
Harnack inequalities and Gaussian estimates for a class of

hypoelliptic operators ∗

Andrea Pascucci and Sergio Polidoro
Dipartimento di Matematica, Università di Bologna †‡

Abstract

We prove a global Harnack inequality for a class of degenerate evolution operators by
using repeatedly an invariant local Harnack inequality. As a consequence we obtain an
accurate Gaussian lower bound for the fundamental solution for some meaningful families of
degenerate operators.

1 Introduction

In this paper we consider a class of linear second order operators in RN+1 of the form

L =
m∑

p=1

X2
p + X0 − ∂t. (1.1)

In (1.1) the Xp’s are smooth vector fields on RN , i.e. denoting z = (x, t) the point in RN+1

Xp(x) =
N∑

j=1

ap
j (x)∂xj , p = 0, . . . ,m,

where any ap
j is a C∞ function. For our purposes, in the sequel we also consider the Xp’s as

vector fields in RN+1 and we denote

Y = X0 − ∂t, and λ ·X ≡ λ1X1 + · · ·+ λmXm, (1.2)

for λ = (λ1, . . . , λm) ∈ Rm. We say that a curve γ : [0, T ] → RN+1 is L-admissible if it is
absolutely continuous and satisfies

γ′(s) = λ(s) ·X(γ(s)) + Y (γ(s)), a.e. in [0, T ],

for suitable piecewise constant real functions λ1, . . . , λm. We next state our main assumptions:
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[H.1] there exists a homogeneous Lie group G =
(
RN+1, ◦, δλ

)
such that

(i) X1, . . . , Xm, Y are left translation invariant on G;

(ii) X1, . . . , Xm are δλ-homogeneous of degree one and Y is δλ-homogeneous of degree two;

[H.2] for every (x, t), (ξ, τ) ∈ RN+1 with t > τ , there exists an L-admissible path γ : [0, T ] →
RN+1 such that γ(0) = (x, t), γ(T ) = (ξ, τ).

In the next section we recall the definition and the main properties of homogeneous Lie groups.
Operators of the form (1.1), verifying assumptions [H.1]-[H.2], have been introduced by Kogoj

and Lanconelli in [7] and [8]. Under these hypotheses the Hörmander condition holds:

rank Lie{X1, . . . , Xm, Y }(z) = N + 1, ∀z ∈ RN+1; (1.3)

hence L in (1.1) is hypoelliptic (i.e. every distributional solution to Lu = 0 is smooth; see, for
instance, Proposition 10.1 in [7]) and has a fundamental solution Γ which is smooth out of the
pole and δλ-homogeneous of degree 2−Q:

Γ (δλz) = λ2−QΓ(z), λ > 0, (1.4)

(here Q denotes the homogeneous dimension of G, see Section 2). Hence operator (1.1) belongs
to the general class of hypoelliptic operators on homogeneous groups first studied by Folland
[5], Rothschild and Stein [18], Nagel, Stein and Wainger [13].

An invariant (local) Harnack inequality for L is proved in [7] and one-side Liouville theorems
are given in [8]. The main goal of this note is to prove the following non-local Harnack inequality:

Theorem 1.1 Let z0 = (x0, t0) ∈ RN+1 and s > 0. There exist two constants c, C > 1, only
dependent on L, such that

u(exp(s(λ ·X + Y ))(z0)) ≤ C1+s|λ|2u(z0), (1.5)

for every non-negative solution u to Lu = 0 in RN × ]t0 − cs, t0], λ ∈ Rm.

The connectivity assumption [H.2] and Theorem 1.1 directly yield a global Harnack inequality
for positive solutions to Lu = 0 of the form:

u(x, t) ≤ H(x, t, ξ, τ)u(ξ, τ), ∀(x, t), (ξ, τ)RN+1, t < τ. (1.6)

When we are able to find explicitly an L-admissible path γ connecting (x, t) to (ξ, τ), then we can
express explicitly H(x, t, ξ, τ) and obtain a more useful estimate. Aiming to take into account of
the homogeneous structure of the Lie group, we construct such a γ by considering separately the
commutators of different homogeneity of X1, . . . , Xm, Y . We remark that these commutators
can be conveniently approximated by L-admissible paths: for instance, the direction of the
commutator [Xp, Xq] can be obtained by using the integral curves of Xp, Xq,−Xp,−Xq. To be
more specific, by using the Campbell-Hausdorff formula, we have

eXp+Y ◦ eXq+Y ◦ e−Xp+Y ◦ e−Xq+Y = e4Y +[Xp,Xq ]+R2 ,
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where the error term R2 contains commutators δλ−homogeneous of order greater than two. This
fact is well-known and has been used by many authors in the study of the regularity of “elliptic”
and “parabolic” operators of the form

m∑

p=1

X2
p and

m∑

p=1

X2
p − ∂t, (1.7)

respectively. However the study of operator (1.1) involves commutators of the form [Xp, Y ] that
do not occur in the examples (1.7). In this case, we have to use a different combination of vector
fields, namely

eXp+Y ◦ e−Xp+Y = e2Y +[Xp,Y ]+R3 ,

where R3 is an error term of order three. The above argument can be adapted to commutators
of higher length and leads to an explicit estimate of H in (1.6). This estimate is given in Section
4, Proposition 4.1, in the case of a Lie algebra of step three. We plan to consider Lie groups of
higher step in a future study.

As a consequence of Proposition 4.1 we get the following lower bound for Γ:

Proposition 1.2 Let L be the operator in (1.1) on a group of step three and Γ its fundamental
solution. There exists a positive constant C such that

Γ(x, t) ≥ C

t
Q−2

2

exp
(
−C

|x|6G
t3

)
, ∀(x, t) ∈ RN × R+. (1.8)

Here | · |G denotes the homogeneous norm in G (see Section 2).

In the above statement Γ(·) denotes the fundamental solution of L with pole at the origin. Due
to the left ◦-invariance of Γ, we have that Γ(z, ζ) = Γ(ζ−1 ◦ z) and a lower bound analogous to
(1.8) also holds for Γ(·, ζ).

The above estimate looks rather rough, since it is natural to expect |x|2G
t in the exponent in

(1.8). Indeed the following Gaussian upper bound has been proved by by Kogoj and Lanconelli
in [7]:

Γ(x, t) ≤ C

t
Q−2

2

exp
(
−|x|

2
G

Ct

)
, ∀x ∈ RN , t > 0, (1.9)

being C a positive constant. However it is known that the fundamental solution of the (Kol-
mogorov) operator ∂2

x1
+ x1∂x2 − ∂t is

Γ(x1, x2, t) =
√

3
2πt2

exp
(
−x2

1

t
− 3

x1x2

t2
− 3

x2
2

t3

)
, x1, x2 ∈ R, t > 0; (1.10)

see (1.19) below. In particular

Γ(0, x2, t) =
√

3
2πt2

exp
(
−3

x2
2

t3

)
=

√
3

2πt2
exp

(
−3

∣∣(0, x2)
∣∣6
G

t3

)
. (1.11)

On the other hand, we have

Γ(x1, 0, t) =
√

3
2πt2

exp
(
−x2

1

t

)
=

√
3

2πt2
exp

(
−

∣∣(x1, 0)
∣∣2
G

t

)
,
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so that neither (1.8) nor (1.9) are sharp. However we can hope to sharpen (1.8) at least in some
component of x. The following example shows that further hypotheses on the operator L are
needed to obtain such a result. Consider the operator L̃ = X2 + Y in R3, where

X = ∂x1 + 3x1
2∂x2 , and Y = x1∂x2 − ∂t.

It is straightforward to verify [H.1], [H.2] for L̃ (the dilations are δλ(x1, x2, t) = (λx1, λ
3x2, λ

2t)).
The fundamental solution is Γ̃(x1, x2, t) = Γ(x1, x2 − x3

1, t) with Γ in (1.10), then

Γ̃(x1, 0, t) =
√

3
2πt2

exp
(
−|x1|2

t
− 3

|x1|4
t2

− 3
|x1|6
t3

)
, ∀(x1, t) ∈ R× R+. (1.12)

We close the introduction with some examples of operators that motivate our study. In
these particular cases we will give sharp estimates for the case of a Lie algebra of step three (see
Propositions 5.1, 5.2 and 5.3 below).

Example 1.3 (Heat operators on Carnot groups) Consider the operator L in (1.1)
under assumptions [H.1] and

rank Lie
{
X1, . . . , Xm

}
(x) = N, ∀x ∈ RN . (1.13)

In this case G =
(
RN , ◦, δλ

)
is a Carnot (or stratified) group (see, for instance, [5] and [20]).

Under assumption [H.1], condition (1.13) implies

X0 ∈ span{[Xp, Xq] | p, q = 1, . . . , m}.

Condition (1.13) is trivially satisfied when X0 ≡ 0 in (1.1) and we have

L = 4G − ∂t, (1.14)

where as usual 4G denotes the canonical sub-Laplacian on G:

4G =
m∑

p=1

X2
p .

We recall the well-known Gaussian upper and lower bounds for heat kernels due to Jerison
and Sánchez-Calle [6], Kusuoka and Stroock [10], Varopoulos, Saloff-Coste and Coulhon [20].
These results apply to Lie groups which are not necessarily homogeneous. We also quote the
more recent and accurate estimates by Saloff-Coste and Stroock [19], Bonfiglioli, Lanconelli and
Uguzzoni [3].

More generally condition (1.13) means that the operator (1.1) has the form

L = 4G + X0 − ∂t, (1.15)

with X0 ∈ Lie
{
X1, . . . , Xm

}
. The results in [6] and [10] apply to the above operator when X0 ∈

span{Xp, [Xq, Xr] | p, q, r = 1, . . . , m}. Operator (1.15), without other assumption on X0, has
been considered by Alexopoulos in [1]. We also recall that Cao and Yau [4] proved some sharp
estimates of the fundamental solution under the assumption that span{Xp, [Xq, Xr] | p, q, r =
1, . . . , m}(x) = RN for every x ∈ RN and X0 ∈ span{Xp | p = 1, . . . , m}.
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Example 1.4 (Kolmogorov type operators) Assume Xp = ∂p, p = 1, . . . ,m, and the
coefficients of X0 are linear functions of x ∈ RN :

X0 = 〈x,B∇〉

for a constant N ×N matrix B. Then

L =
m∑

p=1

∂2
p + X0 − ∂t. (1.16)

This kind of operator has been extensively studied (see [12] and [11] for a comprehensive bibli-
ography). It is known that [H.1]-[H.2] for L are equivalent to the following hypothesis:

[H.3] the matrix B takes the form

B =




0 B1 0 · · · 0
0 0 B2 · · · 0
...

...
...

. . .
...

0 0 0 · · · Bn

0 0 0 · · · 0




(1.17)

for some basis of RN , where Bk is a dk × dk+1 matrix of rank dk, k = 1, 2, . . . , n with
m = d1 ≥ d2 ≥ · · · ≥ dn+1 ≥ 1 and d1 + · · ·+ dn+1 = N.

The equivalence of [H.3] and the couple of hypotheses [H.1]- (1.3) has been proved in [12]. As said
before [H.1]-[H.2] yield [H.1]-(1.3), on the other hand in [17] it is proved the converse implication
for Kolmogorov operators.

Under assumption [H.3], the dilations are

δλ = diag(λId1 , λ
3Id2 , . . . , λ

2n+1Idn+1 , λ
2), λ > 0, (1.18)

where Idk
is the dk × dk identity matrix. Moreover the fundamental solution of L in (1.1) is

explicitly known:

Γ(z) =
1√

(4π)N det C(t) exp
(
−1

4
〈C−1(t)x, x〉

)
, (1.19)

for t > 0, and Γ(z) = 0 for t ≤ 0. In (1.19), we denote

E(t) = exp(−tBT ) and C(t) =

t∫

0

E(s)AET (s)ds, (1.20)

where BT is the transpose matrix of B. We remark that condition [H.3] ensures that C(t) > 0
for any t > 0 (cf. Proposition A.1 in [12], see also [9]). In this case the group law is

(x, t) ◦ (ξ, τ) = (ξ + E(τ)x, t + τ), (x, t), (ξ, τ) ∈ RN+1. (1.21)

In the sequel we call K ≡ (RN+1, ◦) a Kolmogorov group.
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Non-local Harnack inequalities for this kind of operator are proved in [15], moreover Gaussian
estimates for the fundamental solution are given in [16], [17] and [14] in the case of non-constant
coefficients of the second order derivatives.

More general examples of operators of the form (1.16), with polynomial (non-linear) coeffi-
cients are:

L1 = ∂2
x1

+ ∂2
x2

+ x1∂x3 + x1x2∂x4 − ∂t, L2 = ∂2
x1

+ x1∂x2 + x2
1∂x3 − ∂t.

Note that although both L1 and L2 satisfy [H.1] and the well-known hypoellipticity Hörmander
condition, only L1 fulfills [H.2].

Example 1.5 (Operators on linked groups) Let L = G4K be the linked group of a Carnot
group G on Rm × Rn and a Kolmogorov group K on Rm × Rr × R, as defined by Kogoj and
Lanconelli in [7] (Sect. 10). We consider the operator

L = ∆G + Y. (1.22)

For reader’s convenience, we recall here the definition of link of Carnot and Kolmogorov groups.
Consider a Carnot group

G =
(
Rm × Rn, ◦, δGλ

)
,

where (x, y) denotes the point in Rm × Rn and assume that

Xp = ∂p + ap(x, y)∇y, p = 1, . . . ,m. (1.23)

Hence the dilations and the group law take the following form:

δGλ (x, y) =
(
λx, ρGλ y

)
, (x, y) ◦ (x′, y′) =

(
x + x′, Q(x, y, x′, y′)

)
.

Moreover the Kolmogorov group is1

K =
(
Rm × Rr × R, ◦, δKλ

)
,

where we denote (x,w, t) the point in Rm × Rr × R. We assume that

Y = X0(x,w)− ∂t = 〈(x,w), B∇(x,w)〉 − ∂t. (1.24)

The dilations (1.18) and the group law (1.21) will be denoted by:

δKλ (x,w, t) =
(
λx, ρKλ w, λ2t

)
, (x, w, t) ◦ (x′, w′, t′) =

(
x + x′, R(x,w, t, x′, w′, t′), t + t′

)
.

The link L = G4K is defined as follows:

L =
(
Rm × Rn × Rr × R, ◦, δLλ

)
,

where
δLλ (x, y, w, t) =

(
λx, ρGλ y, ρKλ w, λ2t

)

1We use the same notation “◦” for the composition law in different groups; the context will avoid ambiguity.
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and

(x, y, w, t) ◦ (x′, y′, w′, t′) =
(
x + x′, Q(x, y, x′, y′), R(x,w, t, x′, w′, t′), t + t′

)
. (1.25)

It turns out that L is a homogeneous group, the Xp’s and Y (considered as vector fields on
Rm×Rn×Rr ×R) satisfy [H.1]-[H.2] (see Propositions 10.4 and 10.5 in [7]). Let explicitly note
that the operations defined in L extend the ones in G and K. In particular we have

(x, y, 0, 0) ◦ (x′, y′, 0, 0) =
(
(x, y) ◦ (x′, y′), 0, 0

)
. (1.26)

2 Preliminaries

In this section we briefly recall the basic properties of homogeneous Lie groups and exponential
mappings.

A Lie group G =
(
RN+1, ◦) is called homogeneous if there exists a family of dilations (δλ)λ>0

exists on G. In our setting, hypotheses [H.1]-[H.2] imply that RN has a direct sum decomposition

RN = V1 ⊕ · · · ⊕ Vn

such that, if x = x(1) + · · ·+ x(n) with x(k) ∈ Vk, then the dilations are

δλ(x(1) + · · ·+ x(n), t) = (λx(1) + · · ·+ λnx(n), λ2t), (2.1)

for any (x, t) ∈ RN+1 and λ > 0. We may assume that

x(1) = (x1, . . . , xm1 , 0, . . . , 0) ∈ V1,

x(k) = (0, . . . , 0, x
(k)
1 , . . . , x(k)

mk
, 0, . . . , 0) ∈ Vk,

for some basis of RN , where

x
(k)
i = xm1+···+mk−1+i, i = 1, . . . ,mk ≡ dimVk.

The natural number

Q =
n∑

k=1

k mk + 2

is usually called the homogeneous dimension of G with respect to (δλ). We also introduce the
following δλ-homogeneous norms on RN+1 and RN :

‖(x, t)‖G =




n∑

k=1

mk∑

j=1

(
x

(k)
j

) 2n!
k + |t|n!




1
2n!

,

|x|G =max
{∣∣x(k)

i

∣∣ 1
k | k = 1, . . . , n, i = 1, . . . , mk

}
.
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Since X1, . . . , Xm and Y are smooth vector fields which are δλ-homogeneous respectively of
degree one and two, it is not difficult to show that they must be of the form

Xp =
n∑

k=1

ap
k−1(x

(1), . . . , x(k−1)) · ∇(k), p = 1, . . . ,m,

Y =
n∑

k=2

bk−2(x(1), . . . , x(k−2)) · ∇(k) − ∂t,

(2.2)

where
∇(k) =

(
0, . . . , 0, ∂

x
(k)
1

, . . . , ∂
x
(k)
mk

, 0, . . . , 0
)
.

and ap
k and bk are δλ−homogeneous polynomial functions of degree k with values in Vk+1 and

Vk+2 respectively. Let us explicitly note that hypothesis [H.2] and formula (2.2) imply that
span

{
X1(0), . . . , Xm(0)

}
= V1; then we may assume m = m1 and Xp(0) = ep for p = 1, . . . , m

where {ei}1≤i≤N denotes the canonical basis of RN . We also remark that, by [H.2] and (2.2),
span

{
X0(0), [Xp, Xq](0)

}
= V2; then, in the particular case of a Kolmogorov group, V2 = {0}

necessarily.

We denote by g the Lie algebra of G. For any X ∈ g, z ∈ RN+1 and s ∈ R, we let
exp(sX)(z) = γ(s), where γ is the (unique and globally defined) solution to the Cauchy problem

γ′ = X(γ), γ(0) = z.

We also use the following notation eX = exp(X)(0) and recall that

exp(X)(z) = z ◦ eX , ∀X ∈ g, z ∈ RN+1.

In the sequel we use the well-known Campbell-Hausdorff formula which we recall here for greater
convenience:

eX ◦ eZ = eX+Z+ 1
2
[X,Z]+ 1

12
[X−Z,[X,Z]]+R3 (2.3)

where R3 are commutators of length greater than three.

3 Proof of Theorem 1.1

We prove Theorem 1.1 by constructing a Harnack chain by means of the Harnack inequality
proved in [7]. We recall that a set {z0, . . . , zk} ⊆ O, where O is an open subset of RN+1, is said
a Harnack chain of length k if a positive constant C exists such that

u(zj) ≤ C u(zj−1), for j = 1, . . . , k, (3.1)

for every non-negative solution u to Lu = 0 in O.
We choose {z0, . . . , zk} along a suitable integral curve of the vector field λ · X + Y . The

technique goes back to Aronson and Serrin [2] for the study of uniformly parabolic equations.
Then it has been extended in [20] to the framework of heat kernels on Lie groups and in [17] to
Kolmogorov groups.
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We first recall the invariant Harnack inequality proved in [7], Theorem 7.1. Given r > 0,
ε ∈ ]0, 1[ and z0 ∈ RN+1, we put

Cr(z0) = z0 ◦ δr(C1), S(ε)
r (z0) = z0 ◦ δr(S(ε)

1 ),

where

C1 = {z = (x, t) ∈ RN+1 | ‖z‖G ≤ 1, t ≤ 0}, S(ε)
1 = {z = (x,−ε) | z ∈ C1}.

We remark that the following result is stated in [7] only for ε ∈ [
1
4 , 3

4

]
, however the compactness

argument used in the proof applies to every ε ∈ ]0, 1[.

Theorem 3.1 Let O be an open set in RN+1 containing Cr(z0) for some z0 ∈ RN+1 and r > 0.
Given ε ∈ ]0, 1[, there exist two positive constants θ = θ(L, ε) and C = C(L, ε) such that

sup
S(ε)

θr (z0)

u ≤ Cu(z0), (3.2)

for every non-negative solution u of L in O.

We next prove a different version of the above Harnack inequality.

Proposition 3.2 Let O be an open set in RN+1 containing Cr(z0) for some z0 ∈ RN+1 and
r > 0. For every R > 0 there exists two positive constants C, c only dependent on L and R such
that

u(z0 ◦ z) ≤ Cu(z0) (3.3)

for every non-negative solution u of L in O and for every z in the paraboloid

PR,T = {(x,−t) ∈ RN+1 | |x|2G ≤ R t, 0 < t ≤ T}, (3.4)

where 0 < T ≤ cr2.

Proof. Fixed t > 0, we put
At = {(x,−t) | |x|2G < R t}.

For every z ∈ At we have
‖z‖2

G ≤ (N |x|2σ
G + tσ)

1
σ < cR t,

with cR = (1 + NRσ)
1
σ , therefore

At ⊆ {z = (x,−t) | ‖z‖2 < cR t} = S(c−1
R )√
cRt

.

Since cR > 1, we can apply Theorem 3.1 with ε = c−1
R , then there exist θ, C > 0, only dependent

on L and R, such that
sup

S(ε)
ρ (z0)

u ≤ Cu(z0), (3.5)

for every non-negative solution u of L in O and for any ρ ∈ ]0, θr]. If we put T = c−1
R θ2r2 we

have At ⊆ S(ε)
ρ with ρ =

√
cRt ≤ θr when t ≤ T . The claim follows from (3.5). ¤

The previous proposition states a Harnack inequality for a paraboloid of arbitrarily large
width R: we next make a suitable choice of R in order to use (3.3) in the proof of Theorem 1.1.
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Proposition 3.3 There exists R > 1 only dependent on L such that

exp(s(λ ·X + Y ))(0) ∈ PR,|λ|−2 , (3.6)

for any λ ∈ Rm, λ 6= 0, and s ∈ ]0, |λ|−2]. The statement also holds for λ = 0: in this case
exp(sY )(0) ∈ PR,T for any s, T > 0 with s ≤ T .

Proof. If λ 6= 0, we set
exp(s(λ ·X + Y ))(0) = (γ(s),−s),

and recall the expressions (2.2) of the vector fields Xp and Y . We aim to show that under the
condition

0 < s|λ|2 ≤ 1, (3.7)

then (γ(s),−s) ∈ PR,|λ|−2 for some suitable R > 1 only dependent on L, or in other terms

|γ(k)
i (s)| 2k < Rs, i = 1, . . . , mk, k = 1, . . . , n. (3.8)

We have γ(1)(s) = sλ, so that
|γ(1)(s)|2 = s2|λ|2 < Rs

by (3.7) provided that R > 1. This proves the case k = 1 in (3.8). Next, we have

γ̇(2)(s) =
m∑

p=1

λp ap
1(γ

(1)(s)) + b0.

Then, for some constant vector v ∈ V2, we have

γ(2)(s) = s(s|λ|2v + b0).

By (3.7) we may choose R, only dependent on L, large enough so that

|γ(2)
i (s)| ≤ Rs, i = 1, . . . , m2

which proves the case k = 2 in (3.8). For 3 ≤ k ≤ n, we have

γ̇(k)(s) =
m∑

p=1

λp ap
k−1(γ

(1)(s), . . . , γ(k−1)(s)) + bk−2(γ(1)(s), . . . , γ(k−2)(s)),

and, since ap
k and bk are δ−homogeneous functions of degree k, a straightforward inductive

argument yields
γ(k)(s) = s

k
2 (v0 + (s|λ|2) 1

2 v1 + · · ·+ (s|λ|2) k
2 vk)

for some constant vectors vj belonging to Vk and only dependent on L. Therefore, by (3.7) we
may enlarge R = R(L) if necessary, so that (3.8) holds. The same argument applies to the case
λ = 0. ¤

We are now in position to prove Theorem 1.1. Note that, in the statement, the domain
of the solution u is the strip RN × ]t0 − cs, t0]; here we prove inequality (1.5) under a bit less
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restrictive assumptions. Theorem 1.1 will be a direct consequence of the following Proposition
3.4. The proof is based on the construction of a Harnack chain along the path

γ(τ) = exp(τs(λ ·X + Y ))(z0), τ ∈ [0, 1].

where s > 0, λ ∈ Rm and z0 ∈ RN+1 are given. In view of Proposition 3.3, if k is the natural
number such that

k − 1
|λ|2 < s ≤ k

|λ|2 , (3.9)

we consider the set {z0, . . . , zk} defined as

zj = exp
(

j

|λ|2 (λ ·X + Y )
)

(z0), j = 1, . . . , k − 1, (3.10)

and zk = exp(s(λ ·X + Y ))(z0), and we will show that it is a Harnack chain.

Proposition 3.4 Let O be a domain of RN+1, z0 ∈ O, λ ∈ Rm and s > 0. Being c, C

the constants in Proposition 3.2, we set r = min
{

1
|λ|√c

,
√

s
c

}
. Suppose that Cr(zj) ⊆ O for

j = 0, . . . , k − 1, where the set {z0, . . . , zk} is defined in (3.10). Then

u(exp(s(λ ·X + Y ))(z0)) ≤ C1+s|λ|2u(z0),

for every non-negative solution u to Lu = 0 in O.

Proof. We first suppose s ≤ 1
|λ|2 : in this case s = cr2 and k = 1, then we apply once

Proposition 3.2 in view of (3.6).
Suppose now s > 1

|λ|2 . We consider the set {z0, . . . , zk} defined in (3.10) and we show that
it is a Harnack chain. To this aim it suffices to note that

zj = zj−1 ◦ exp
(

1
|λ|2 (λ ·X + Y )

)
(0), j = 1, . . . , k − 1,

and to recall (3.6). Then we apply Proposition 3.2 k times since in this case |λ|2 = cr2 and
Cr(zj) ⊆ O, by our hypothesis. Note that k < 1 + s|λ|2 by (3.9) and the thesis easily follows. ¤
Proof of Theorem 1.1. We consider the set {z0, . . . , zk} defined in (3.10) and we note that
Cr(zj) ⊆ RN × ]t0 − cs, t0], for any j = 0, . . . , k − 1, provided that we choose c ≥ 1 + 1

c̄ . Then
the claim follows from Proposition 3.4. ¤

4 Global Harnack inequalities

In this section, by applying repeatedly Theorem 1.1, we prove a Harnack inequality for non-
negative solutions to Lu = 0 in a strip RN × I in the case of a Lie algebra of step three, so
that RN = V1 ⊕ V2 ⊕ V3. We remark that [Xr, [Xp, Xq]] and [Xp, Y ] are both commutators
of order three but they play a different role in our estimates; hence it is convenient to split
V3 as W ′ ⊕ W ′′, where W ′ =span{[Xr, [Xp, Xq]] | r, p, q = 1, . . . , m1}, W ′′ = V3 ∩ (W ′)⊥ and,
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accordingly, x(3) = w′ + w′′, with w′ ∈ W ′ and w′′ ∈ W ′′ (actually, the space V3 can be split in
other ways, however it seems that this choice yields better estimates, see Remark 4.7 below).

We next state a Harnack inequality for a general operator acting on a Lie algebra of step
three. Then some more accurate estimate will be given in Propositions 4.2, 4.3 and 4.4 under
geometrical conditions on the Lie group.

Proposition 4.1 Let L be the operator in (1.1) on a group of step three and let z0 = (x0, t0) ∈
RN+1, T > 0. There exist two constants c > 0 and C > 1, only dependent on L, such that, if u
is a non-negative solution to Lu = 0 in RN × ]t0 − cT, t0 + T ], then

u(z0) ≤ exp
(

C

(
1 +

|x|6G
s3

))
u(z0 ◦ z), (4.1)

for every z = (x, s) ∈ RN×]0, T ].

The examples (1.11) and (1.12) in the introduction show that (4.1) cannot be improved in
general. We next state some sharper estimates for the operators in the Examples 1.3, 1.4 and
1.5.

Proposition 4.2 Let L be a parabolic operator on a Carnot group of step three (cf. Example
1.3) and let z0 = (x0, t0) ∈ RN+1, T > 0. There exist two constants c > 0 and C > 1, only
dependent on L, such that, if u is a non-negative solution to Lu = 0 in RN × ]t0 − cT, t0 + T ],
then

u(z0) ≤ exp
(

C

(
1 +

|x|2G
s

))
u(z0 ◦ z), (4.2)

for every z = (x, s) ∈ RN×]0, T ].

Proposition 4.3 Let L be a Kolmogorov type operator on a group K of step three (cf. Example
1.4) and let z0 = (x0, t0) ∈ RN+1, T > 0. There exist two constants c > 0 and C > 1, only
dependent on L, such that, if u is a non-negative solution to Lu = 0 in RN × ]t0 − cT, t0 + T ],
then

u(z0) ≤ exp

(
C

(
1 +

∣∣x(1)
∣∣2
K

s
+

∣∣x(3)
∣∣6
K

s3

))
u(z0 ◦ z), (4.3)

for every z = (x, s) ∈ RN×]0, T ].

Proposition 4.4 Let L be the operator in (1.22) on a linked group L = G4K of step three.
Let z0 = (ξ0, η0, ω0, t0) ∈ RN+1 ≡ Rm × Rn × Rr × R and T > 0. There exist two constants
c > 0 and C > 1, only dependent on L, such that, if u is a non-negative solution to Lu = 0 in
RN × ]t0 − cT, t0 + T ], then

u(z0) ≤ exp

(
C

(
1 +

∣∣(ξ, η)
∣∣2
L

s
+

∣∣ω∣∣6
L

s3

))
u(z0 ◦ z), (4.4)

for every z = (ξ, η, ω, s) ∈ RN×]0, T ].
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Before giving the proof, we introduce some notations and prove some preliminary lemmas.
Since the Lie algebra has step three, the vector fields in (2.2) take the form

Xp = ∂p + ap
1

(
x(1)

)∇(2) + ap
2

(
x(1), x(2)

)∇(3), p = 1, . . . ,m1,

Y = b0∇(2) + b1

(
x(1)

)∇(3) − ∂t,
(4.5)

with ap
1 : V1 −→ V2 and b1 : V1 −→ V3 linear functions, b0 ∈ V2 and

ap
2

(
x(1), x(2)

)
= Ap

2

(
x(1)

)
+ Ap

1

(
x(2)

)
(4.6)

where Ap
2 : V1 −→ V3 is a bilinear function and Ap

1 : V2 −→ V3 is a linear function, for
p = 1, . . . , m1.

Lemma 4.5 Let z = (x− tb0, t) ∈ RN ×R+ with x ∈ W ′′ and b0 ∈ V2 as in (4.5)2. There exist
two constants c > 0, C > 1, only dependent on L, such that

u(0) ≤ exp
(

C

(
1 +

|x|2
t3

))
u(z), (4.7)

for every non-negative solution u to Lu = 0 in RN × ]−ct, t].

Proof. In order to apply Theorem 1.1, we aim to connect z to 0 by using suitable integral
curves of the vector fields λXp +Y . This is possible since the Campbell-Hausdorff formula (2.3)
(with R3 ≡ 0 since we assume that the Lie algebra has step three) yields

eXp+Y ◦ e−Xp+Y = e2Y +[Xp,Y ]. (4.8)

To prove our claim, we select a basis
{

[Xp1 , Y ], . . . , [Xpm′′3
, Y ]

}

of W ′′ and, without loss of generality, we assume that

[Xsk
, Y ] = ∂m1+m2+m′

3+k for k = 1, . . . , m′′
3. (4.9)

We put τ = t
2m′′

3
, z0 = z,

zk = zk−1 ◦ eτ(λkXsk
+Y ) ◦ eτ(−λkXsk

+Y ), k = 1, . . . ,m′′
3, (4.10)

and we choose λk such that zm′′
3

= 0. By (4.8), we have

zk = zk−1 ◦ e2τY +τ2λk[Xsk
,Y ],

then, by using again the Campbell-Hausdorff formula and (4.9), we get

zm′′
3

= z ◦ exp
(

tY +
∑

1≤k≤m′′
3

τ2λk[Xsk
, Y ]

)
=

(
x +

∑

1≤k≤m′′
3

τ2λke
(3)
m′

3+k
, 0

)

The claim follows by setting λk = −τ−2x
(3)
m′

3+k
in (4.10) and applying Theorem 1.1 repeatedly.

¤
2The term −tb0 in z appears in order to take into account of the constant drift of Y .
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Lemma 4.6 Let z = (x− 2tb0, 2t) ∈ RN × R+, with x ∈ V3. There exist two constants c >
0, C > 1, only dependent on L, such that

u(z̄) ≤ exp


C

(
1 +

∑

1≤k≤m′′
3

|xm1+m2+k|
2
3

t

)
u(z), (4.11)

for every non-negative solution u to Lu = 0 in RN × ]−ct, 2t]. In (4.11)

z̄ = (x̄− tb0, t) , (4.12)

where x̄ ∈ V3 is such that

x̄
(3)
j = 0, j = 1, . . . , m′

3, x̄
(3)
j = x

(3)
j , j = m′

3 + 1, . . . , m3.

Proof. We connect z to z̄ in (4.12) by using a path moving in the direction of [Xr, [Xp, Xq]]: in
order to apply Theorem 1.1 we use suitable integral curves of the vector fields Xr + Y , Xp + Y
and Xq + Y . Indeed, by the Campbell-Hausdorff formula, we have

e4(Xr+Y )◦ (
eXp+Y ◦ eXq+Y ◦ e−Xp+Y ◦ e−Xq+Y

)

◦ e4(−Xr+Y ) ◦ (
e−Xp+Y ◦ e−Xq+Y ◦ eXp+Y ◦ eXq+Y

)

= e16Y +4[Xr,[Xp,Xq ]]+4[4Xr+Xp+Xq ,Y ].

(4.13)

Arguing as in the proof of Lemma 4.5, we select a basis
{

[Xr1 , [Xp1 , Xq1 ]], . . . , [Xrm′3
, [Xpm′3

, Xqm′3
]]
}

of W ′ and, without loss of generality, assume that

[Xrk
, [Xpk

, Xqk
]] = ∂m1+m2+k for k = 1, . . . , m′

3. (4.14)

Then we put τ = t
32m′

3
, z̄0 = z and

z̄k = z̄k−1 ◦ e4τ(λkXrk
+Y ) ◦

(
eτ(λkXpk

+Y ) ◦ eτ(λkXqk
+Y ) ◦ eτ(−λkXpk

+Y ) ◦ eτ(−λkXqk
+Y )

)

◦ e4τ(−λkXrk
+Y ) ◦

(
eτ(−λkXpk

+Y ) ◦ eτ(−λkXqk
+Y ) ◦ eτ(λkXpk

+Y ) ◦ eτ(λkXqk
+Y )

)
,

(4.15)

for k = 1, . . . ,m′
3, where λ1, . . . , λm′

3
will be chosen later. By (4.13), we have

z̄k =z̄k−1 ◦ e16τY +4τ3λ3
k[Xrk

,[Xpk
,Xqk

]]+4τ2λk[Xpk
+Xqk

+4Xrk
,Y ];

moreover, by the Campbell-Hausdorff formula and (4.14), we get

z̄m′
3

= exp
(

t

2
Y + 4τ2

∑

1≤k≤m′
3

(
τλ3

ke
(3)
k + λk[Xpk

+ Xqk
+ 4Xrk

, Y ]
))

(z). (4.16)
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Note that the approximation (4.15) of the commutator [Xrk
, [Xpk

, Xqk
]] introduces in (4.16) the

“error term” [Xpk
+ Xqk

+ 4Xrk
, Y ]. Therefore we rely on (4.8) to remove it: we set z0 = zm′

3

and

zk = zk−1 ◦
(
e4τ(−λkXrk

+Y ) ◦ e4τ(λkXrk
+Y )

)

◦
(
e2τ(−λkXpk

+Y ) ◦ e2τ(λkXpk
+Y )

)
◦

(
e2τ(−λkXqk

+Y ) ◦ e2τ(λkXqk
+Y )

)

for k = 1, . . . ,m′
3. By (4.8) we obtain

zm′
3

= z ◦ exp
(

tY + 4τ3
∑

1≤k≤m′
3

λ3
ke

(3)
k

)
=

(
x− tb0 + 4τ3

∑

1≤k≤m′
3

λ3
ke

(3)
k , t

)
. (4.17)

Next we choose λk such that

x
(3)
k + 4λ3

kτ
3 = 0, k = 1, . . . , m′

3,

and the claim follows from Theorem 1.1. ¤

Remark 4.7 Consider the vector space

W = span {[Xr, [Xp, Xq]] | r, p, q = 1, . . . ,m1} ∩ span {[Xp, Y ] | p = 1, . . . , m1}

and suppose that it is non-trivial. Then we can use both (4.8) and (4.13) to obtain an estimate
of the form

u(0) ≤ C min

{
exp

(
1 +

|x|2
t3

)
, exp

(
1 +

|x| 23
t

)}
u(z),

for z = (x− tb0, t) ∈ RN × R+ with x ∈ W . However this estimate does not improve (4.11).

Lemma 4.8 Let z = (x, 3t) ∈ V ⊥
1 ×R+. There exist two constants c > 0, C > 1, only dependent

on L, such that

u(z̄) ≤ exp

(
C

(
1 +

∣∣x(2)
∣∣

t

))
u(z), (4.18)

for every non-negative solution u to Lu = 0 in RN × ]−ct, 3t], where

z̄ = (x̄− 2tb0, 2t) , (4.19)

with x̄ ∈ V3, x̄(3) = x(3).

Proof. We connect z to z̄ in (4.19), by using a combination of paths of the following form

eXp+Y ◦ eXq+Y ◦ e−Xp+Y ◦ e−Xq+Y = e4Y +[Xp,Xq ]+2[Xp+Xq ,Y ]+ 1
2
[Xp+Xq ,[Xp,Xq ]]. (4.20)

Then we select a basis {
[Xp1 , Xq1 ], . . . , [Xpm2

, Xqm2
]
}
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of span{[Xp, Xq] | p, q = 1, . . . ,m1} and we assume, since it is not restrictive, that

[Xpk
, Xqk

] = ∂m1+k + apkqk
1 ∇(3), k = 1, . . . , m2, (4.21)

for some suitable linear functions apkqk
1 . Next we put τ = t

40m2
, z0 = z and

zk = zk−1 ◦ eτ(λkXpk
+Y ) ◦ eτ(λkXqk

+Y ) ◦ eτ(−λkXpk
+Y ) ◦ eτ(−λkXqk

+Y ), k = 1, . . . ,m2, (4.22)

for some λ1, . . . , λm2 to be suitably chosen. By (4.20), we have

zk =exp
(

4τY + τ2λ2
k[Xpk

, Xqk
]

+ 2τ2λk[Xpk
+ Xqk

, Y ] +
1
2
τ3λ3

k[Xpk
+ Xqk

, [Xpk
, Xqk

]]
)

(zk−1);

then if we let ¯̄z0 = zm2 , we get

¯̄z0 =exp
(

t

10
Y +

∑

1≤k≤m2

τ2λ2
k[Xpk

, Xqk
]

+ 2
∑

1≤k≤m2

τ2λk[Xpk
+ Xqk

, Y ] +
1
2

∑

1≤k≤m2

τ3λ3
k[Xpk

+ Xqk
, [Xpk

, Xqk
]]
)

(z).

Before choosing the λk’s, we remove the error terms [Xpk
+ Xqk

, Y ] and [Xpk
+ Xqk

, [Xpk
, Xqk

]]
as in the proof of Lemma 4.6. Therefore we set

¯̄zk = ¯̄zk−1 ◦ e
4τ

(
−λk

2
Xpk

+Y
)
◦

(
e
τ
(
−λk

2
Xpk

+Y
)
◦ e

τ
(
−λk

2
Xqk

+Y
)
◦ e

τ
(

λk
2

Xpk
+Y

)
◦ e

τ
(

λk
2

Xqk
+Y

))

◦ e
4τ

(
λk
2

Xpk
+Y

)
◦

(
e
τ
(

λk
2

Xpk
+Y

)
◦ e

τ
(

λk
2

Xqk
+Y

)
◦ e

τ
(
−λk

2
Xpk

+Y
)
◦ e

τ
(
−λk

2
Xqk

+Y
))

◦ e
4τ

(
−λk

2
Xqk

+Y
)
◦

(
e
τ
(
−λk

2
Xpk

+Y
)
◦ e

τ
(
−λk

2
Xqk

+Y
)
◦ e

τ
(

λk
2

Xpk
+Y

)
◦ e

τ
(

λk
2

Xqk
+Y

))

◦ e
4τ

(
λk
2

Xqk
+Y

)
◦

(
e
τ
(

λk
2

Xpk
+Y

)
◦ e

τ
(

λk
2

Xqk
+Y

)
◦ e

τ
(
−λk

2
Xpk

+Y
)
◦ e

τ
(
−λk

2
Xqk

+Y
))

(4.23)

for k = 1, . . . ,m2 and, by (4.13), we have

¯̄zk =¯̄zk−1 ◦ e32τY− 1
2
τ3λ3

k[Xpk
+Xqk

,[Xpk
,Xqk

]]−12τ2λk[Xpk
+Xqk

,Y ].

Then, if we set z̄0 = ¯̄zm2 , by the Campbell-Hausdorff formula, we get

z̄0 = exp
(

9
10

tY +
∑

1≤k≤m2

τ2λ2
k[Xpk

, Xqk
]− 10

∑

1≤k≤m2

τ2λk[Xpk
+ Xqk

, Y ]
)

(z).

Finally, we annihilate the last error term, by setting

z̄k = z̄k−1 ◦
(
eτ(10λkXpk

+Y ) ◦ eτ(−10λkXpk
+Y )

)
◦

(
eτ(10λkXqk

+Y ) ◦ eτ(−10λkXqk
+Y )

)
,
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for k = 1, . . . ,m2, and by (4.8) we have

z̄k = z̄k−1 ◦ e4τY +10τ2λk[Xpk
+Xqk

,Y ].

It is easy to check that

z̄ ≡ z̄m2 = exp
(

tY +
∑

1≤k≤m2

τ2λ2
k[Xpk

, Xqk
]
)

(z),

thus, by using (4.21), we infer

x̄(2) = x(2) +
∑

1≤k≤m2

τ2λ2
kem1+k + tb0.

We next choose λk so that our claim x̄(2) = −2tb0 holds. Clearly this means τ2λ2
k = −(3tb0 +

x)m1+k and the equation can be solved only when (3tb0 + x)m1+k ≤ 0; however, if this is not
the case, we may exchange the role of Xpk

and Xqk
in (4.22) to obtain τ2λ2

k = (3tb0 + x)m1+k

instead. In both cases Theorem 1.1 gives

u(z̄) ≤ exp

(
c′

(
1 +

∣∣x(2) + t b0

∣∣
t

))
u(z),

and the claim (4.18) follows. ¤

Lemma 4.9 Let z = (x, 4t) ∈ RN×R+. There exist two constants c > 0, C > 1, only dependent
on L, such that

u(z̄) ≤ exp

(
C

(
1 +

∣∣x(1)
∣∣2

t

))
u(z), (4.24)

for every non-negative solution u to Lu = 0 in RN × ]−ct, 4t], where

z̄ =
(
x̄(2) + x̄(3), 3t

)
(4.25)

and (see the notations (4.5)-(4.6))

x̄(2) =x(2) + tb0 − 1
2

∑

1≤p≤m1

xpa
p
1

(
x(1)

)
,

x̄(3) =x(3) +
t

2
b1

(
x(1)

)−
∑

1≤p≤m1

xp


1

3
Ap

2

(
x(1)

)
+ Ap

1

(
x(2) +

t

2
b0 − 1

3

∑

1≤q≤m1

xqa
q
1

(
x(1)

))

 .

Proof. We set
z0 = z ◦ eτ(λ1X1+Y ) ◦ eτ(λ2X2+Y ) ◦ · · · ◦ eτ(λm1Xm1+Y ),
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for some λ1, . . . , λm1 and τ > 0 to be suitably chosen. By the Campbell-Hausdorff formula, we
have

z0 = exp
(

m1τY + τ
∑

1≤p≤m1

λpXp + τ2
∑

1≤k≤m2
1

c1,kλpk
λqk

[Xpk
, Xqk

]

+τ3
∑

1≤k≤m3
1

c2,kλrk
λpk

λqk
[Xrk

, [Xpk
, Xqk

]] + τ2
∑

1≤k≤m1

c3,kλk[Xk, Y ]
)

(z)

for some constants c1,k, c2,k, c3,k (here we rearranged the sums to simplify the notations). Next
we proceed as in the previous lemmas in order to remove the error terms. We set αk =

√|c1,k|
and

zk = zk−1 ◦ eτ(αkλpk
Xpk

+Y ) ◦ eτ(αkλqk
Xqk

+Y ) ◦ eτ(−αkλpk
Xpk

+Y ) ◦ eτ(−αkλqk
Xqk

+Y ),

if c1,k ≤ 0 and

zk = zk−1 ◦ eτ(αkλqk
Xqk

+Y ) ◦ eτ(αkλpk
Xpk

+Y ) ◦ eτ(−αkλqk
Xqk

+Y ) ◦ eτ(−αkλpk
Xpk

+Y ),

otherwise, for k = 1, . . . , m2
1. By (4.20), we have

zk =exp
(

4τY − τ2c1,kλpk
λqk

[Xpk
, Xqk

] + 2τ2αk[λpk
Xpk

+ λqk
Xqk

, Y ]

− 1
2
τ3c1,kαkλpk

λqk
[λpk

Xpk
+ λqk

Xqk
, [Xpk

, Xqk
]]
)

(zk−1).

Then if we let ¯̄z0 = zm2
1
, we get

¯̄z0 =exp
(

(m1 + 4m2
1)τY + τ

∑

1≤p≤m1

λpXp

+ τ3
∑

1≤k≤m3
1

c4,kλrk
λpk

λqk
[Xrk

, [Xpk
, Xqk

]] + τ2
∑

1≤k≤m1

c5,kλk[Xk, Y ]
)

(z)

for some constants c4,k, c5,k. Next we set βk = −sign(c4,k) 3
√|c4,k| and

¯̄zk = ¯̄zk−1 ◦ e4τ( 1
4
βkλrk

Xrk
+Y )

◦
(
eτ(βkλpk

Xpk
+Y ) ◦ eτ(βkλqk

Xqk
+Y ) ◦ eτ(−βkλpk

Xpk
+Y ) ◦ eτ(−βkλqk

Xqk
+Y )

)

◦ e4τ(− 1
4
βkλrk

Xrk
+Y )

◦
(
eτ(−βkλpk

Xpk
+Y ) ◦ eτ(−βkλqk

Xqk
+Y ) ◦ eτ(βkλpk

Xpk
+Y ) ◦ eτ(βkλqk

Xqk
+Y )

)
,

for k = 1, . . . ,m3
1. By (4.13), we have

¯̄zk =¯̄zk−1 ◦ e16τY−c4,kτ3λrk
λpk

λqk
[Xrk

,[Xpk
,Xqk

]]−4βkτ2[λpk
Xpk

+λqk
Xqk

+λrk
Xrk

,Y ];
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thus, if we let z̄0 = zm3
1
, by the Campbell-Hausdorff formula, we get

z̄0 = exp
(

(m1 + 4m2
1 + 16m3

1)τY + τ
∑

1≤p≤m1

λpXp + τ2
∑

1≤k≤m1

c6,,kλk[Xk, Y ]
)

(z)

for some constants c6,k. Finally, if we put

z̄k = z̄k−1 ◦ eτ(−c6,kλkXk+Y ) ◦ eτ(c6,kλkXk+Y ), k = 1, . . . , m1,

by (4.8), we have

z̄k = z̄k−1 ◦ e2τY−τ2c6,kλk[Xk,Y ],

and, by using again the Campbell-Hausdorff formula, we get, for τ = t(3m1 + 4m2
1 + 16m3

1)
−1,

z̄ ≡ z̄m1 = exp
(

tY + τ
∑

1≤p≤m1

λpXp

)
(z).

Then we set λp = −xp

τ so that z̄ ∈ V ⊥
1 ×R. With this choice of the λp’s, it is straightforward to

check that x̄(2) and x̄(3) are as in the statement. ¤
Proof of Proposition 4.1. Since L is invariant with respect to the left ◦-translations, it is
not restrictive to assume z0 = 0. We denote t = s

4 , x = x(1)+x(2)+w′+w′′ and we apply Lemma
4.9 to the point z = (x, 4t), then Lemma 4.8 to the point z =

(
x̄(2) + x̄(3), 3t

)
, where x̄(2) and

x̄(3) are as in the statement of Lemma 4.9. We next apply Lemma 4.6 to z =
(
x̄(3) − 2tb0, 2t

)
,

and finally Lemma 4.5 to z = (w̄′′ − tb0, t) (recall the notation x̄(3) = w̄′ + w̄′′). We thus get

u(0) ≤ exp


C0

(
1 +

∣∣x(1)
∣∣2

s
+

∣∣x̄(2)
∣∣

s
+

∣∣w̄′∣∣
2
3

s
+

∣∣w̄′′∣∣2
s3

)
u(z), (4.26)

for a positive constant C0. To complete the proof, we only need to estimate the norm of the
vectors x(2), w̄′ and w̄′′. From the definition of x̄(2) we infer

∣∣x̄(2)
∣∣ ≤ ∣∣x(2)

∣∣ + t
∣∣b0

∣∣ + c0

∣∣x(1)
∣∣2,

for a suitable positive constant c0, then (4.26) becomes

u(0) ≤ exp


C1

(
1 +

∣∣x(1)
∣∣2

s
+

∣∣x(2)
∣∣

s
+

∣∣w̄′∣∣
2
3

s
+

∣∣w̄′′∣∣2
s3

)
u(z). (4.27)

Analogously, from the definition of x̄(3) we get
∣∣x̄(3) − x(3)

∣∣ ≤ c1s
∣∣x(1)

∣∣ + c2

∣∣x(1)
∣∣3 + c3

∣∣x(1)
∣∣∣∣x(2)

∣∣, (4.28)

for three positive constants c1, c2 and c3 depending on the operator L. Then we find

u(z0) ≤ exp


C

(
1 +

∣∣x(1)
∣∣6

s3
+

∣∣x(1)
∣∣2∣∣x(2)

∣∣2
s3

+

∣∣x(2)
∣∣

s
+

∣∣w′∣∣
2
3

s
+

∣∣w′′∣∣2
s3

)
u(z0 ◦ z),
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and the claim follows. ¤
Proof of Proposition 4.2. Under the assumptions W ′′ =

{
0
}

so that, arguing as in the
proof of Proposition 4.1, we find

u(0) ≤ exp


C1

(
1 +

∣∣x(1)
∣∣2

s
+

∣∣x(2)
∣∣

s
+

∣∣x̄(3)
∣∣ 2
3

s

)
u(z),

instead of (4.27). The claim follows from (4.28). ¤
Proof of Proposition 4.3. In this case we have V2 = W ′ =

{
0
}

and x̄(3) = x(3) + s
2b1

(
x(1)

)
.

Then (4.26) reads

u(0) ≤ exp

(
C0

(
1 +

∣∣x(1)
∣∣2

s
+

∣∣x̄(3)
∣∣2

s3

))
u(z),

and the claim plainly follows. ¤
Proof of Proposition 4.4. According with the notations of Example 1.5, we have

{
(ξ, 0, 0) | ξ ∈ Rm

}
= V1,

{
(0, η, 0) | η ∈ Rn

}
= V2 + W ′,

{
(0, 0, ω) | ω ∈ Rr

}
= W ′′.

We also denote x = (ξ, η, ω). In our setting, by (1.23) we have that ap
2

(
x(1), x(2)

) ∈ W ′ in (4.5).
Moreover, by (1.24), b0 = 0 and b1

(
x(1)

) ∈ W ′′ in (4.5). Furthermore from the linearity of Ap
1

and Ap
2 in (4.6), it follows that Ap

2

(
x(1)

)
, Ap

1

(
x(2)

) ∈ W ′ for any x ∈ RN . Then we use (4.27) as
in the proof of Proposition 4.1, with

w̄′ = w′ −
∑

1≤p≤m1

xp


1

3
Ap

2

(
x(1)

)
+ Ap

1

(
x(2) − 1

3

∑

1≤q≤m1

xqa
q
1

(
x(1)

))

 ,

w̄′′ = w′′ +
s

2
b1

(
x(1)

)
.

This accomplishes the proof. ¤

5 Gaussian estimates

In this section we prove Proposition 1.2 for Lie groups of step three by using the Harnack
estimates of the previous section. We also give sharp Gaussian estimates for the operators in
Examples 1.3, 1.4 and 1.5.

Proposition 5.1 Let L be the parabolic operator (1.14) on a Carnot G group of step three and
let Γ be its fundamental solution. There exists a positive constant C such that

Γ(x, t) ≥ C

t
Q−2

2

exp
(
−C

|x|2G
t

)
, ∀(x, t) ∈ RN × R+. (5.1)
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Proposition 5.2 Let L be the Kolmogorov operator (1.16) on a group K of step three and let
Γ be its fundamental solution. There exists a positive constant C such that

Γ(x, t) ≥ C

t
Q−2

2

exp

(
−C

(∣∣x(1)
∣∣2
K

t
+

∣∣x(3)
∣∣6
K

t3

))
, ∀(x, t) ∈ RN × R+. (5.2)

Proposition 5.3 Let L be the operator in (1.22) on a linked group L = G4K of step three
and let Γ be its fundamental solution. There exists a positive constant C such that

Γ(x, y, w, t) ≥ C

t
Q−2

2

exp

(
−C

(∣∣(x, y)
∣∣2
L

t
+

∣∣w∣∣6
L

t3

))
, ∀(x, y, w, t) ∈ RN × R+. (5.3)

Proof of Proposition 1.2. For ξ ∈ RN , we apply Proposition 4.1 to u = Γ with z0 =
(
0, c

c+1

)
,

T = 1
c+1 and z = z−1

0 ◦ (ξ, 1) (here c is the constant in the statement of Proposition 4.1). Note
that z = (x, t) with t = 1

c+1 and, by the triangular inequality,

|x|G ≤ ‖z‖G ≤ c0

(‖(ξ, 1)‖G + ‖z−1
0 ‖G

) ≤ C ′ (|ξ|G + 1)

for some positive constant C ′ only depending on c and c0. Thus we find

Γ(ξ, 1) ≥ C exp
(−C|x|6G

)
Γ

(
0,

c

c + 1

)
≥ C1 exp

(−C1|ξ|6G
)
, (5.4)

where the constant C1 does not depend on ξ ∈ RN . To prove the claim it is sufficient to use the
homogeneity of the fundamental solution (see (1.4)). ¤
Proof of Proposition 5.1. We argue exactly as above by using Proposition 4.2 instead of
Proposition 4.1. ¤
Proof of Proposition 5.2. We proceed as in the proof of Proposition 1.2 and use Proposition
4.3. By (1.21) it is easy to check that x = ξ, since z−1

0 = −z0 so that

(x, t) =
(

0,− c

c + 1

)
◦ (ξ, 1) =

(
ξ,

1
c + 1

)
.

Then we obtain
Γ(ξ, 1) ≥ C1 exp

(
−C1

(∣∣ξ(1)
∣∣2 +

∣∣ξ(3)
∣∣2

))

instead of (5.4). We conclude as in the proof of Proposition 1.2, by using the homogeneity of Γ.
¤
Proof of Proposition 5.3. For (ξ, η, ω) ∈ Rm × Rn × Rr, we argue again as above and use
Proposition 4.4 with z0 =

(
0, 0, 0, c

c+1

)
to get the following inequality

Γ(ξ, η, ω, 1) ≥ C exp
(
−C

(∣∣(x, y)
∣∣2
L + |w|2

))
, (5.5)

where (x, y, w, t) = z−1
0 ◦ (ξ, η, ω, 1). From (1.25) and (1.21) it follows that z−1

0 = −z0. Thus,
using again (1.25), (1.21) and (1.26), we infer

(x, y, w, t) =
(

0, 0, 0,− c

c + 1

)
◦ (ξ, η, ω, 1) =

(
ξ, η, ω,

1
c + 1

)
,

and the claim follows. ¤

21



References

[1] G. K. Alexopoulos, Sub-Laplacians with drift on Lie groups of polynomial volume
growth., Mem. Am. Math. Soc., 739 (2002), p. 101 p.

[2] D. G. Aronson and J. Serrin, Local behavior of solutions of quasilinear parabolic equa-
tions, Arch. Rational Mech. Anal., 25 (1967), pp. 81–122.

[3] A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni, Uniform Gaussian estimates of the
fundamental solutions for heat operators on Carnot groups., Adv. Differ. Equ., 7 (2002),
pp. 1153–1192.

[4] H. D. Cao and S.-T. Yau, Gradient estimates, Harnack inequalities and estimates for
heat kernels of the sum of squares of vector fields, Math. Z., 211 (1992), pp. 485–504.

[5] G. B. Folland, Subelliptic estimates and function spaces on nilpotent Lie groups, Ark.
Mat., 13 (1975), pp. 161–207.

[6] D. S. Jerison and A. Sánchez-Calle, Estimates for the heat kernel for a sum of squares
of vector fields, Indiana Univ. Math. J., 35 (1986), pp. 835–854.

[7] A. E. Kogoj and E. Lanconelli, An invariant Harnack inequality for a class of hypoel-
liptic ultraparabolic equations, Mediterr. J. Math., 1 (2004), pp. 51–80.

[8] , One-side Liouville theorems for a class of hypoelliptic ultraparabolic equations, “Geo-
metric Analysis of PDE and Several Complex Variables” Contemporary Mathematics Pro-
ceedings, (2004).

[9] L. P. Kupcov, The fundamental solutions of a certain class of elliptic-parabolic second
order equations, Differencial′nye Uravnenija, 8 (1972), pp. 1649–1660, 1716.

[10] S. Kusuoka and D. Stroock, Applications of the Malliavin calculus. III, J. Fac. Sci.
Univ. Tokyo Sect. IA Math., 34 (1987), pp. 391–442.

[11] E. Lanconelli, A. Pascucci, and S. Polidoro, Linear and nonlinear ultraparabolic
equations of Kolmogorov type arising in diffusion theory and in finance, in Nonlinear prob-
lems in mathematical physics and related topics, II, vol. 2 of Int. Math. Ser. (N. Y.),
Kluwer/Plenum, New York, 2002, pp. 243–265.

[12] E. Lanconelli and S. Polidoro, On a class of hypoelliptic evolution operators, Rend.
Sem. Mat. Univ. Politec. Torino, 52 (1994), pp. 29–63. Partial differential equations, II
(Turin, 1993).

[13] A. Nagel, E. M. Stein, and S. Wainger, Balls and metrics defined by vector fields. I.
Basic properties, Acta Math., 155 (1985), pp. 103–147.

[14] A. Pascucci and S. Polidoro, A Gaussian upper bound for the fundamental solutions
of a class of ultraparabolic equations, J. Math. Anal. Appl., 282 (2003), pp. 396–409.

[15] A. Pascucci and S. Polidoro, On the Harnack inequality for a class of hypoelliptic
evolution equations, to appear in Trans. Amer. Math. Soc., (2004).

22



[16] S. Polidoro, On a class of ultraparabolic operators of Kolmogorov-Fokker-Planck type,
Matematiche (Catania), 49 (1994), pp. 53–105 (1995).

[17] , A global lower bound for the fundamental solution of Kolmogorov-Fokker-Planck equa-
tions, Arch. Rational Mech. Anal., 137 (1997), pp. 321–340.

[18] L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent
groups, Acta Math., 137 (1976), pp. 247–320.

[19] L. Saloff-Coste and D. W. Stroock, Opérateurs uniformément sous-elliptiques sur
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