and forth between two or more activities or sources of information

(such as speech, sounds, touch, or other sources).

Category Flexibility Generate or use different sets of rules for combining or grouping things in

different ways.

Deductive Reasoning Apply general rules to specific problems to produce answers that make sense.

Fluency of Ideas Come up with a number of ideas about a topic (the number of ideas is important,

35In addition to its compatibility with IPUMS ACS data, the new occupation panel can also be used with
IPUMS Current Population Survey (CPS) data from 2003 onward. Researchers who use the occupation panel
in their work are kindly requested to cite this paper and refer to the panel by its name, occ2010fr. A detailed
crosswalk file is available at this link.

A5

https://www.dropbox.com/scl/fi/ftwxktdnbtvbkse38exx0/CW_ipums_balanced_occ_panel_occ2010fr.xlsx?rlkey=qsss98962zbwcchazggqxv2v2&st=pm22vv9z&dl=0


O*NET Ability Ability Description

not their quality, correctness, or creativity).

Inductive Reasoning Combine pieces of information to form general rules or conclusions (includes

finding a relationship among seemingly unrelated events).

Information Ordering Arrange things or actions in a certain order or pattern according to a specific

rule or set of rules (e.g. patterns of numbers, letters, words, pictures,

mathematical operations).

Originality Come up with unusual or clever ideas about a given topic or situation, or to

develop creative ways to solve a problem.

Problem Sensitivity Tell when something is wrong or is likely to go wrong. It does not involve

solving the problem, only recognizing that there is a problem.

Memorization Remember information such as words, numbers, pictures, and procedures.

Flexibility of Closure Identify or detect a known pattern (a figure, object, word, or sound) that is

hidden in other distracting material.

Perceptual Speed Quickly and accurately compare similarities and differences among sets of letters,

numbers, objects, pictures, or patterns. The things to be compared may be

presented at the same time or one after the other. This ability also includes

comparing a presented object with a remembered object.

Speed of Closure Quickly make sense of, combine, and organize information into meaningful

patterns.

Mathematical Reasoning Choose the right mathematical methods or formulas to solve a problem.

Number Facility Add, subtract, multiply, or divide quickly and correctly.

Spatial Orientation Know your location in relation to the environment or to know where other

objects are in relation to you.

Visualization Imagine how something will look after it is moved around or when its parts are

moved or rearranged.

Oral Comprehension Listen to and understand information and ideas presented through spoken words

and sentences.

Oral Expression Communicate information and ideas in speaking so others will understand.

Written Comprehension Read and understand information and ideas presented in writing.

Written Expression Communicate information and ideas in writing so others will understand.

B. O*NET Physical Abilities

Stamina Exert yourself physically over long periods of time without getting winded or out

of breath.

Dynamic Flexibility Quickly and repeatedly bend, stretch, twist, or reach out with your body, arms

and/or legs.

Extent Flexibility Bend, stretch, twist, or reach with your body, arms, and/or legs.

Gross Body Coordination Coordinate the movement of your arms, legs, and torso together when the whole

body is in motion.

Gross Body Equilibrium Keep or regain your body balance or stay upright when in an unstable position.

Dynamic Strength Exert muscle force repeatedly or continuously over time. This involves muscular

endurance and resistance to muscle fatigue.
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O*NET Ability Ability Description

Explosive Strength Use short bursts of muscle force to propel oneself (as in jumping or sprinting),

or to throw an object.

Static Strength Exert maximum muscle force to lift, push, pull, or carry objects.

Trunk Strength Use your abdominal and lower back muscles to support part of the body

repeatedly or continuously over time without ”giving out” or fatiguing.

C. O*NET Psychomotor Abilities

Control Precision Quickly and repeatedly adjust the controls of a machine or a vehicle to exact

positions.

Multilimb Coordination Coordinate two or more limbs (for example, two arms, two legs, or one leg and

one arm) while sitting, standing, or lying down. It does not involve performing

the activities while the whole body is in motion.

Rate Control Time your movements or the movement of a piece of equipment in anticipation of

changes in the speed and/or direction of a moving object or scene.

Response Orientation Choose quickly between two or more movements in response to two or more

different signals (lights, sounds, pictures). It includes the speed with which the

correct response is started with the hand, foot, or other body part.

Arm-Hand Steadiness Keep your hand and arm steady while moving your arm or while holding your

arm and hand in one position.

Finger Dexterity Make precisely coordinated movements of the fingers of one or both hands to

grasp, manipulate, or assemble very small objects.

Manual Dexterity Quickly move your hand, your hand together with your arm, or your two hands

to grasp, manipulate, or assemble objects.

Reaction Time Quickly respond (with the hand, finger, or foot) to a signal (sound, light,

picture) when it appears.

Speed of Limb Movement Quickly move the arms and legs.

Wrist-Finger Speed Make fast, simple, repeated movements of the fingers, hands, and wrists.

D. O*NET Visual Abilities

Depth Perception Judge which of several objects is closer or farther away from you, or to judge

the distance between you and an object.

Far Vision See details at a distance.

Glare Sensitivity See objects in the presence of a glare or bright lighting.

Near Vision See details at close range (within a few feet of the observer).

Night Vision See under low-light conditions.

Peripheral Vision See objects or movement of objects to one’s side when the eyes are looking ahead.

Visual Color Discrimination Match or detect differences between colors, including shades of color and

brightness.
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B.3 O*NET Ability Rating Procedure

The Occupational Information Network (O*NET) replaced the Dictionary of Occupational Titles

(DOT) in June 2003 with the release of the final analyst database (O*NET 4.0). For the creation

of the analyst database, multiple job attributes were sourced from the DOT and reorganized

according to a new content model (Hilton and Tippins 2010). Since then, new job items have

been added and existing ones updated through a “multiple-method data collection program”

(U.S. Department of Labor 2018). As a result, occupation ratings derived from job incumbents

are frequently intermingled with ratings from job analysts. In addition, the rating procedure

may change between two consecutive cycles, even for the same occupation. These measurement

inconsistencies make it challenging for researchers to use time-varying O*NET data. The revised

ability rating procedure, implemented after the eleventh rating cycle in 2011, addresses, to a

large extent, the inconsistencies described and offers useful features that researchers can exploit

for longitudinal studies.

Due to the complexity of certain ability items (e.g., inductive reasoning), ratings are made

exclusively by specialized job analysts selected for their education and occupation-specific expe-

rience. Following cycle 11, when the vast majority of occupations had been updated at least once

by job analysts, the original procedure underwent an essential revision (Fleisher and Tsacoumis

2012).36 The key improvement is that job analysts receive information on changes in the task con-

tent and other relevant characteristics of occupations since the last rating, facilitating a dynamic

and consistent re-evaluation of the 52 O*NET abilities.

Specifically, sixteen preselected and trained job analysts are provided with so-called “stimulus

material” to rate occupations’ ability requirements. This includes up-to-date information on

various occupation-specific characteristics:

• Occupation title, definition, and vocational preparation (O*NET Job Zone).

• Mean importance of tasks for the targeted occupation, whereas tasks are classified into

three categories based on survey answers of at least 15 job incumbents on their relevance

and importance:37

– Core Tasks with a relevance rating ≥ 67% and a mean importance rating ≥ 3.

36During rating cycles 1–11, occupations were only partly rated by job analysts while some occupations were
still equipped with outdated legacy data from the DOT. As discussed above, this hampers the comparison of ability
data across occupations in earlier O*NET versions.

37The importance scale of task measures and other occupation characteristics is equivalent to the importance
scale of abilities, ranging between 1 and 5. The relevance ratings range between 0% and 100%.
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– Supplementary Tasks with a relevance rating > 67% but mean importance rating < 3,

or, tasks rated on relevance between 10% and 66% regardless of the mean importance

rating.

– Non-Relevant Tasks rated on relevance < 10%.

• Mean importance of Generalized Work Activities (GWAs) that (1) have a mean importance

for the occupation ≥ 3.0, and (2) require the targeted ability to be performed.

• Mean rating of Work Context (WC) statements that (1) have a mean rating for the targeted

occupation ≥ 3.0, and (2) require the targeted ability to work in that context.

• Mean importance of the 10 most important Knowledge domains associated with the occu-

pation with a mean importance rating of ≥ 3.0.

In addition to up-to-date job information, if a task or another important job characteristic no

longer meets the relevance threshold (e.g., due to automation), it is shown with a strikethrough

in the stimulus material. Conversely, if a task has increased in importance or relevance since

the previous rating, or if a new task has emerged, it is highlighted in bold and marked with an

asterisk. For example, a task of electrical engineers might be presented as follows:

Operate computer-assisted engineering or design software or equipment to perform engineering

tasks.

Operate computer-assisted engineering or design software or equipment to perform

engineering tasks.*

Only after considering all current information and relevant job changes do the selected analysts

submit their final ability rating on a scale from 1 (not important) to 5 (extremely important).38

The process of the multi-step ability importance rating, along with the principles it is based on

to ensure consistent evaluation, is described in more detail by Fleisher and Tsacoumis (2012).

B.4 Assigning Abilities to the Occupation Panel

In the next step, I map occupations’ ability importance ratings from the 16.0 and 25.0 O*NET

databases onto the occ2010fr occupation panel. As the main objective of the data preparation

38In addition to the importance ratings, abilities are also rated along a level scale. The importance rating
appears more suitable for comparisons between occupations than the level rating, as the latter often relies on
arbitrary examples from specific occupations rather than uniform anchors. However, level and importance ratings
are highly correlated, with an average correlation of 0.92 (Handel 2016). Therefore, the results in this study are
not sensitive to whether the level or importance rating is used to compute occupations’ ability scores.
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steps is to isolate changes within consistently defined occupations, I restrict the O*NET occu-

pation sample to occupations available in both databases. This yields 862 O*NET occupations

that can be mapped to my panel of 430 occupations.

Although the 8-digit O*NET occupation codes are more granular than the 6-digit codes in

the ACS, both classification systems are nested within the Standard Occupational Classification

(SOC), which can be used as an intermediate layer for assigning the ability data to my balanced

occupation panel. When two or more O*NET occupations are mapped to a single occupation in

the occ2010fr panel, I compute the weighted average of the ability scores of the finer O*NET oc-

cupations using employment count data from the Occupational Employment and Wage Statistics

(OES).39 If employment data are not available at a sufficiently detailed level, I use the unweighted

average of the assigned O*NET occupations.

To equip residual occupation categories with data, I impute their ability scores using the

(weighted) average of O*NET occupations of the same 2-digit occupation category. Importantly,

whenever employment shares are used as weights to construct the 2008 and 2017 occupation-

specific ability scores, I hold employment shares constant between the two years. This is crucial

to avoid conflating changes in ability requirements within occ2010fr occupations with changes

driven by relative shifts in employment shares between more detailed O*NET occupations.40

39The Occupational Employment and Wage Statistics (OES) program of the Bureau of Labor Statistics (BLS)
conducts a survey every six months to produce estimates of employment and wages for detailed occupations based
on the SOC system.

40To achieve this goal, I use 2008 employment shares to construct ability scores for both 2008 and 2017. In
cases where 2008 employment data are unavailable, I use 2017 employment shares instead. If employment data are
missing for both years, I compute ability scores as the unweighted average of the assigned O*NET occupations.
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B.5 Occupations’ Largest Cognitive Task Bias Changes

Table B.1: Occupations with the Largest Increase and Decrease in Within-Occupation
Cognitive Bias, Direct Effect and Replacement Effect between 2008 and 2017

Largest Increases Largest Decreases

Occupation Change Occupation Change

A. Total Cognitive Bias

Construction laborers 1.579 Library assistants, clerical -0.825

Graders and sorters, agricultural products 1.156 Office machine operators, exc. computer -0.700

Maids and housekeeping cleaners 1.139 Ushers/lobby attendants/ticket takers -0.668

Cabinetmakers and bench carpenters 1.020 Industrial and refractory machinery mechanics -0.644

Embalmers and funeral attendants 0.904 Lodging managers -0.633

Public relations and fundraising managers 0.867 Personal appearance workers, nec -0.583

Computer and information systems managers 0.866 Medical and health services managers -0.567

B. Direct Effect

Graders and sorters, agricultural products 1.356 Parking attendants -0.955

Maids and housekeeping cleaners 1.272 Office machine operators, exc. computer -0.854

Construction laborers 1.219 Automotive glass installers and repairers -0.728

Embalmers and funeral attendants 1.151 Environmental engineers -0.694

Photographic process workers 0.831 Industrial/refractory machinery mechanics -0.676

Massage therapists 0.707 Lodging managers -0.656

Optometrists 0.653 Financial examiners -0.619

C. Replacement Effect

Technical writers 0.459 Public relations and fundraising managers -0.672

Atmospheric and space scientists 0.426 Cabinetmakers and bench carpenters -0.656

Security and fire alarm systems installers 0.412 Computer and information systems managers -0.617

Door-to-door sales, news and street vendors 0.397 Environmental engineers -0.610

Advertising sales agents 0.377 Coin/vending/amusement machine repairers -0.572

Proofreaders and copy markers 0.368 Marketing and sales managers -0.556

Administrative services managers 0.306 Data entry keyers -0.550

Notes: The total change in occupation-specific cognitive bias is calculated as the direct effect minus the replace-
ment effect (see equation 3 in Section 2.3). All task intensity changes used to calculate the total cognitive bias
change, the direct effect, and the replacement effect are measured in standard deviation units relative to the 2008
employment-weighted mean. For 15 out of the 430 occupations in the occupation panel, no change in total cogni-
tive bias is expected, as the O*NET ability data for these occupations were not updated between the two O*NET
versions (16.0 and 25.0) used for the calculations.
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C Composition-Adjusted Wages

As shown in Section 4.2, within-occupation technological change directly affects the skill com-

position of local labor markets. If the only compositional shifts occurring differentially across

CZs were between broader skill groups (low-, middle-, and high-skill), no further adjustments

would be required to precisely estimate the local (relative) wage effects. However, the impact of

technological change on workers’ geographic mobility and employment growth likely also differs

across finer demographic subgroups within each skill group. This may confound the estimated

(relative) wage effects, which should ideally reflect changes in skill prices.

To adjust for uneven local compositional shifts, I first estimate cross-sectional skill-specific

log hourly wage regressions for the start period (2005–07) and the end period (2015–19), using

supply-weighted ACS microdata (see Section A.1). These Mincer wage regressions take the form:

wigt = αigt + β1gt Xigt + eigt (9)

where wigt is the log hourly wage of worker i of skill group g at time t. Worker characteristics

are summarized by Xigt, including a polynomial in age; six education dummies to split each of

the three skill groups into two finer education levels ((1.1) high school dropouts, (1.2) high school

graduates, (2.1) college experience without degree, (2.2) college experience with associate degree,

(3.1) four-year bachelor’s degree, and (3.2) master’s degree or doctorate; a dummy for gender; a

foreign-born dummy; and three race dummies (White/Black/Other)). The predicted wages from

these regressions hold skill prices within each demographic cell constant.

Next, I let the observed and predicted wages collapse to the commuting zone (CZ) level to

compute local mean wages for each broad skill group. Composition-adjusted wages are then

constructed by taking the log difference between the observed and predicted mean wages.41

To unpack the role of occupational re-sorting in Section 4.4, which might cloud the effect on

differential skill-specific wage growth, I repeat the same procedure but extend the Mincer wage

regressions by including occupation dummies:

wigt = αigt + β1gt Xigt + β2gt Occigt + eigt (10)

In the first extension, I include dummies for the five SOC major occupation groups. Second, I

include the full set of 430 occupation dummies to control for differential occupational re-sorting

41This approach is used, for example, by Autor et al. (2024) to construct composition-adjusted wage bills.
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across CZs at the most detailed level. Following the same procedure as before, I collapse the pre-

dicted and observed wages to the CZ level to compute mean wages adjusted for both demographic

and occupational shifts.

Using the log difference between CZs’ composition-adjusted wages in 2005–07 and 2015–19

as the outcome variable yields differential percentage wage growth effects that correspond to the

relative changes in within-occupation skill prices shown in Table 9 in Section 4.4.
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D Sensitivity Analysis

The following sensitivity analysis addresses three potential threats to the robustness of the re-

sults presented in Sections 4.2 and 4.3: (1) the construction of the WOCBTC measure; (2) the

possibility that the results are driven by a specific subgroup of the working-age population; and

(3) the omission of relevant economic factors and pre-trends in the regression model. While Ta-

bles D.1–D.5 provide valuable additional insights, the overall pattern—that WOCBTC increases

the (relative) employment of high-skilled workers and decreases the (relative) wages of low-skilled

workers—remains robust.

The OLS estimates in Table D.1 show that both the direct effect (column (2)) and the replace-

ment effect (column (3)) yield qualitatively similar results when used independently to estimate

differential local employment and wage outcomes. However, the direct effect appears more pro-

nounced for wages, whereas the replacement effect has a more substantial impact on employment.

Moreover, assigning equal weights to all task intensities (column (4)) does not alter the direction

or magnitude of the estimated effects, nor does the use of alternative weighting strategies (e.g.,

using factor shares as weights), which are not reported here.

The method used to derive task intensities from the multidimensional ability data appears to

be more decisive. The measure used in column (5)—constructed by taking the difference between

the average of all cognitive abilities and the average of all other abilities based on predetermined

O*NET categorizations—suggests a much weaker effect on overall employment compared to the

baseline measure in column (1). In addition, the wage effect is more pronounced among workers

with some college experience, while the overall negative wage effect remains fairly robust. These

quantitative differences, combined with the lower precision of the point estimates, underscore

the value of using systematic tools, such as factor analysis, rather than manually selecting and

combining O*NET job characteristics.

Motivated by the results of the shock balance tests in Section 4.1, I further disaggregate CZs

by age, gender, and country of birth to check the robustness of the employment and wage effects

across subgroups. While the overall patterns shown in Tables D.2–D.3 are consistent across

all subgroups, the most noticeable quantitative differences appear in the employment growth

effects between workers of different age cohorts. Specifically, the employment-increasing effects

are substantially larger for more experienced workers, including those in the lowest skill tier (high

school graduates and dropouts). A 10% increase in WOCBTC leads to a 1.76% decline in FTE

employment among the least-skilled younger workers (18–34), while it increases FTE employment

by 2.41% and 3.50% for prime-age workers (35–49) and the most experienced workers (50–64)
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within the same education group, respectively. These results support the intuition that cognitive

skills are partially accumulated throughout the life cycle and are not fully captured by workers’

educational level, which is used as the skill proxy in this study.

Tables D.4–D.5 present the main estimates from the fully specified model, sequentially adding

omitted but potentially economically important control variables. In column (2), I control for

CZs’ initial employment shares across the five SOC major occupation groups. This robustness

check is warranted based on Figure 3 in Section 2.3, which shows differences in cognitive task

bias changes between higher-level occupation categories. However, confirming the assumption

that the localized demand shocks are driven by technology-induced cognitive-biased task changes

within detailed occupations, controlling for employment shares of broader occupations leaves the

results virtually unchanged.

Another concern relates to the timing of the study, which overlaps with the impact of the

financial crisis. Although most disruptive effects of the crisis likely dissipated over the course of

a decade, it is possible that local labor markets more severely affected by the crisis experienced

systematically different wage and employment trajectories in the aftermath. This intuition is

supported by a related study conducted by Hershbein and Kahn (2018). However, controlling for

local differences in crisis-related unemployment shocks (measured between 2005–07 and 2009–11)

in Column (3) does not alter the main results.

The only omitted control that noticeably dampens the estimated employment and wage effects

is the preceding local population growth between 1990 and 2000 (column (6)). As indicated in

Table 4 in Section 4.1, omitting population growth pre-trends likely generates slightly upward-

biased employment estimates and downward-biased wage estimates, inflating the overall impact

of WOCBTC. Nonetheless, the results remain statistically significant and economically strong

across all alternative model specifications explored in this section, including those controlling for

preceding working-age population growth.
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D.1 Alternative Measure Constructions

Table D.1: Different WOCBTC Measures and the Effect on Employment and Wage Growth
(OLS. Dependent Variables: Decennial Change in Log FTE Employment & Log Wages)

Direct Replacement Equal TI O*NET Ability

WOCBTC Effect Effect Weights Categorization

Panel A. Effect on FTE Employment

ln(Lfte
all ) 8.88*** 4.34 11.92*** 13.91*** 1.60

(3.28) (2.95) (3.26) (3.77) (4.94)

ln(Lfte
h ) 18.25*** 10.62** 20.29*** 25.56*** 4.86

(4.78) (4.37) (5.20) (5.62) (5.80)

ln(Lfte
m ) 9.60** 7.65** 5.60 9.82* -1.16

(3.99) (2.97) (4.40) (5.26) (4.21)

ln(Lfte
l ) 3.92 -0.14 10.28** 9.73** 0.36

(3.39) (2.68) (4.25) (4.76) (6.86)

Panel B. Effect on Wages

ln(wall) -1.61*** -1.49*** -0.44 -1.29 -1.79**
(0.61) (0.51) (0.71) (0.84) (0.87)

ln(wh) -0.34 -0.57 0.53 0.17 -1.14
(0.51) (0.42) (0.67) (0.73) (0.75)

ln(wm) -1.54*** -1.20** -0.98* -1.63** -2.73***
(0.56) (0.51) (0.54) (0.65) (0.87)

ln(wl) -2.72*** -2.11*** -1.74* -2.89*** -1.60
(0.81) (0.77) (0.94) (1.06) (1.05)

Census state dummies
√ √ √ √ √

Labour market controls
√ √ √ √ √

Notes: N = 741 CZs. The table reports OLS estimation results. The original WOCBTC measure and all al-
ternative task-based measures are normalized (ranging from 0 to 1). The replacement effect measure is reversed
from negative to positive for better comparison. The dependent variables are the log changes in FTE employ-
ment and wages between 2005–07 and 2015–19. Outcome variables are multiplied by 100/1.1 to represent de-
cennial percentage changes. Column (1) replicates the fully specified model using the baseline WOCBTC mea-
sure. Column (2) reports the direct effect based on the predicted change in cognitive task intensity, while col-
umn (3) shows the replacement effect based on the predicted change in non-cognitive task intensity. Column
(4) uses an alternative weighting approach that gives equal weight to all five task categories (WOCBTCequal =
∆Cognitive−∆Manual−∆Physical−∆Communication−∆Coordination). The measure in column (5) is con-
structed as the difference between the average of all cognitive and the average of all non-cognitive ability scores
using predetermined O*NET classifications. Control variables include initial local labor market characteristics
(college share, foreign population share, female employment share, exposure to occupation offshorability, routine
task intensity, manufacturing share, and population density), and 50 Census state dummies. All models include a
constant and are weighted by CZs’ population shares in 2005–07. Standard errors are clustered at the state level
and shown in parentheses. ***/**/* represent the 1%, 5%, and 10% significance levels.
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D.2 Group Heterogeneity

Table D.2: Heterogeneity in the Effect of WOCBTC on Employment Growth
(Dependent Variable: Decennial Change in Log FTE Employment)

Different Age Groups Gender-Specific Country of Birth

All 18-34 35-49 50-64 Men Women U.S. Foreign

Panel A. OLS Estimation

ln(Lfte
all ) 8.88*** -0.18 8.19** 21.28*** 7.19** 11.75*** 6.76 12.33*

(3.28) (4.39) (3.89) (4.09) (3.42) (3.57) (4.40) (6.37)

ln(Lfte
h ) 18.25*** 13.25** 14.41** 27.41*** 16.88*** 20.88*** 15.26*** 15.52

(4.78) (5.71) (4.55) (4.73) (5.55) (4.46) (5.63) (10.85)

ln(Lfte
m ) 9.60** 12.55** 4.39 11.76** 8.74** 10.42** 5.13 35.03***

(3.99) (5.34) (4.82) (4.86) (4.12) (4.74) (4.14) (12.74)

ln(Lfte
l ) 3.92 -13.66** 11.93** 23.51*** 0.65 8.92** 5.73 -6.13

(3.39) (6.57) (4.97) (3.97) (3.39) (4.41) (4.68) (9.62)

Panel B. SSIV Estimation

ln(Lfte
all ) 15.43*** -1.53 15.72*** 35.86*** 15.22*** 16.76*** 10.66* 11.88

(3.48) (4.12) (6.02) (5.38) (3.59) (3.96) (6.07) (9.08)

[6.92] [11.40] [11.37] [9.09] [7.55] [7.22] [6.81] [14.97]

ln(Lfte
h ) 28.11*** 17.86* 22.06** 45.33*** 26.66*** 31.09*** 21.78*** 23.63*

(5.89) (10.00) (10.52) (8.59) (6.21) (6.63) (8.28) (12.43)

[9.70] [11.58] [16.31] [13.71] [10.31] [9.63] [11.28] [23.94]

ln(Lfte
m ) 16.42*** 12.36 11.78* 28.34*** 19.33*** 13.49** 10.57* 22.46

(4.89) (7.50) (6.12) (8.05) (6.54) (5.26) (6.13) (14.43)

[9.12] [13.94] [10.48] [8.36] [11.18] [7.98] [7.86] [20.26]

ln(Lfte
l ) 9.32* -17.60* 24.08*** 34.49*** 5.30 15.46** 7.59 -11.31

(5.33) (9.02) (8.46) (5.28) (5.05) (6.69) (5.22) (14.06)

[7.23] [12.52] [12.95] [9.78] [7.77] [8.27] [6.22] [12.93]

Notes: N = 741 CZs. The table reports OLS and 2SLS estimation results. The WOCBTC measure is normalized (ranging
from 0 to 1). In the 2SLS specifications, WOCBTC is instrumented using the shift-share IV defined in equation 7 in Sec-
tion 4.1. The dependent variables are the group-specific log changes in FTE employment between 2005–07 and 2015–19. Out-
come variables are multiplied by 100/1.1 to represent decennial percentage changes. Column (1) replicates the fully specified
model for the entire labor force. Columns (2)–(4) report estimates for three age groups (18–34, 35–49, and 50–64). Columns
(5) and (6) show results separately for male and female workers, while columns (7) and (8) report estimates for U.S.-born and
foreign-born workers. Control variables include initial labor market characteristics (college share, foreign population share,
female employment share, exposure to occupation offshorability, routine task intensity, manufacturing share, and population
density), and 50 Census state dummies. All models include a constant and are weighted by CZs’ population shares in 2005–07.
Standard errors clustered at the state level are shown in parentheses. ***/**/* represent the 1%, 5%, and 10% significance
levels. Adao et al. (2019) exposure-robust standard errors clustered at the broad industry level are shown in square brackets.
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Table D.3: Heterogeneity in the Effect of WOCBTC on Wage Growth
(Dependent Variable: Decennial Change in Log Wages)

Different Age Groups Gender-Specific Country of Birth

All 18-34 35-49 50-64 Men Women U.S. Foreign

Panel A. OLS Estimation

ln(wall) -1.61** -2.12*** -1.82** -0.65 -1.92** -1.18** -1.48*** -0.64
(0.61) (0.68) (0.72) (0.65) (0.83) (0.57) (0.49) (1.32)

ln(wh) -0.34 -0.56 -0.18 -0.32 -0.70 0.27 -0.13 -2.34
(0.51) (0.97) (0.63) (0.91) (0.69) (0.79) (0.47) (1.56)

ln(wm) -1.54*** -3.08*** -1.48** 0.36 -1.29* -1.83*** -1.57*** 1.68
(0.56) (1.00) (0.65) (0.57) (0.68) (0.65) (0.58) (2.26)

ln(wl) -2.72*** -2.76*** -3.41** -2.21** -3.03*** -2.29*** -2.48*** -0.41
(0.81) (1.04) (1.33) (1.05) (0.96) (0.81) (0.62) (2.43)

Panel B. SSIV Estimation

ln(wall) -2.54*** -2.76*** -2.92*** -1.61* -2.72*** -2.22*** -2.21*** -2.79
(0.80) (1.04) (0.89) (0.98) (0.93) (0.83) (0.74) (1.94)

[0.88] [1.47] [1.02] [0.87] [1.00] [0.83] [0.80] [1.16]

ln(wh) -0.96 -0.49 -1.42 -1.08 -0.85 -0.81 -0.79 -0.08
(0.79) (1.48) (1.07) (1.24) (0.91) (1.06) (0.79) (2.76)

[0.70] [1.40] [1.32] [1.32] [0.94] [0.62] [0.67] [3.08]

ln(wm) -2.60*** -4.51*** -2.37* -0.32 -2.43** -2.63** -2.25** -5.94*
(0.91) (1.29) (1.22) (1.16) (1.08) (1.06) (0.98) (3.21)

[0.82] [1.82] [0.96] [0.62] [1.02] [0.89] [0.87] [2.06]

ln(wl) -4.13*** -3.41*** -4.64*** -4.31*** -4.37*** -3.99*** -3.49*** -5.15*
(0.93) (0.99) (1.33) (1.21) (1.06) (1.10) (0.80) (2.97)

[1.27] [1.90] [1.63] [1.09] [1.41] [1.27] [0.98] [2.60]

Notes: N = 741 CZs. The table reports OLS and 2SLS estimation results. The WOCBTC measure is normalized (ranging
from 0 to 1). In the 2SLS specifications, WOCBTC is instrumented using the shift-share IV defined in equation 7 in Sec-
tion 4.1. The dependent variables are the group-specific log changes in wages between 2005–07 and 2015–19. Outcome vari-
ables are multiplied by 100/1.1 to represent decennial percentage changes. Column (1) replicates the fully specified model
for the entire labor force. Columns (2)–(4) report estimates for three age groups (18–34, 35–49, and 50–64). Columns (5)
and (6) show results separately for male and female workers, while columns (7) and (8) report estimates for U.S.-born and
foreign-born workers. Control variables include initial labor market characteristics (college share, foreign population share,
female employment share, exposure to occupation offshorability, routine task intensity, manufacturing share, and popula-
tion density), and 50 Census state dummies. All models include a constant and are weighted by CZs’ population shares in
2005–07. Standard errors clustered at the state level are shown in parentheses. ***/**/* represent the 1%, 5%, and 10%
significance levels. Adao et al. (2019) exposure-robust standard errors clustered at the broad industry level are shown in
square brackets.
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D.3 Different Model Specifications

Table D.4: Sensitivity Analysis for the Effect of WOCBTC on Employment Growth
(Dependent Variable: Decennial Change in Log FTE Employment)

(1) (2) (3) (4) (5) (6) (7)

Panel A. OLS Estimation

ln(Lfte
all ) 8.88*** 6.01 8.88*** 8.62*** 9.19*** 5.28 7.84**

(3.28) (3.93) (3.22) (3.20) (3.13) (3.19) (3.27)

ln(Lfte
h ) 18.25*** 15.24*** 17.93*** 17.67*** 18.34*** 14.31*** 16.90***

(4.78) (5.71) (4.55) (4.73) (4.60) (4.52) (4.90)

ln(Lfte
m ) 9.60** 7.50** 9.00** 9.27** 9.97** 8.20** 8.75**

(3.99) (3.49) (3.92) (3.86) (3.96) (3.83) (3.88)

ln(Lfte
l ) 3.92 1.32 4.17 3.95 4.27 0.01 3.88

(3.39) (3.59) (3.54) (3.41) (3.40) (3.48) (3.41)

Panel B. SSIV Estimation

ln(Lfte
all ) 15.43*** 13.62*** 15.81*** 14.95*** 15.05*** 8.00** 13.97***

(3.48) (5.28) (3.52) (3.58) (3.53) (3.92) (3.89)

[6.92] [8.83] [7.26] [6.39] [6.63] [7.13] [6.39]

ln(Lfte
h ) 28.11*** 27.73*** 27.95*** 27.02*** 27.94*** 21.05*** 26.19***

(5.89) (7.67) (5.54) (6.24) (5.87) (6.36) (6.55)

[9.70] [11.82] [10.41] [8.35] [9.42] [8.99] [9.89]

ln(Lfte
m ) 16.42*** 15.10*** 15.44*** 15.79*** 15.97*** 13.03** 15.17***

(4.89) (4.63) (5.04) (4.96) (5.08) (5.32) 5.11)

[9.12] [10.22] [9.50] [8.62] [8.82] [9.05] [9.41]

ln(Lfte
l ) 9.32* 7.53 10.23* 9.40* 8.89* 1.88 9.43*

(5.33) (5.86) (5.86) (5.34) (4.99) (6.23) (5.34)

[7.23] [8.72] [7.06] [7.36] [6.86] [8.92] [6.57]

Census state dummies
√ √ √ √ √ √ √

Labour market controls
√ √ √ √ √ √ √

Broad occupation shares
√

GFC unemployment shock
√

∆ Skill intensity (1990-2000)
√

∆ Manufact share (1990-2000)
√

∆ Population (1990-2000)
√

∆ Wages (1990-2000)
√

Notes: N = 741 CZs. The table reports OLS and 2SLS estimation results. The WOCBTC measure is normalized (rang-
ing from 0 to 1). In the 2SLS specifications, WOCBTC is instrumented using the shift-share IV defined in equation 7 in
Section 4.1. The dependent variables are the skill-specific log changes in FTE employment between 2005–07 and 2015–19.
Outcome variables are multiplied by 100/1.1 to represent decennial percentage changes. Column (1) replicates the fully
specified model, including 50 state dummies and selected labor market controls (college share, foreign population share, fe-
male employment share, exposure to occupation offshorability, routine task intensity, manufacturing share, and population
density). Column (2) additionally controls for five initial SOC major occupation shares in 2005–07. Column (3) includes a
shock measure of the global financial crisis, defined as the increase in CZs’ unemployment rate relative to their labor force
between 2005–07 and 2009–11. Columns (4)–(7) account for pre-trends between 1990 and 2000 by including, respectively,
the change in the college share, the change in the manufacturing share, the log change in skill-specific population counts,
and the growth rate in average skill-specific log wages. All models include a constant and are weighted by CZs’ population
shares in 2005–07. Standard errors clustered at the state level are shown in parentheses. ***/**/* represent the 1%, 5%,
and 10% significance levels for the state-level cluster approach. Adao et al. (2019) exposure-robust standard errors clustered
at the broad industry level are shown in square brackets.
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Table D.5: Sensitivity Analysis for the Effect of WOCBTC on Wage Growth
(Dependent Variable: Decennial Change in Log Wages)

(1) (2) (3) (4) (5) (6) (7)

Panel A. OLS Estimation

ln(wall) -1.61** -1.63** -1.35** -1.63*** -1.56** -1.14** -1.69***
(0.61) (0.72) (0.65) (0.59) (0.59) (0.56) (0.57)

ln(wh) -0.34 -0.63 -0.30 -0.36 -0.35 -0.29 -0.38
(0.51) (0.64) (0.50) (0.52) (0.51) (0.48) (0.50)

ln(wm) -1.54*** -1.61** -1.24** -1.53** -1.46*** -1.44** -1.54***
(0.56) (0.68) (0.61) (0.58) (0.53) (0.56) (0.54)

ln(wl) -2.72*** -2.52*** -2.38*** -2.75*** -2.67*** -2.10*** -2.73***
(0.81) (0.88) (0.85) (0.79) (0.78) (0.71) (0.77)

Panel B. SSIV Estimation

ln(wall) -2.54*** -2.05** -2.00*** -2.58*** -2.59*** -1.59* -2.67***
(0.80) (0.84) (0.76) (0.79) (0.78) (0.83) (0.78)

[0.88] [0.92] [0.87] [0.85] [0.88] [1.00] [0.81]

ln(wh) -0.96 -0.93 -0.91 -1.01 -0.95 -0.93 -1.05
(0.79) (0.96) (0.79) (0.80) (0.78) (0.86) (0.80)

[0.70] [0.94] [0.72] [0.64] [0.68] [0.66] [0.70]

ln(wm) -2.60*** -2.50** -1.97** -2.58*** -2.69*** -2.39** -2.62***
(0.91) (1.04) (0.86) (0.91) (0.89) (0.95) (0.94)

[0.82] [0.90] [0.76] [0.82] [0.82] [0.94] [0.88]

ln(wl) -4.13*** -3.41*** -3.42*** -4.18*** -4.18*** -3.05*** -4.11***
(0.93) (1.00) (0.87) (0.92) (0.91) (1.00) (0.90)

[1.27] [1.24] [1.17] [1.24] [1.27] [1.37] [1.22]

Census state dummies
√ √ √ √ √ √ √

Labour market controls
√ √ √ √ √ √ √

Broad occupation shares
√

GFC unemployment shock
√

∆ Skill intensity (1990-2000)
√

∆ Manufact share (1990-2000)
√

∆ Population (1990-2000)
√

∆ Wages (1990-2000)
√

Notes: N = 741 CZs. The table reports OLS and 2SLS estimation results. The WOCBTC measure is normalized (rang-
ing from 0 to 1). In the 2SLS specifications, WOCBTC is instrumented using the shift-share IV defined in equation 7 in
Section 4.1. The dependent variables are the skill-specific log wage changes between 2005–07 and 2015–19. Outcome vari-
ables are multiplied by 100/1.1 to represent decennial percentage changes. Column (1) replicates the fully specified model,
including 50 state dummies and selected labor market controls (college share, foreign population share, female employment
share, exposure to occupation offshorability, routine task intensity, manufacturing share, and population density). Column
(2) additionally controls for five initial SOC major occupation shares in 2005–07. Column (3) includes a shock measure of
the global financial crisis, defined as the increase in CZs’ unemployment rate relative to their labor force between 2005–07
and 2009–11. Columns (4)–(7) account for pre-trends between 1990 and 2000 by including, respectively, the change in the
college share, the change in the manufacturing share, the log change in skill-specific population counts, and the growth rate
in average skill-specific log wages. All models include a constant and are weighted by CZs’ population shares in 2005–07.
Standard errors clustered at the state level are shown in parentheses. ***/**/* represent the 1%, 5%, and 10% significance
levels for the state-level cluster approach. Adao et al. (2019) exposure-robust standard errors clustered at the broad indus-
try level are shown in square brackets.
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E Appendix Figures

Figure E.1: Local Labour Markets’ Exposure to Cognitive and Non-Cognitive Task Shifts

Notes: The map displays 741 CZs based on the classification of Tolbert and Sizer (1996), covering the entire United
States. Alaska and Hawaii are shown separately in the bottom left due to their geographic distance. The CZ-level
measures of predicted cognitive and non-cognitive task intensity changes correspond to the occupation-weighted
direct and replacement effects (see equations 3 and 4 in Section 2). The non-cognitive change measure reflects the
average change in manual, communication, physical, and coordination task intensities. CZs are grouped into seven
equally sized bins; darker shades indicate greater exposure. Exposure is the average within-occupation change in
standard deviation units relative to the 2008 employment-weighted mean.
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Figure E.2: Broad Industries’ Patent and Breakthrough Patent Diffusion

Notes: Detailed industries are grouped into 13 broader categories based on the 1990 Census Bureau industrial
classification system. Each detailed industry’s patent diffusion is calculated as described in Section 3.1. The
diffusion measure is first normalized at the detailed industry level, then averaged across all industries within
the same broader group to ensure comparability between the two diffusion indicators. The contemporary patent
diffusion measure (blue) is based on all utility patents granted between 2005 and 2019, using industry employment
shares from 2005–07. The lagged breakthrough patent diffusion measure (red) includes the top 10% of breakthrough
patents identified by Kelly et al. (2021) for the period 1981–2000, combined with industry employment shares from
the 2000 Census.
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Figure E.3: The Diffusion of Patents and Breakthrough Patents into Local Labour Markets

Notes: The map displays 741 CZs based on the classification of Tolbert and Sizer (1996), covering the entire United
States. Alaska and Hawaii are shown separately in the bottom left due to their geographic distance. The CZ-level
innovation diffusion measure is constructed using equation 5 in Section 3.1. CZs are grouped into seven equally
sized bins; darker shades indicate greater diffusion. The top map presents the normalized log diffusion of all utility
patents granted between 2005 and 2019, based on CZs’ industrial composition in 2005–07. The bottom map shows
the normalized log diffusion of the top 10% of breakthrough patents identified by Kelly et al. (2021) for the period
1981–2000, using industry employment shares from the 2000 Census.
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Figure E.4: WOCBTC and FTE Employment Growth across Local Labour Markets

Notes: CZs are sorted into percentiles based on their exposure to WOCBTC and the decennial log change in FTE
employment. Panel A includes all 741 CZs. Panel B includes CZs with at least 0.1% of the U.S. population. In
Panels C and D, CZs are classified as metropolitan if their population in 2005–07 lived at least partly in a Census-
defined metropolitan area; otherwise, they are classified as non-metropolitan. Panels E and F split the sample into
low- and high-skill labor markets using the median CZ-level college share (0.183) in 2005–07 as the threshold. CZs
are weighted by their population shares in the baseline period (2005–07).
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Figure E.5: Low-Skilled Workers’ Task Intensity Evolutions through Occupational Re-sorting
between Local Labour Markets with Different WOCBTC Exposure

Notes: The 741 CZs are ranked by their exposure to WOCBTC in 2005–07 and classified into three groups: bottom
20%, middle 60%, and top 20%. For each exposure group, low-skilled workers (high school graduates and dropouts
without college experience) who are employed full-time and year-round (working more than 35 hours per week and
more than 40 weeks per year) are pooled. Their average task intensities are calculated for each year from 2006 to
2018 using the standardized occupation-level task intensities derived via factor analysis in Section 2.2, weighted by
year-specific employment shares across 430 occupations. Task intensities within occupations are held constant over
time. A three-year moving average is applied to smooth the graphical trends in the five task intensity measures.
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F Occupation Panel Crosswalk

ACS Occupation Codes

occ2010fr Occupation Group and Title 2000 2005 2010 2012 2018

Management Occupations

10 Chief executives/legislators 10 10 10 10 10

30 10 10 10 10

20 General and operations 20 20 20 20 20

40 Advertising/promotions 40 40 40 40 40

50 Marketing/sales 50 50 50 50 51

52

60 Public relations 60 60 60 60 60

100 Admin. services 100 100 100 100 101

102

110 Computer/info. systems 110 110 110 110 110

120 Financial 120 120 120 120 120

130 Human resources 130 130 135 135 135

136 136 136

137 137 137

140 Industrial production 140 140 140 140 140

150 Purchasing 150 150 150 150 150

160 Transport./storage/distribution 160 160 160 160 160

205 Farmers/ranchers/agricultural 200 200 205 205 205

210 210

220 Construction 220 220 220 220 220

230 Education admin. 230 230 230 230 230

300 Architectural/engineering 300 300 300 300 300

310 Food service 310 310 310 310 310

330 Entertainment/recreation 330 330 330 330 335

340 Lodging 340 340 340 340 340

350 Medical/health services 350 350 350 350 350

360 Natural sciences 360 360 360 360 360

410 Property/real estate/community assoc. 410 410 410 410 410

420 Social/community service 420 420 420 420 420

430 Managers, nec 400 430 430 430 440

430 705

Business and Financial Operations Occupations

500 Agents of artists/perform./athletes 500 500 500 500 500

510 Purchasing agents, farm products 510 510 510 510 510

520 Retail buyers, exc. farm products 520 520 520 520 520

530 Purchasing agents, exc. retail/farm 530 530 530 530 530

540 Claims adjusters/appraisers/examiners 540 540 540 540 540

560 Compliance officers 560 560 565 565 565

600 Cost estimators 600 600 600 600 600

620 Human resources specialists 620 620 630 630 630

640 640 640

650 650 650

700 Logisticians 700 700 700 700 700
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ACS Occupation Codes

occ2010fr Occupation Group and Title 2000 2005 2010 2012 2018

710 Management analysts 710 710 710 710 710

720 Meeting/convention/event planners 720 720 725 725 725

740 Business operations specialists, nec 730 730 425 425 425

740 740 750

800 Accountants/auditors 800 800 800 800 800

810 Property appraisers/assessors 810 810 810 810 810

820 Budget analysts 820 820 820 820 820

830 Credit analysts 830 830 830 830 830

840 Financial analysts 840 840 840 840 845

850 Personal financial advisors 850 850 850 850 850

860 Insurance underwriters 860 860 860 860 860

900 Financial examiners 900 900 900 900 900

910 Loan counselors/officers 910 910 910 910 910

930 Tax examiners/collectors/revenue agents 930 930 930 930 930

940 Tax prepares 940 940 940 940 940

950 Financial specialists, nec 950 950 950 950 960

Computer and Mathematical Occupations

1000 Computer scientists/systems analysts 1000 1000 1005 1005 1005

5800 5800 1006 1006 1006

1107 1107 1108

5800 5800

1010 Computer programmers 1010 1010 1010 1010 1010

1020 Software developers 1020 1020 1020 1020 1021

1022

1060 Database admin. 1060 1060 1060 1060 1065

1100 Network/computer systems admin. 1040 1040 1050 1050 1050

1100 1100 1105 1105 1105

1110 1110 1007 1007 1007

1106 1106 1106

1030 1030 1031

1032

1200 Actuaries 1200 1200 1200 1200 1200

1220 Operations research analysts 1220 1220 1220 1220 1220

1240 Mathematicians/statisticians 1210 1240 1240 1240 1240

1230

1240

Architecture and Engineering Occupations

1300 Architects, exc. naval 1300 1300 1300 1300 1305

1306

1310 Surveyors/cartographers/photogrammetrists 1310 1310 1310 1310 1310

1320 Aerospace engineers 1320 1320 1320 1320 1320

1340 Agricultural/biomedical engineers 1330 1340 1340 1340 1340

1340

1350 Chemical engineers 1350 1350 1350 1350 1350

1360 Civil engineers 1360 1360 1360 1360 1360

1400 Computer hardware engineers 1400 1400 1400 1400 1400
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ACS Occupation Codes

occ2010fr Occupation Group and Title 2000 2005 2010 2012 2018

1410 Electrical/electronic engineers 1410 1410 1410 1410 1410

1420 Environmental engineers 1420 1420 1420 1420 1420

1430 Industrial engineers 1430 1430 1430 1430 1430

1440 Marine engineers 1440 1440 1440 1440 1440

1450 Materials engineers 1450 1450 1450 1450 1450

1460 Mechanical engineers 1460 1460 1460 1460 1460

1520 Petroleum/mining/geological engineers 1500 1520 1520 1520 1520

1520

1530 Engineers, nec 1510 1530 1530 1530 1530

1530

1540 Drafters 1540 1540 1540 1540 1541

1545

1550 Engineering technicians, exc. drafters 1550 1550 1550 1550 1551

1555

1560 Surveying/mapping technicians 1560 1560 1560 1560 1560

Life, Physical, and Social science Occupations

1600 Agricultural/food scientists 1600 1600 1600 1600 1600

1610 Biological scientists 1610 1610 1610 1610 1610

1640 Conservation scientists/foresters 1640 1640 1640 1640 1640

1650 Medical scientists 1650 1650 1650 1650 1650

1700 Astronomers/physicists 1700 1700 1700 1700 1700

1710 Atmospheric/space scientists 1710 1710 1710 1710 1710

1720 Chemists/materials scientists 1720 1720 1720 1720 1720

1740 Environmental scientists 1740 1740 1740 1740 1745

1750

1760 Physical scientists, nec 1760 1760 1760 1760 1760

1800 Economists 1800 1800 1800 1800 1800

1810 Market/survey researchers 1810 1810 735 735 735

1815 1815

1820 Psychologists 1820 1820 1820 1820 1821

1822

1825

1840 Urban/regional planners 1840 1840 1840 1840 1840

1860 Sociologists/social scientists, nec 1830 1860 1860 1860 1860

1860

1900 Agricultural/food science techs 1900 1900 1900 1900 1900

1910 Biological techs 1910 1910 1910 1910 1910

1920 Chemical techs 1920 1920 1920 1920 1920

1970 Life/physical/social science techs, nec 1930 1930 1930 1930 1935

1940 1940 1940 1940 1970

1960 1960 1950 1950

1965 1965

Community and Social Service Occupations

2000 Counselors 2000 2000 2000 2000 2001

2002

2003
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ACS Occupation Codes

occ2010fr Occupation Group and Title 2000 2005 2010 2012 2018

2004

2005

2006

2010 Social workers 2010 2010 2010 2010 2011

2012

2013

2014

2020 Community/social service specialists, nec 2020 2020 2015 2015 2015

2016 2016 2016

2025 2025 2025

2040 Clergy 2040 2040 2040 2040 2040

2050 Directors, religious activities/education 2050 2050 2050 2050 2050

2060 Religious workers, nec 2060 2060 2060 2060 2060

Legal Occupations

2100 Lawyers/judges/magistrates 2100 2100 2100 2100 2100

2110

2160 Legal support workers 2140 2140 2105 2105 2105

2150 2150 2145 2145 2145

2160 2160 2170

2180

2862

Education, Training, and Library Occupations

2200 Postsecondary teachers 2200 2200 2200 2200 2205

2300 Preschool/kindergarten teachers 2300 2300 2300 2300 2300

2310 Elementary/middle school teachers 2310 2310 2310 2310 2310

2320 Secondary school teachers 2320 2320 2320 2320 2320

2330 Special education teachers 2330 2330 2330 2330 2330

2340 Teachers and instructors, nec 2340 2340 2340 2340 2350

2360

2400 Archivists/curators/museum techs 2400 2400 2400 2400 2400

2430 Librarians 2430 2430 2430 2430 2435

2440 Library techs 2440 2440 2440 2440 2440

2540 Teacher assistants 2540 2540 2540 2540 2545

2550 Education/training/library workers, nec 2550 2550 2550 2550 2555

Arts, Design, Entertainment, Sports, and Media Occupations

2600 Artists 2600 2600 2600 2600 2600

2630 Designers 2630 2630 2630 2630 2631

2632

2633

2334

2335

2336

2340

2700 Actors 2700 2700 2700 2700 2700
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ACS Occupation Codes

occ2010fr Occupation Group and Title 2000 2005 2010 2012 2018

2710 Producers/directors 2710 2710 2710 2710 2710

2720 Athletes/coaches/umpires 2720 2720 2720 2720 2721

2722

2723

2740 Dancers/choreographers 2740 2740 2740 2740 2740

2750 Musicians/singers 2750 2750 2750 2750 2751

2752

2760 Entertainers/performers, nec 2760 2760 2760 2760 2755

2770

2800 Announcers 2800 2800 2800 2800 2805

2810 News analysts/reporters/correspondents 2810 2810 2810 2810 2810

2820 Public relations specialists 2820 2820 2825 2825 2825

2830 Editors 2830 2830 2830 2830 2830

2840 Technical writers 2840 2840 2840 2840 2840

2850 Writers/authors 2850 2850 2850 2850 2850

2860 Media/communication workers, nec 2860 2860 2860 2860 2861

2865

2905 Broadcast/sound engineering techs 2900 2900 2900 2900 2905

2960

2910 Photographers 2910 2910 2910 2910 2910

2920 Television/video camera operators/editors 2920 2920 2920 2920 2920

Healthcare Practitioners and Technical Occupations

3000 Chiropractors 3000 3000 3000 3000 3000

3010 Dentists 3010 3010 3010 3010 3010

3030 Dietitians/nutritionists 3030 3030 3030 3030 3030

3040 Optometrists 3040 3040 3040 3040 3040

3050 Pharmacists 3050 3050 3050 3050 3050

3060 Physicians/surgeons 3060 3060 3060 3060 3090

3100

3110 Physician assistants 3110 3110 3110 3110 3110

3120 Podiatrists 3120 3120 3120 3120 3120

3130 Nurses 3130 3130 3255 3255 3255

3256 3256 3256

3258 3258 3258

3140 Audiologists 3140 3140 3140 3140 3140

3150 Occupational therapists 3150 3150 3150 3150 3150

3160 Physical therapists 3160 3160 3160 3160 3160

3200 Radiation therapists 3200 3200 3200 3200 3200

3210 Recreational therapists 3210 3210 3210 3210 3210

3220 Respiratory therapists 3220 3220 3220 3220 3220

3230 Speech-language pathologists 3230 3230 3230 3230 3230

3245 Therapists, nec 3240 3240 3245 3245 3245

3250 Veterinarians 3250 3250 3250 3250 3250

3260 Health diagnosing/treating, nec 3260 3260 3260 3260 3261

3270

3300 Clinical laboratory techs 3300 3300 3300 3300 3300

3310 Dental hygienists 3310 3310 3310 3310 3310
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ACS Occupation Codes

occ2010fr Occupation Group and Title 2000 2005 2010 2012 2018

3320 Diagnostic related techs 3320 3320 3320 3320 3321

3322

3323

3324

3330

3400 Emergency medical techs/paramedics 3400 3400 3400 3400 3401

3402

3420 Health practitioner support techs 3410 3410 3420 3420 3421

3422

4323

3424

3430

3500 Licensed practical/vocational nurses 3500 3500 3500 3500 3500

3510 Medical records/health information techs 3510 3510 3510 3510 3515

3520 Opticians, dispensing 3520 3520 3520 3520 3520

3530 Health techs, nec 3530 3530 3535 3535 3545

3540 Healthcare practitioners, nec 3540 3540 3540 3540 1980

3550

Healthcare Support Occupations

3600 Nursing/psychiatric/home health aides 3600 3600 3600 3600 3601

3603

3605

3610 Occupational therapist assistants 3610 3610 3610 3610 3610

3620 Physical therapist assistants 3620 3620 3620 3620 3620

3630 Massage therapists 3630 3630 3630 3630 3630

3640 Dental assistants 3640 3640 3640 3640 3640

3650 Medical assistants, nec 3650 3650 3645 3645 3645

3646 3646 3646

3647 3647 3647

3648 3648 3648

3649 3649 3649

3655 3655 3655

Protective Service Occupations

3700 Supervisors of correctional officers 3700 3700 3700 3700 3700

3710 Supervisors of police/detectives 3710 3710 3710 3710 3710

3720 Supervisors of fire fighters 3720 3720 3720 3720 3720

3730 Supervisors of protective services, nec 3730 3730 3730 3730 3725

3740 Fire fighters 3740 3740 3740 3740 3740

3750 Fire inspectors 3750 3750 3750 3750 3750

3800 Bailiffs/correctional officers/jailers 3800 3800 3800 3800 3801

3802

3820 Detectives/criminal investigators 3820 3820 3820 3820 3820

3840 Law enforcement officers 3830 3840 3840 3840 3840

3840

3870 Police officers 3850 3850 3850 3850 3870

3860
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ACS Occupation Codes

occ2010fr Occupation Group and Title 2000 2005 2010 2012 2018

3900 Animal control workers N/A 3900 3900 3900 3900

3910 Private detectives/investigators 3910 3910 3910 3910 3910

3930 Security guards/gaming surveillance 3920 3920 3930 3930 3930

3940 Crossing guards 3940 3940 3940 3940 3940

3950 Protective service workers, nec 3950 3950 3945 3945 3945

3955 3955 3946

3960

Food Preparation and Serving Related Occupations

4000 Chefs/head cooks 4000 4000 4000 4000 4000

4010 Supervisors of food serving workers 4010 4010 4010 4010 4010

4020 Cooks 4020 4020 4020 4020 4020

4030 Food preparation workers 4030 4030 4030 4030 4030

4040 Bartenders 4040 4040 4040 4040 4040

4055 Fast food/counter workers 4050 4050 4050 4050 4055

4060 4060 4060 4060

4110 Waiters/waitresses 4110 4110 4110 4110 4110

4120 Food servers, non-restaurant 4120 4120 4120 4120 4120

4140 Dishwashers 4140 4140 4140 4140 4140

4150 Hosts and hostesses, restaurant 4150 4150 4150 4150 4150

4160 Food preparation/serving workers, nec 4130 4130 4130 4130 4130

4160 4160

Building and Grounds Cleaning and Maintenance Occupations

4200 Supervisors of janitorial workers 4200 4200 4200 4200 4200

4210 Supervisors of landscaping workers 4210 4210 4210 4210 4210

4220 Janitors/building cleaners 4220 4220 4220 4220 4220

4230 Maids/housekeeping cleaners 4230 4230 4230 4230 4230

4240 Pest control workers 4240 4240 4240 4240 4240

4250 Grounds maintenance workers 4250 4250 4250 4250 4251

4252

4153

Personal Care and Service Occupations

4330 Supervisors of personal care workers 4300 4300 4300 4300 4330

4320 4320 4320 4320

4340 Animal trainers 4340 4340 4340 4340 4340

4350 Non-farm animal caretakers 4350 4350 4350 4350 4350

4400 Gaming services workers 4400 4400 4400 4400 4400

4420 Ushers/lobby attendants/ticket takers 4420 4420 4420 4420 4420

4435 Entertainment attendants, nec 4430 4410 4410 4410 4435

4430 4430 4430

4460 Embalmers/crematory operators 4460 4460 4460 4460 4461

4465 Morticians/undertakers/funeral directors 320 320 4465 4465 4465

4500 Barbers 4500 4500 4500 4500 4500

4510 Hairdressers/hairstylists/cosmetologists 4510 4510 4510 4510 4510

4520 Personal appearance workers, nec 4520 4520 4520 4520 4521
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ACS Occupation Codes

occ2010fr Occupation Group and Title 2000 2005 2010 2012 2018

4522

4525

4530 Baggage porters/bellhops/concierges 4530 4530 4530 4530 4530

4540 Tour/travel guides 4540 4540 4540 4540 4540

4600 Childcare workers 4600 4600 4600 4600 4600

4610 Personal/home care aides 4610 4610 4610 4610 3602

4620 Recreation/fitness workers 4620 4620 4620 4620 4621

4622

4640 Residential advisors 4640 4640 4640 4640 4640

4650 Personal care/service workers, nec 4650 4650 4650 4650 4655

Sales and Related Occupations

4700 Supervisors of retail sales 4700 4700 4700 4700 4700

4710 Supervisors of non-retail sales 4710 4710 4710 4710 4710

4720 Cashiers 4720 4720 4720 4720 4720

4740 Counter/rental clerks 4740 4740 4740 4740 4740

4750 Parts salespersons 4750 4750 4750 4750 4750

4760 Retail salespersons 4760 4760 4760 4760 4760

4800 Advertising sales agents 4800 4800 4800 4800 4800

4810 Insurance sales agents 4810 4810 4810 4810 4810

4820 Securities/commodities/financial sales agents 4820 4820 4820 4820 4820

4830 Travel agents 4830 4830 4830 4830 4830

4840 Sales representatives. of services, nec 4840 4840 4840 4840 4840

4850 Sales representatives, wholesale/manufacturing 4850 4850 4850 4850 4850

4900 Models/demonstrators/product promoters 4900 4900 4900 4900 4900

4920 Real estate brokers/sales agents 4920 4920 4920 4920 4920

4930 Sales engineers 4930 4930 4930 4930 4930

4940 Telemarketers 4940 4940 4940 4940 4940

4950 Door-to-door sales/news/street vendors 4950 4950 4950 4950 4950

4960 Sales workers, nec 4960 4960 726 726 726

4965 4965 4965

Office and Administrative Support Occupations

5000 Supervisors of office/admin. support 5000 5000 5000 5000 5000

5010 Switchboard operators 5010 5010 5010 5010 5010

5020 Telephone operators 5020 5020 5020 5020 5020

5030 Communications equipment operators, nec 5030 5030 5030 5030 5040

5100 Bill/account collectors 5100 5100 5100 5100 5100

5110 Billing/posting clerks 5110 5110 5110 5110 5110

5120 Bookkeeping/accounting/auditing clerks 5120 5120 5120 5120 5120

5140 Payroll/timekeeping clerks 5140 5140 5140 5140 5140

5150 Procurement clerks 5150 5150 5150 5150 5150

5160 Tellers 5160 5160 5160 5160 5160

5220 Court/municipal/license clerks 5220 5220 5220 5220 5220

5230 Credit authorizers/checkers/clerks 5230 5230 5230 5230 5230

5240 Customer service representatives 5240 5240 5240 5240 5240

5250 Eligibility interviewers, govt programs 5250 5250 5250 5250 5250

5260 File Clerks 5260 5260 5260 5260 5260
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ACS Occupation Codes

occ2010fr Occupation Group and Title 2000 2005 2010 2012 2018

5300 Hotel/motel/re-sort desk clerks 5300 5300 5300 5300 5300

5310 Interviewers, exc. eligibility/loan 5310 5310 5310 5310 5310

5320 Library assistants, clerical 5320 5320 5320 5320 5320

5330 Loan interviewers/clerks 5330 5330 5330 5330 5330

5340 New accounts clerks 5340 5340 5340 5340 5340

5350 Correspondence/order clerks 5210 5350 5350 5350 5350

5350

5360 Human resources assistants, exc. payroll 5360 5360 5360 5360 5360

5400 Receptionists/information clerks 5400 5400 5400 5400 5400

5410 Reservation/transportation agents 5410 5410 5410 5410 5410

5420 Information/record clerks, nec 5200 5200 5200 5200 5420

5420 5420 5420 5420

5500 Cargo/freight agents 5500 5500 5500 5500 5500

5510 Couriers/messengers 5510 5510 5510 5510 5510

5520 Dispatchers 5520 5520 5520 5520 5521

5522

5530 Meter readers, utilities 5530 5530 5530 5530 5530

5540 Postal service clerks 5540 5540 5540 5540 5540

5550 Postal service mail carriers 5550 5550 5550 5550 5550

5560 Postal service mail sorters/operators 5560 5560 5560 5560 5560

5600 Production/planning/expediting clerks 5600 5600 5600 5600 5600

5610 Shipping/receiving/traffic clerks 5610 5610 5610 5610 5610

5620 Stock clerks/order fillers 5620 5620 5620 5620 9645

5630 Weighers/measurers/checkers/samplers 5630 5630 5630 5630 5630

5700 Secretaries/administrative assistants 5700 5700 5700 5700 5710

5720

5730

5740

5810 Data entry keyers 5810 5810 5810 5810 5810

5820 Word processors/typists 5820 5820 5820 5820 5820

5840 Insurance claims/policy processing clerks 5840 5840 5840 5840 5840

5850 Mail clerks/machine operators, exc. postal 5850 5850 5850 5850 5850

5860 Office clerks, general 5860 5860 5860 5860 5860

5900 Office machine operators, exc. computer 5900 5900 5900 5900 5900

5910 Proofreaders/copy markers 5910 5910 5910 5910 5910

5920 Statistical assistants 5920 5920 5920 5920 5920

5930 Office/administrative support, nec 5130 5130 5130 5130 5165

5830 5930 5165 5165 5940

5930 5940 5940

Farming, Fishing, and Forestry Occupations

6000 Supervisors of farming/fishing/forestry 6000 6000 6005 6005 6005

6010 Agricultural inspectors 6010 6010 6010 6010 6010

6040 Graders/sorters, agricultural products 6040 6040 6040 6040 6040

6050 Agricultural workers, nec 6020 6050 6050 6050 6050

6050

6115 Fishing/hunting workers 6100 6100 6100 6100 6115

6110
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occ2010fr Occupation Group and Title 2000 2005 2010 2012 2018

6120 Forest/conservation workers 6120 6120 6120 6120 6120

6130 Logging workers 6130 6130 6130 6130 6130

Construction and Extraction Occupations

6200 Supervisors of construction/extraction 6200 6200 6200 6200 6200

6210 Boilermakers 6210 6210 6210 6210 6210

6220 Brickmasons/blockmasons/stonemasons 6220 6220 6220 6220 6220

6500 6500 6500

6230 Carpenters 6230 6230 6230 6230 6230

6240 Carpet/floor/tile installers 6240 6240 6240 6240 6240

6250 Cement masons/terrazzo workers 6250 6250 6250 6250 6250

6260 Construction laborers 6260 6260 6260 6260 6260

6305 Construction equip. operators 6300 6300 6300 6300 6305

6310 6320 6320 6320

6320

6330 Drywall/ceiling tile installers/tapers 6330 6330 6330 6330 6330

6350 Electricians 6350 6350 6355 6355 6355

6360 Glaziers 6360 6360 6360 6360 6360

6400 Insulation workers 6400 6400 6400 6400 6400

6410 Painters/paperhangers 6420 6420 6420 6420 6410

6430 6430 6430

6440 Pipelayers/plumbers/pipefitters 6440 6440 6440 6440 6441

6442

6460 Plasterers/stucco masons 6460 6460 6460 6460 6460

6510 Roofers 6510 6510 6515 6515 6515

6520 Sheet metal workers 6520 6520 6520 6520 6520

6530 Structural iron/steel workers 6530 6540 6530 6530 6530

6600 Helpers, construction trades 6600 6600 6600 6600 6600

6660 Construction/building inspectors 6660 6660 6660 6660 6660

6700 Elevator installers/repairers 6700 6700 6700 6700 6700

6710 Fence erectors 6710 6710 6710 6710 6710

6720 Hazardous materials removal workers 6720 6720 6720 6720 6720

6730 Highway maintenance workers 6730 6730 6730 6730 6730

6740 Rail-track laying/maintenance operators 6740 6740 6740 6740 6740

6760 Construction workers, nec 6750 6760 6540 6540 6540

6760 6765 6765 6765

6800 Derrick operators, oil/gas/mining 6800 6800 6800 6800 6800

6920

6820 Earth drillers, except oil/gas 6820 6820 6820 6820 6825

6830 Explosives workers 6830 6830 6830 6830 6835

6850 Underground mining operators 6840 6840 6840 6840 6850

9730

6950 Extraction workers, nec 6910 6940 6940 6940 6950

6930

6940

Installation, Maintenance, and Repair Occupations

7000 Supervisors of mechanics/repairers 7000 7000 7000 7000 7000
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occ2010fr Occupation Group and Title 2000 2005 2010 2012 2018

7010 Computer/automated teller repairers 7010 7010 7010 7010 7010

7020 Radio/tele equip. repairers 7020 7020 7020 7020 7020

7030 Avionics techs 7030 7030 7030 7030 7030

7040 Electric motor/power tool repairers 7040 7040 7040 7040 7040

7100 Electrical repairers, industrial/utility/vehicles 7050 7100 7100 7100 7100

7100 7110 7110 7110

7110

7120 Electronic home entertain equip. installers 7120 7120 7120 7120 7120

7130 Security/fire alarm systems installers 7130 7130 7130 7130 7130

7140 Aircraft mechanics/service techs 7140 7140 7140 7140 7140

7150 Automotive body repairers 7150 7150 7150 7150 7150

7160 Automotive glass installers 7160 7160 7160 7160 7160

7200 Automotive service techs/mechanics 7200 7200 7200 7200 7200

7210 Bus/truck/diesel engine mechanics 7210 7210 7210 7210 7210

7220 Heavy vehicle/mobile equipment mechanics 7220 7220 7220 7220 7220

7240 Small engine mechanics 7240 7240 7240 7240 7240

7260 Vehicle/mobile equip. mechanics/repairers, nec 7260 7260 7260 7260 7260

7300 Control/valve installers/repairers 7300 7300 7300 7300 7300

7310 Heating/air conditioning/refrigeration mechanics 7310 7310 7315 7315 7315

7320 Home appliance repairers 7320 7320 7320 7320 7320

7330 Industrial/refractory machinery mechanics 7330 7330 7330 7330 7330

7340 Maintenance/repair workers, general 7340 7340 7340 7340 7340

7350 Maintenance workers, machinery 7350 7350 7350 7350 7350

7360 Millwrights 7360 7360 7360 7360 7360

7410 Electrical power-line installers 7410 7410 7410 7410 7410

7420 Telecommunications line installers 7420 7420 7420 7420 7420

7430 Precision instrument/equipment repairers 7430 7430 7430 7430 7430

7510 Coin/vending/amusement machine repairers 7510 7510 7510 7510 7510

7540 Locksmiths/safe repairers 7540 7540 7540 7540 7540

7560 Riggers 7560 7560 7560 7560 7560

7610 Helpers - installation/maintenance/repair 7610 7610 7610 7610 7610

7640 Installation/maintenance/repair, nec 7520 7550 7550 7630 7640

7550 7620 7630

7600

7620

Production Occupations

7700 Supervisors of production workers 7700 7700 7700 7700 7700

7720 Electrical/electronics assemblers 7720 7720 7720 7720 7720

7730 Engine/machine assemblers 7730 7730 7730 7730 7730

7740 Structural metal fabricators/fitters 7740 7740 7740 7740 7740

7750 Assemblers/fabricators, nec 7710 7710 7710 7710 7750

7750 7750 7750 7750

7800 Bakers 7800 7800 7800 7800 7800

7810 Butchers/meat processing workers 7810 7810 7810 7810 7810

7830 Food/tobacco/baking operators 7830 7830 7830 7830 7830

7840 Food batchmakers 7840 7840 7840 7840 7840

7850 Food cooking machine operators 7850 7850 7850 7850 7850

A36



ACS Occupation Codes

occ2010fr Occupation Group and Title 2000 2005 2010 2012 2018

7900 Computer control programmers, metal/plastic 7900 7900 7900 7900 7905

7925 Forming machine operators, metal/plastic 7920 7920 7920 7920 7925

7930 7930 7930 7930

7940 7940 7940 7940

8025 Machine tool operators, metal/plastic, nec 7950 7950 7950 7950 7950

7960 7960 7960 8000

8000 8000 8000 8025

8010 8010 8010

8020

8030 Machinists 8030 8030 8030 8030 8030

8040 Metal furnace/kiln operators 8040 8040 8040 8040 8040

8100 Molders, metal/plastic 8060 8060 8060 8100 8100

8100 8100 8100

8130 Tool/die makers 8130 8130 8130 8130 8130

8140 Welding/soldering/brazing workers 8140 8140 8140 8140 8140

8225 Metal/plastic workers, nec 8120 8150 8150 8220 8225

8150 8200 8200

8160 8210 8210

8200 8220 8220

8210

8220

8250 Prepress techs/workers 8250 8250 8250 8250 8250

8260 Printing operators 8230 8230 8255 8255 8255

8240 8240 8256 8256 8256

8260 8260

8300 Laundry/dry-cleaning workers 8300 8300 8300 8300 8300

8310 Pressers, textile/garment 8310 8310 8310 8310 8310

8320 Sewing machine operators 8320 8320 8320 8320 8320

8335 Shoe and leather workers/repairers 8330 8330 8330 8330 8335

8340 8340 8340

8350 Tailors/dressmakers/sewers 8350 8350 8350 8350 8350

8365 Textile machine setters/operators 8360 8400 8400 8400 8365

8400 8410 8410 8410

8410 8420 8420 8420

8420

8450 Upholsterers 8450 8450 8450 8450 8450

8465 Textile/apparel/furnishings workers, nec 8430 8460 8460 8460 8465

8440

8460

8500 Cabinetmakers/bench carpenters 8500 8500 8500 8500 8500

8510 Furniture finishers 8510 8510 8510 8510 8510

8530 Sawing machine operators, wood 8530 8530 8530 8530 8530

8540 Woodworking machine operators, exc. sawing 8540 8540 8540 8540 8540

8555 Woodworkers, nec 8520 8550 8550 8550 8555

8550

8600 Power plant operators 8600 8600 8600 8600 8600

8610 Stationary engineers/boiler operators 8610 8610 8610 8610 8610

8620 Water/liquid waste plant operators 8620 8620 8620 8620 8620

8630 Plant/system operators, nec 8630 8630 8630 8630 8630
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8640 Chemical processing machine operators 8640 8640 8640 8640 8640

8650 Crushing/grinding/polishing workers 8650 8650 8650 8650 8650

8710 Cutting workers 8710 8710 8710 8710 8710

8720 Extruding/pressing machine operators 8720 8720 8720 8720 8720

8730 Furnace/kiln/oven/drier/kettle operators 8730 8730 8730 8730 8730

8740 Inspectors/testers/sorters/samplers 8740 8740 8740 8740 8740

8750 Precious stone/metal workers 8750 8750 8750 8750 8750

8760 Medical/dental/ophthalmic laboratory techs 8760 8760 8760 8760 8760

8800 Packaging/filling machine operators 8800 8800 8800 8800 8800

8810 Painting workers 8810 8810 8810 8810 8810

8830 Photographic process workers 8830 8830 8830 8830 8830

8850 Adhesive bonding machine operators 8850 8850 8850 8850 8850

8910 Etchers/engravers 8910 8910 8910 8910 8910

8920 Molders/shapers/casters, exc. metal/plastic 8920 8920 8920 8920 8920

8930 Paper goods machine operators 8930 8930 8930 8930 8930

8940 Tire builders 8940 8940 8940 8940 8940

8950 Helpers - production 8950 8950 8950 8950 8950

8990 Production workers, nec 8840 8860 7855 7855 7855

8860 8960 8860 8965 8990

8900 8965

8960

Transportation and Material Moving Occupationss

9000 Supervisors of transportation/material moving 9000 9000 9000 9000 9005

9030 Aircraft pilots/flight engineers 9030 9030 9030 9030 9030

9040 Air traffic controllers/specialists 9040 9040 9040 9040 9040

9050 Transportation attendants 4550 4550 9050 9050 9050

9415 9415 9415

9110 Ambulance drivers/attendants N/A 9110 9110 9110 9110

9120 Bus drivers 9120 9120 9120 9120 9121

9122

9130 Driver/sales workers and truck drivers 9130 9130 9130 9130 9130

9140 Taxi drivers/chauffeurs 9140 9140 9140 9140 9141

9142

9150 Motor vehicle operators, nec 9150 9150 9150 9150 9150

9200 Locomotive engineers/operators 9200 9200 9200 9200 9210

9240 Railroad conductors/yardmasters 9240 9240 9240 9240 9240

9265 Rail transportation workers, nec 9230 9230 9230 9260 9265

9260 9260 9260

9300 Sailors/marine oilers/ship engineers 9300 9300 9300 9300 9300

9330

9310 Ship/boat captains/operators 9310 9310 9310 9310 9310

9350 Parking attendants 9350 9350 9350 9350 9350

9410 Transportation inspectors 9410 9410 9410 9410 9410

9430 Transportation workers, nec 9340 9360 9360 9360 9365

9360 9420 9420 9420 9430

9420

9510 Crane/tower operators 9510 9510 9510 9510 9510
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9570 Conveyor/dredge/hoist/winch operators 9500 9520 9520 9520 9570

9520 9560 9560 9560

9560

9600 Industrial truck/tractor operators 9600 9600 9600 9600 9600

9610 Cleaners of vehicles/equipment 9610 9610 9610 9610 9610

9620 Laborers and freight/stock/material movers, hand 9620 9620 9620 9620 9620

9630 Machine feeders/offbearers 9630 9630 9630 9630 9630

9640 Packers/packagers, hand 9640 9640 9640 9640 9640

9650 Pumping station operators 9650 9650 9650 9650 9650

9720 Refuse/recyclable material collectors 9720 9720 9720 9720 9720

9760 Material moving workers, nec 9740 9750 9750 9750 9760

9750
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