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Abstract

We adapt the Levi’s parametrix method to prove existence, estimates and qualitative
properties of a global fundamental solution to ultraparabolic partial differential equations of
Kolmogorov type. Existence and uniqueness results for the Cauchy problem are also proved.

1 Introduction

In this paper we adapt the classical Levi’s parametrix method to construct a global fundamental
solution to the following differential equation of Kolmogorov type:

Lu ≡
p0∑

i,j=1

aij(z)∂xixju +
p0∑

i=1

ai(z)∂xiu +
N∑

i,j=1

bijxi∂xju + c(z)u− ∂tu = 0, (1.1)

where z = (x, t) ∈ RN × R and 1 ≤ p0 ≤ N . By convenience, hereafter the term “Kolmogorov
equation” will be shortened to KE. We assume the following hypotheses:

[H.1] the matrix A0 = (aij)i,j=1,...,p0 is symmetric and uniformly positive definite in Rp0 : there
exists a positive constant µ such that

|η|2
µ

≤
p0∑

i,j=1

aij(z)ηiηj ≤ µ|η|2, ∀η ∈ Rp0 , z ∈ RN+1; (1.2)

[H.2] the matrix B ≡ (bij) has constant real entries and takes the following block from:



∗ B1 0 . . . 0
∗ ∗ B2 . . . 0
...

...
...

. . .
...

∗ ∗ ∗ . . . Br

∗ ∗ ∗ . . . ∗




(1.3)
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where Bj is a pj−1 × pj matrix of rank pj , with

p0 ≥ p1 ≥ . . . ≥ pr ≥ 1, p0 + p1 + . . . + pr = N,

and the ∗−blocks are arbitrary.

The regularity hypotheses on the coefficients aij , ai, c will be specified later: roughly speaking,
we assume the Hölder continuity with respect to some homogeneous norm naturally induced by
the equation.

The prototype of (1.1) is the following equation

∂x1x1u + x1∂x2u− ∂tu = 0, (x1, x2, t) ∈ R3, (1.4)

whose fundamental solution was explicitly constructed by Kolmogorov [20]. In his celebrated
paper [18], Hörmander generalized this result to constant coefficients KEs, i.e. equations of the
form (1.1), with constant aij and ai = c ≡ 0 for i = 1, . . . , p0, satisfying the following condition:

Ker(A) does not contain non-trivial subspaces which are invariant for B. (1.5)

In (1.5), A denotes the N ×N matrix

A =
(

A0 0
0 0

)
. (1.6)

Let us recall that, for constant coefficients equations, condition (1.5) is equivalent to the struc-
tural assumptions [H.1]-[H.2] which in turn are equivalent to the classical Hörmander condition:

rank Lie (X1, . . . , Xp0 , Y ) = N + 1, (1.7)

at any point of RN+1. In (1.7), Lie (X1, . . . , Xp0 , Y ) denotes the Lie algebra generated by the
vector fields

Xi =
p0∑

j=1

aij∂xj , i = 1, . . . , p0, and Y = 〈x,BD〉 − ∂t, (1.8)

where 〈·, ·〉 and D respectively denote the inner product and the gradient in RN . A proof of the
equivalence of these conditions is given by Kupcov in [21], Theorem 3 and by Lanconelli and
Polidoro in [23], Proposition A.1.

We recall that a constant coefficients KEs have the remarkable property of being invariant
with respect to the left translations in the law defined by

(x, t) ◦ (ξ, τ) = (ξ + E(τ)x, t + τ), (x, t), (ξ, τ) ∈ RN × R, (1.9)

where
E(t) = e−tBT

. (1.10)

Moreover, let us consider the family of dilations (D(λ))λ>0 on RN+1 defined by

D(λ) ≡ (
D0(λ), λ2

)
= diag

(
λIp0 , λ

3Ip1 , . . . , λ
2r+1Ipr , λ

2
)
, (1.11)
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where Ipj denotes the pj × pj identity matrix. It is known that if (and only if) all the ∗-blocks
in (1.3) are zero matrices, then L is also homogeneous of degree two with respect to (D(λ)) in
the sense that

L ◦D(λ) = λ2(D(λ) ◦ L), ∀λ > 0.

We remark explicitly that GB ≡ (
RN+1, ◦, D(λ)

)
is a homogeneous Lie group only determined

by the matrix B.
In some particular cases, variable coefficients KEs were first studied by Weber [32], Il’in [19]

and Sonin [31] who used the parametrix method to construct a fundamental solution. Yet in
these papers unnecessary restrictive conditions on the regularity of the coefficients are required.
Assuming that the KE in (1.1) satisfies the hypotheses [H.1]-[H.2] and that the ∗-blocks in (1.3)
are zero matrices, the previous results were considerably generalized in a series of papers by
Polidoro [28], [29], [30], by assuming a notion of regularity modeled on the homogeneous Lie
group GB (cf. Definitions 1.2 and 1.3 below). Some of the results of Polidoro were extended to
non-homogeneous KEs by Morbidelli [24]. We also refer to [22] for a survey of the most recent
results about KEs. In this note we aim to consider the general case of (1.1) satisfying [H.1]-[H.2]
with arbitrary ∗-blocks.

The interest in obtaining results for the general class of KEs is not academic. It is well-
known that “homogeneous” KEs (i.e. KEs with null ∗-blocks in (1.3)) play a central role in
the stochastic theory of diffusion processes. On the other hand, more general KEs have been
recently considered for applications in mathematical finance. In the next section we briefly recall
some of the main motivations for studying KEs.

In order to state our main results, we recall the definition of homogeneous norm and B-Hölder
continuity given by Polidoro [28].

Definition 1.1. Given a constant matrix B of the form (1.3) and (D(λ))λ>0 defined as in
(1.11), let (qj)j=1,...,N be such that

D(λ) = diag(λq1 , λq2 , . . . , λqN , λ2).

For every z = (x, t) ∈ RN+1, we set

|x|B =
N∑

j=1

|xj |
1
qj and ‖z‖B = |x|B + |t| 12 . (1.12)

Clearly || · ||B is a norm on RN+1 homogeneous of degree one with respect to the dilations
(D(λ)).

Definition 1.2. We say that a function f is B-Hölder continuous of order α ∈ ]0, 1] on a
domain Ω of RN+1, and we write f ∈ Cα

B(Ω), if there exists a constant C such that

|f(z)− f(ζ)| ≤ C||ζ−1 ◦ z||αB, ∀z, ζ ∈ Ω. (1.13)

In (1.13), ζ−1 denotes the inverse of ζ in the law “◦” in (1.9).

Next, we give the definition of solution to equation Lu = f .
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Definition 1.3. We say that a function u is a solution to the equation Lu = f in a domain
Ω of RN+1, if there exist the Euclidean derivatives ∂xiu, ∂xixju ∈ C(Ω) for i, j = 1, . . . , p0, the
Lie1 derivative Y u ∈ C(Ω) and equation

p0∑

i,j=1

aij(z)∂xixju(z) +
p0∑

i=1

ai(z)∂xiu(z) + Y u(z) + c(z)u(z) = f(z) (1.14)

is satisfied at any z ∈ Ω.

We are now in position to state the following

Theorem 1.4. Assume that L in (1.1) verifies hypotheses [H.1]-[H.2] and that the coefficients
aij , ai, c ∈ Cα

B(RN+1) are bounded functions. Then there exists a fundamental solution Γ to L
with the following properties:

1. Γ(·, ζ) ∈ L1
loc(RN+1) ∩ C(RN+1 \ {ζ}) for every ζ ∈ RN+1;

2. Γ(·, ζ) is a solution to Lu = 0 in RN+1\{ζ} for every ζ ∈ RN+1 (in the sense of Definition
1.3);

3. let g ∈ C(RN ) such that

|g(x)| ≤ C0e
C0|x|2 , ∀x ∈ RN , (1.15)

for some positive constant C0. Then there exists

lim
(x,t)→(x0,τ)

t>τ

∫

RN

Γ(x, t, ξ, τ)g(ξ)dξ = g(x0), ∀x0 ∈ RN ; (1.16)

4. let g ∈ C(RN ) verifying (1.15) and f be a continuous function in the strip ST0,T1 =
RN×]T0, T1[, such that

|f(x, t)| ≤ C1e
C1|x|2 , ∀ (x, t) ∈ ST0,T1 (1.17)

and for any compact subset M of RN there exists a positive constant C such that

|f(x, t)− f(y, t)| ≤ C|x− y|βB, ∀x, y ∈ M, t ∈]T0, T1[, (1.18)

for some β ∈ ]0, 1[. Then there exists T ∈ ]T0, T1] such that the function

u(x, t) =
∫

RN

Γ(x, t, ξ, T0)g(ξ)dξ −
t∫

T0

∫

RN

Γ(x, t, ξ, τ)f(ξ, τ)dξdτ (1.19)

1A function u is Lie differentiable w.r.t. the vector field Y in (1.8), at the point z = (x, t), if there exists and
it is finite

lim
δ→0

u(γ(δ))− u(γ(0))

δ
≡ Y u(z),

where γ denotes the integral curve of Y from z:

γ(δ) = (E(−δ)x, t− δ), δ ∈ R.

Clearly, if u ∈ C1 then Y u(x, t) = 〈x, BDu(x, t)〉 − ∂tu(x, t).
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is a solution to the Cauchy problem




Lu = f in ST0,T ,

u(·, T0) = g in RN ;
(1.20)

5. if u is a solution to the Cauchy problem (1.20) with null f and g, and verifies estimate
(1.17), then u ≡ 0 (see also Theorem 1.6 below). In particular, the function in (1.19) is
the unique solution to problem (1.20) verifying estimate (1.17);

6. the reproduction property holds:

Γ(x, t, ξ, τ) =
∫

RN

Γ(x, t, y, s)Γ(y, s, ξ, τ)dy, ∀x, ξ ∈ RN , τ < s < t; (1.21)

7. if c(z) ≡ c is constant then
∫

RN

Γ(x, t, ξ, τ)dξ = e−c(t−τ), ∀x ∈ RN , τ < t; (1.22)

8. let Γε denote the fundamental solution to the constant coefficients KE

Lε = (µ + ε)∆Rp0 + 〈x,B∇〉 − ∂t (1.23)

where ε > 0, µ is as in (1.2) and ∆Rp0denotes the Laplacian in the variables x1, . . . , xp0.
Then for every positive ε and T , there exists a constant C, only dependent on µ,B, ε and
T , such that

Γ(z, ζ) ≤ C Γε(z, ζ), (1.24)

|∂xiΓ(z, ζ)| ≤ C√
t− τ

Γε(z, ζ), (1.25)

∣∣∂xixjΓ(z, ζ)
∣∣ ≤ C

t− τ
Γε(z, ζ), |Y Γ(z, ζ)| ≤ C

t− τ
Γε(z, ζ), (1.26)

for any i, j = 1, . . . , p0 and z, ζ ∈ RN+1 with 0 < t− τ < T .

Under the further hypothesis

[H.3] for every i, j = 1, . . . , p0, there exist the derivatives ∂xiaij , ∂xixjaij , ∂xiai ∈ Cα
B(RN+1)

and are bounded functions,

we define as usual the adjoint operator L∗ of L:

L∗v =
p0∑

i,j=1

aij∂xixjv +
p0∑

i=1

a∗i ∂xiv − 〈x,B∇v〉+ c∗v + ∂tv (1.27)

where

a∗i = −ai + 2
p0∑

j=1

∂xiaij , c∗ = c +
p0∑

i,j=1

∂xixjaij −
p0∑

i=1

∂xiai − tr(B), (1.28)

and we prove the following result.
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Theorem 1.5. There exists a fundamental solution Γ∗ of L∗ verifying the dual properties in the
statement of Theorem 1.4. Moreover it holds

Γ∗(z, ζ) = Γ(ζ, z), ∀z, ζ ∈ RN+1, z 6= ζ. (1.29)

We close this section by stating a further uniqueness result.

Theorem 1.6. Assume that L in (1.1) verifies the hypotheses [H.1]-[H.2]-[H.3] and that the
coefficients aij , ai, c ∈ Cα

B(RN+1) are bounded functions. If u is a solution to the Cauchy problem
(1.20) with null f and g, such that

T∫

T0

∫

RN

|u(x, t)|e−C|x|2dxdt < +∞

for some positive constant C, then u ≡ 0.

The paper is organized as follows. In the next section we present some motivation for studying
KEs. In Section 3 we collect some preliminaries. In Section 4 we present the parametrix method
for constructing a fundamental solution. In Section 5 we provide some potential estimates.
Section 6 is devoted to the proofs of Theorems 1.4, 1.5 and 1.6.

Acknowledgements. We wish to thank Sergio Polidoro and Daniele Morbidelli for several
helpful conversations.

2 Some motivation

In this section we give some motivation for the study of KEs from probability, physics and
finance. The operator (1.4) is the lowest dimension version of the following degenerate parabolic
operator in RN+1 with N = 2n:

L =
n∑

j=1

∂2
xj

+
n∑

j=1

xj∂xn+j − ∂t. (2.1)

Kolmogorov introduced (2.1) in 1934 in order to describe the probability density of a system
with 2n degree of freedom. The 2n-dimensional space is the phase space, (x1, . . . , xn) is the
velocity and (xn+1, . . . , x2n) the position of the system. We also recall that (2.1) is a prototype
for a family of evolution equations arising in the kinetic theory of gases that take the following
general form

Y u = J (u). (2.2)

Here R2n 3 x 7−→ u(x, t) ∈ R is the density of particles which have velocity (x1, ..., xn) and
position (xn+1, ..., x2n) at time t,

Y u ≡
n∑

j=1

xj∂xn+ju + ∂tu
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is the so called total derivative of u and J (u) describes some kind of collision. This last term
can take different form, either linear or non-linear. For instance, in the usual Fokker-Planck
equation, we have

J (u) = −
n∑

i,j=1

∂xi

(
aij∂xju + biu

)
+

n∑

i=1

ai∂xiu + cu (2.3)

where aij , ai, bi and c are functions of (x, t). J (u) may also occur in non-divergence form and
the coefficients may depend on z ∈ R2n+1 as well as on the solution u through some integral
expressions. This kind of operator is studied as a simplified version of the Boltzmann collision
operator. A description of wide classes of stochastic processes and kinetic models leading to
equations of the previous type can be found in the classical monographies [8], [13] and [9].

Linear KEs also arise in mathematical finance in some generalization of the celebrated Black
& Scholes model [7]. Consider a “stock” whose price St is given by the stochastic differential
equation

dSt = µSt dt + σSt dWt, (2.4)

where µ and σ are positive constants and Wt is a Wiener process. Also consider a “bond” whose
price Bt only depends on a constant interest rate r:

Bt = B0e
t r.

Finally, consider an “European option” which is a contract which gives the right (but not the
obligation) to buy the stock at a given “exercise price” E and at a given “expiry time” T . The
problem studied in [7] is to find a fair price of the option contract. Under some assumptions
on the financial market, Black & Scholes show that the price of the option, as a function of the
time and of the stock price V (t, St), is the solution of the following partial differential equation

−rV +
∂V

∂t
+ rS

∂V

∂S
+

1
2
σ2 ∂2V

∂S2
= 0

in the domain (S, t) ∈ R+×]0, T [, with the final condition

V (T, ST ) = max(ST −E, 0).

In the last decades the Black & Scholes theory has been developed by many authors and math-
ematical models involving KEs have appeared in the study of the so-called path-dependent
contingent claims (see, for instance, [1], [4], [5] and [33]). Asian options are options whose ex-
ercise price is not fixed as a given constant E, but depends on some average of the history of
the stock price. In this case, the value of the option at the expiry time T is (for a a geometric
average option):

V (ST , MT ) = max
(
ST − e

MT
T , 0

)
, Mt =

∫ t

0
log(Sτ )dτ.

If we suppose by simplicity that the interest rate is r = 0, the Black & Scholes method leads to
the following degenerate equation

S2∂2
SV + (log S)∂MV + ∂tV = 0, S, t > 0, M ∈ R (2.5)
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which can be reduced to the KE (1.4) by means of an elementary change of variables (see [6],
page 479). A numerical study of the solution of the Cauchy problem related to (2.5) is also
proposed in [6].

A more recent motivation from finance comes from the model by Hobson & Rogers [17].
In the Black & Scholes theory the hypothesis that the volatility σ in the stochastic differential
equation (2.4) is constant contrasts with the empirical observations. Aiming to overcome this
problem, many authors proposed different models based on a stochastic volatility (see [14] for a
survey). However the presence of a second Wiener process leads some difficulties in the arbitrage
argument underlying the Black & Scholes theory. The model proposed by Hobson and Rogers for
European options assumes that the volatility only depends on the difference between the present
stock price and the past price. This simple model seems to capture the features observed in the
market and avoid the problems related to the use of many sources of randomness.

As in the study of Asian options, in the Hobson & Rogers model for European options the
value of the option V (t, St,Mt) is supposed to depend on the time t, on the price of the stock
St, on some average Mt and must satisfy the following differential equation

1
2
σ2(S −M)

(
∂2

SV − ∂SV
)

+ (S −M)∂MV + ∂tV = 0, (2.6)

that is a non-homogeneous KE with Hölder continuous coefficients. In the recent paper [12] the
Cauchy problem related to (2.6) has been studied numerically. In [11] the stability and the rate of
convergence of different numerical methods for solving (2.6) are tested. The numerical schemes
proposed in these papers rely on the approximation of the directional derivative Y by the finite
difference −u(x,y,t)−u(x,y+δx,t−δ)

δ : hence this method, which is respectful of the non-Euclidean
geometry of the Lie group, seems to provide a good approximation of the solution.

Finally we recall that KEs with non linear total derivative term of the form

∆xu + ∂yg(u)− ∂tu = f, x = (x1, . . . , xn) ∈ Rn, y, t ∈ R, (2.7)

have been considered for convection-diffusion models (cf. [15] and [25]), for pricing models of
options with memory feedback (cf. [27]) and for mathematical models for utility functional and
decision making (cf. [2], [3], [10] and [26]). The linearized equation of (2.7)

g′(u)∂yv − ∂tv = −∆xv,

if g′(u) is different from zero and smooth enough, can be reduced to the form (1.1) with N = n+2
and

A =




1 · · · 0 0
...

. . .
...

...
0 · · · 1 0
0 · · · 0 0


 and B =




0 · · · 0 1
...

. . .
...

...
0 · · · 0 0
0 · · · 0 0


 .

3 Preliminaries

In this section we recall some known results for constant coefficients KEs i.e. equations of the
form

p0∑

i,j=1

aij∂xixju + 〈x,BDu〉 − ∂t = 0, (3.1)
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with constant aij ’s and satisfying hypotheses [H.1]-[H.2]. Moreover we prove some preliminary
result.

First we recall the explicit expression of the fundamental solution to equation (3.1). We set

C(t) =
∫ t

0
E(s)AET (s)ds, t ∈ R, (3.2)

where E(·) is as in (1.10). It is known (see, for instance, [23]) that [H.1]-[H.2] are equivalent to
condition

C(t) > 0, ∀t > 0. (3.3)

If (3.3) holds then a fundamental solution to (3.1) is given by

Γ(x, t, ξ, τ) = Γ(x−E(t− τ)ξ, t− τ), (3.4)

where Γ(x, t) = 0 if t ≤ 0 and

Γ(x, t) =
(4π)−

N
2√

det C(t) exp
(
−1

4
〈C−1(t)x, x〉 − t tr(B)

)
, if t > 0. (3.5)

Let us remark that Γ(·, ·) is a C∞ function outside the diagonal of RN+1 × RN+1 and satisfies
the usual properties (1.21) and (1.22) (with c = 0). If all the ∗-blocks in (1.3) are zero matrices,
then Γ is also D(λ)-homogeneous:

Γ(D(λ)z) = λ−QΓ(z), ∀z ∈ RN+1 \ {0}, λ > 0,

where
Q = p0 + 3p1 + . . . + (2r + 1)pr

is the so-called homogeneous dimension of RN with respect to the dilations group in RN

D0(λ) = diag(λIp0 , λ
3Ip1 , . . . , λ

2r+1Ipr). (3.6)

Next we prove some estimates for the fundamental solution to constant coefficients KEs
which generalize some result in [28], Section 2. Given B in the form (1.3), we denote by B0 the
matrix obtained by substituting the ∗-blocks with null blocks and we set E0(t) = e−tBT

0 , t ∈ R.
Moreover, for t ∈ R and ζ ∈ RN+1, we set

Cζ(t) =

t∫

0

E(s)A(ζ)ET (s)ds, Cζ,0(t) =

t∫

0

E0(s)A(ζ)ET
0 (s)ds. (3.7)

In the following statements we also denote by C the matrix in (3.2) with A ≡
(

Ip0 0
0 0

)
and

C0(t) =

t∫

0

E0(s)
(

Ip0 0
0 0

)
ET

0 (s)ds,
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where Ip0 denotes the identity matrix in Rp0 . Hypothesis (1.2) yields an immediate comparison
between the quadratic forms associated to Cζ and C:

µ−1 C(t) ≤ Cζ(t) ≤ µC(t) (3.8)

for any t ∈ R+ and ζ ∈ RN+1. Since Cζ(t), t > 0, is symmetric and positive definite, analogous
estimates hold for C−1

ζ , Cζ,0 and C−1
ζ,0 in terms of C−1, C0 and C−1

0 respectively.
Let us now denote respectively by Γ+ and Γ− the fundamental solutions of the operators

L+ = µ∆Rp0 + 〈x,B∇〉 − ∂t, L− =
1
µ

∆Rp0 + 〈x,B∇〉 − ∂t.

Moreover, for fixed w ∈ RN+1, we denote by Zw the fundamental solution to the frozen Kol-
mogorov operator

Lw =
p0∑

i,j=1

aij(w)∂xixj + 〈x,BDu〉 − ∂t.

An explicit expression of Γ+,Γ− and Γw is given by (3.4)-(3.5).

Proposition 3.1. For every z, ζ, w ∈ RN+1 it holds

1
µN

Γ−(z, ζ) ≤ Zw(z, ζ) ≤ µNΓ+(z, ζ).

Proof. We only prove the second inequality. We first note that, by (3.8), we have

det Cw(t) ≥ µ−Ndet C(t), ∀t > 0, (3.9)

and

exp
(
−1

4
〈C−1

w (t)ω, ω〉
)
≤ exp

(
− 1

4µ
〈C−1(t)ω, ω〉

)
∀t > 0, ω ∈ RN . (3.10)

Given z, ζ ∈ RN+1, for convenience we set s = t − τ , ω = x − E(s)ξ and cN = (4π)−
N
2 . Then

we have

Zw(z, ζ) =
cN e−s trB

√
det Cw(s)

exp
(
−1

4
〈C−1

w (s)ω, ω〉
)
≤

(by (3.9) and (3.10))

≤ µ
N
2

cN e−s trB

√
det C(s) exp

(
− 1

4µ
〈C−1(s)ω, ω〉

)
= µNΓ+(z, ζ).

The next lemma provides an asymptotic comparison near 0 of Cζ and Cζ,0.

Lemma 3.2. There exist two positive constants C0 and t0, only dependent on µ in (1.2) and
the matrix B, such that

(1− C0t) Cζ,0(t) ≤ Cζ(t) ≤ (1 + C0t) Cζ,0(t) (3.11)

for any ζ ∈ RN+1 and t ∈ [0, t0].

10



Lemma 3.2 can be proved following the arguments in [23], handling with care the dependence
of the coefficients on ζ. The proof will be omitted.

Remark 3.3. As an immediate consequence of (3.8) and Lemma 3.2, for some positive t1 we
have

1
2µ
C0(t) ≤ 1

2
Cζ,0(t) ≤ Cζ(t) ≤ 2 Cζ,0(t) ≤ 2µ C0(t), (3.12)

and

(2µ)−Ndet C0(1) ≤ 2−Ndet Cζ,0(1) ≤ det Cζ(t)
tQ

≤ 2Ndet Cζ,0(1) ≤ (2µ)Ndet C0(1), (3.13)

for any ζ ∈ RN+1 and t ∈ [0, t1]. Analogous estimates also holds for C−1
ζ .

Lemma 3.4. For every T > 0 there exists a positive constant C, only dependent on µ,B and
T , such that

∣∣(C−1
w (t)y

)
i

∣∣ ≤ C
|D0( 1√

t
)y|

√
t

, (3.14)
∣∣∣
(C−1

w (t)
)
ij

∣∣∣ ≤ C

t
, (3.15)

for every i, j = 1, . . . , p0, t ∈ ]0, T ], w ∈ RN+1 and y ∈ RN .

Proof. We only show (3.14) since the proof of (3.15) is analogous. Let t1 be as in Remark 3.3:
we first consider the case t ∈ ]0, t1]. We recall that (D0(λ)y)i = λyi for i = 1, . . . , p0 and

C−1
w,0(t) = D0

(
1√
t

)
C−1

w,0(1)D0

(
1√
t

)
(3.16)

see [23]. Then we have

∣∣(C−1
w (t)y

)
i

∣∣ ≤
∣∣∣
((
C−1

w (t)− C−1
w,0(t)

)
y
)

i

∣∣∣ +
∣∣∣
(
C−1

w,0(t)y
)

i

∣∣∣

=
1√
t

∣∣∣∣
(

D0(
√

t)
(
C−1

w (t)− C−1
w,0(t)

)
D0(

√
t)D0

(
1√
t

)
y

)

i

∣∣∣∣

+
1√
t

∣∣∣∣
(
C−1

w,0(1)D0

(
1√
t

)
y

)

i

∣∣∣∣ ≡ I1 + I2.

(3.17)

In order to estimate I1, we note that
∥∥∥D0(

√
t)

(
C−1

w (t)− C−1
w,0(t)

)
D0(

√
t)|

∥∥∥ =

= sup
|ξ|=1

∣∣∣〈
(
C−1

w (t)− C−1
w,0(t)

)
D0(

√
t)ξ, D0(

√
t)ξ〉

∣∣∣ ≤
(3.18)

11



(by Remark 3.3 since 0 < t ≤ t1)

≤ sup
|ξ|=1

∣∣∣〈C−1
w,0(t)D0(

√
t)ξ,D0(

√
t)ξ〉

∣∣∣ =

(by (3.16) and Remark 3.3)

= sup
|ξ|=1

|〈C−1
w,0(1)ξ, ξ〉| ≤ µ‖C−1

0 (1)‖.

Hence we infer

I1 ≤ µ√
t
‖C−1

0 (1)‖
∣∣∣∣D0

(
1√
t

)
y

∣∣∣∣ .

On the other hand, again by Remark 3.3, we have

I2 ≤
‖C−1

w,0(1)‖√
t

∣∣∣∣D0

(
1√
t

)
y

∣∣∣∣ ≤
µ√
t
‖C−1

0 (1)‖
∣∣∣∣D0

(
1√
t

)
y

∣∣∣∣ .

The proof of the case t ∈ [t1, T ] is easier:

∣∣(C−1
w (t)y

)
i

∣∣ =
1√
t

∣∣∣∣
(

D0(
√

t)C−1
w (t)D0(

√
t)D0

(
1√
t

)
y

)

i

∣∣∣∣ ≤

(by (3.8))

≤ µ√
t

sup
t0≤t≤T

∥∥∥D0(
√

t)C−1(t)D0(
√

t)
∥∥∥

∣∣∣∣D0

(
1√
t

)
y

∣∣∣∣ .

In the next statement Z(z, ζ) denotes the parametrix of L i.e. the fundamental solution,
with pole at ζ, to the constant coefficients Kolmogorov operator

Lζ =
p0∑

i,j=1

aij(ζ)∂xixj + 〈x,B∇〉 − ∂t.

Moreover Γε, ε > 0, denotes the fundamental solution to the constant coefficients KE (1.23).

Proposition 3.5. Given ε > 0 and a polynomial function p, there exists a constant C, only
dependent on ε, µ, B and p, such that, if we set η =

∣∣∣D0

(
(t− τ)−

1
2

)
(x− E(t− τ)ξ)

∣∣∣, then we
have

|p (η)|Zw(z, ζ) ≤ C Γε(z, ζ), (3.19)

for any z, ζ, w ∈ RN+1.

Proof. For convenience, we set s = t− τ and ω = x− E(s)ξ. By Lemma 3.2, we may consider
t0 > 0 such that (3.11) holds and

(1− C0t0)2 ≥
µ + ε

2

µ + ε
, (3.20)

12



where C0 is the constant in (3.11). We first prove (3.19) for s ∈ [0, t0]. Then, by (3.8), we have

|p(|η|)|Zw(z, ζ) ≤ cNµ
N
2 e−s trB

√
det C(s) |p(|η|)| exp

(
−1

4
〈C−1

w (s)ω, ω〉
)
≤

(by Lemma 3.2 and (3.8))

≤ cNµ
N
2 e−s trB

√
det C(s) |p(|η|)| exp

(
−(1− C0t0)

4µ
〈C−1

0 (1)η, η〉
)

≤ C1 e−s trB

√
det C(s) exp

(
−(1− C0t0)

4
(
µ + ε

2

) 〈C−1
0 (1)η, η〉

)
≤

(by Lemma 3.2 applied to the matrix C)

≤ C1 e−s trB

√
det C(s) exp

(
−(1− C0t0)2

4
(
µ + ε

2

) 〈C−1(s)ω, ω〉
)
≤

(by (3.20))
≤ CΓε(z, ζ).

We next consider s ≥ t0. In this case, by Proposition 3.1, we have

|p(|η|)|Z(z, ζ) ≤ C1|p(|ω|)|Γ+(z, ζ)

and the thesis follows by a standard argument.

Next we prove some estimates for the derivatives of Zw(z, ζ).

Proposition 3.6. For every ε > 0 and T > 0 there exists a positive constant C, only dependent
on µ, B, ε and T , such that

|∂xiZw(z, ζ)| ≤ C√
t− τ

Γε(z, ζ),
∣∣∂xixjZw(z, ζ)

∣∣ ≤ C

t− τ
Γε(z, ζ),

for every z, ζ, w ∈ RN+1 such that 0 < t− τ < T and every i, j = 1, . . . , p0.

Proof. We put again s = t− τ and ω = x− E(s)ξ. Then, for i = 1, . . . , p0, we have

|∂xiZw(z, ζ)| = 1
2

∣∣(C−1
w (s)ω

)
i

∣∣Zw(z, ζ) ≤

(by (3.14))

≤ C√
s

∣∣∣∣D0

(
1√
s

)
ω

∣∣∣∣Z(z, ζ)

and the first estimate follows by Proposition 3.1. The proof of the second estimate is analogous.
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4 The parametrix method

In this section we describe the Levi’s parametrix method to construct a fundamental solution
Γ for the KE (1.1). Throughout this section, we assume that L in (1.1) verifies hypotheses
[H.1]-[H.2] and that the coefficients aij , ai, c ∈ Cα

B(RN+1) are bounded functions. We remind
that Zw denotes the fundamental solution to the “frozen” Kolmogorov operator

Lw =
p0∑

i,j=1

aij(w)∂xixj + 〈x,BDu〉 − ∂t,

and Z(z, ζ) = Zζ(z, ζ) is the so-called parametrix. Hereafter z = (x, t) and ζ = (ξ, τ). According
to Levi’s method, we look for the fundamental solution Γ in the form

Γ(z, ζ) = Z(z, ζ) + J(z, ζ). (4.1)

The function J is unknown and supposed to be of the form

J(z, ζ) =
∫

Sτ,t

Z(z, w)Φ(w, ζ)dw, Sτ,t = RN×]τ, t[, (4.2)

where Φ has to be determined by imposing that Γ is solution to L:

0 = LΓ(z, ζ) = LZ(z, ζ) + LJ(z, ζ), z 6= ζ. (4.3)

Assuming that J can be differentiated under the integral sign, we get

LJ(z, ζ) =
∫

Sτ,t

LZ(z, w)Φ(w, ζ)dw − Φ(z, ζ), (4.4)

hence, (4.3) yields

Φ(z, ζ) = LZ(z, ζ) +
∫

Sτ,t

LZ(z, w)Φ(w, ζ)dw. (4.5)

Thus we obtain an integral equation whose solution Φ can be determined by the successive
approximation method:

Φ(z, ζ) =
+∞∑

k=1

(LZ)k(z, ζ), (4.6)

where

(LZ)1(z, ζ) = LZ(z, ζ),

(LZ)k+1(z, ζ) =
∫

Sτ,t

LZ(z, w)(LZ)k(w, ζ)dw.

The previous arguments are made rigorous by the following propositions.
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Proposition 4.1. There exists k0 ∈ N such that, for every T > 0 and ζ ∈ RN+1, the series

+∞∑

k=k0

(LZ)k(·, ζ) (4.7)

converges uniformly in the strip Sτ,T ≡ {
(x, t) ∈ RN+1 | τ < t < T

}
. Moreover the function

Φ(·, ζ) defined by (4.6) solves the integral equation (4.5) in Sτ,T and satisfies the following
estimate: for any ε > 0 there exists a positive constant C such that

|Φ(z, ζ)| ≤ C
Γε(z, ζ)

(t− τ)1−
α
2

, ∀z ∈ Sτ,T . (4.8)

Proposition 4.2. For every ζ ∈ RN+1, the function J(·, ζ) defined by (4.2) solves equation
(4.4) in RN+1 \ {ζ} in the sense of Definition 1.1.

The remainder of this section is devoted to the proof of Proposition 4.1. The proof of
Proposition 4.2 is more involved since it requires the study of some singular integrals which will
be made in the next section. Then Proposition 4.2 will be a direct consequence of the results in
the Section 5 and Lemma 6.1.

Lemma 4.3. For every ε > 0 and T > 0 there exists a positive constant C, only dependent on
ε, T, µ and B, such that

|(LZ)k(z, ζ)| ≤ Mk

(t− τ)1−
αk
2

Γε(z, ζ), (4.9)

for any k ∈ N and z, ζ ∈ RN+1 with 0 < t− τ ≤ T , where

Mk = Ck ΓE(α
2 )

ΓE(αk
2 )

, (4.10)

and ΓE the Euler’s Gamma function. As a consequence there exists k0 ∈ N such that the function
(LZ)k(·, ζ) is bounded for k ≥ k0 in Sτ,T .

Proof. We use the notations of Proposition 3.5 and we prove estimate (4.9) by an inductive
argument. For z 6= ζ, we have

|LZ(z, ζ)| ≤
∣∣∣∣∣∣

p0∑

i,j=1

(aij(z)− aij(ζ))∂xixjZ(z, ζ)

∣∣∣∣∣∣
+

∣∣∣∣∣
p0∑

i=1

ai(z)∂xiZ(z, ζ)

∣∣∣∣∣ + |c(z)|Z(z, ζ).

By assumption aij ∈ Cα
B(RN+1) so that

|aij(z)− aij(ζ)| ≤ C1||ζ−1 ◦ z||αB = C1(t− τ)
α
2 ||(η, 1)||αB.

Hence, by Proposition 3.6, we infer
∣∣∣∣∣∣

p0∑

i,j=1

(aij(z)− aij(ζ))∂xixjZ(z, ζ)

∣∣∣∣∣∣
≤ C2||(ω, 1)||αB

Γ
ε
2 (z, ζ)

(t− τ)1−
α
2

,
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and, since the coefficients are bounded functions,
∣∣∣∣∣

p0∑

i=1

ai(z)∂xiZ(z, ζ)

∣∣∣∣∣ ≤ C3
Γ

ε
2 (z, ζ)√
t− τ

.

By Proposition 3.1, we have
|c(z)Z(z, ζ)| ≤ C4Γε(z, ζ)

Therefore (4.9) for k = 1 easily follows from the above estimates and Proposition 3.5.
Let us now assume that (4.9) holds for k and prove it for k + 1. We have

|(LZ)k+1(z, ζ)| =

∣∣∣∣∣∣∣

∫

Sτ,t

LZ(z, w)(LZ)k(w, ζ)dw

∣∣∣∣∣∣∣
≤

(by the inductive hypothesis and denoting (y, s) = w)

≤
t∫

τ

M1

(t− τ)1−
α
2

Mk

(s− τ)1−
kα
2

∫

RN

Γε(x, t, y, s)Γε(y, s, ξ, τ)dyds =

(by the reproduction property (1.21) for Γε)

= Γε(z, ζ)

t∫

τ

M1

(t− τ)1−
α
2

Mk

(s− τ)1−
kα
2

ds,

and the thesis follows by the well known properties of the Euler’s Gamma function.
The boundedness of (LZ)k, for k ≥ k0 suitably large, directly follows from (4.9) and the

explicit expression of Γε. Indeed, by (3.13) of Remark 3.3, we have

|(LZ)k(z, ζ)| ≤ CMk(t− τ)k−Q+2
α , (4.11)

for some constant C. Then it suffices that k0 ≥ Q+2
α .

Proof of Proposition 4.1. The convergence of the series (4.7) follows from the previous lemma
(cf. (4.11)). Indeed the power series ∑

k≥1

Mk0+ks
k

with Mk as in (4.10), has radius of convergence equal to infinity.
Then, proceeding as in Lemma 4.3, it is straightforward to prove that Φ verifies estimate

(4.8) and solves (4.5). ¤
Corollary 4.4. For every ε > 0 and T > 0 there exists a positive constant C, only dependent
on ε, T, µ and B, such that

|J(z, ζ)| ≤ C(t− τ)
α
2 Γε(z, ζ), (4.12)

and the fundamental solution Γ in (4.1) verifies estimate (1.25)

Γ(z, ζ) ≤ C Γε(z, ζ),

for any z, ζ ∈ RN+1 with 0 < t− τ ≤ T.
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Proof. We have

|J(z, ζ)| ≤
∫

Sτ,t

Z(z, w) |Φ(w, ζ)| dw ≤

(by (4.8))

≤ C

t∫

τ

∫

RN

Γε(x, t, y, s)
Γε(y, s, ξ, τ)
(s− τ)1−

α
2

dyds =

(by the reproduction property of Γε)

= CΓε(z, ζ)

t∫

τ

ds

(s− τ)1−
α
2

,

and (4.12) follows. The estimate of Γ is a direct consequence of (4.12) and the estimate of Z in
Proposition 3.1.

5 Potential estimates

We consider the potential

Vf (z) =
∫

ST0,t

Z(z, ζ)f(ζ)dζ, ST0,t = RN×]T0, t[, (5.1)

where f ∈ C(ST0,T1) satisfies the growth estimate (1.17)

|f(x, t)| ≤ C1e
C1|x|2 , ∀ (x, t) ∈ ST0,T1 ,

and Z is the parametrix of (1.1). In this section we aim to study the regularity properties of Vf

by adapting the arguments used by Polidoro [28].
We first show that the integral in (5.1) is convergent in the strip ST0,T for some T ∈ ]T0, T1].

Indeed, by Proposition 3.1, we have

|Vf (x, t)| ≤ C2

t∫

T0

∫

RN

Γ+(x, t, ξ, τ)eC1|ξ|2dξdτ ≤

(denoting s = t− τ and ω = x−E(s)ξ)

≤ C3

t∫

T0

∫

RN

1√
det C(s) exp

(
− 1

4µ
〈C−1(s)ω, ω〉+ C1|ξ|2

)
dξdτ ≤

(by the change of variables η = C− 1
2 (s)ω)

≤ C4

t∫

T0

∫

RN

exp
(
−|η|

2

4µ
+ C1

∣∣∣E(−s)
(
x− C 1

2 (s)η
)∣∣∣

2
)

dηdτ ≤ C(t− T0)eC|x|2 , (5.2)
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for some positive constant C, assuming that t ∈ ]T0, T ] with T −T0 suitably small and using the
fact that ‖C(s)‖ tends to zero as s → 0.

Proposition 5.1. There exist ∂xiVf ∈ C (ST0,T ) for i = 1, . . . , p0 and it holds

∂xiVf (x, t) =

t∫

T0

∫

RN

∂xiZ(x, t, ξ, τ)f(ξ, τ)dξdτ. (5.3)

Proof. By Proposition 3.6 and the above argument, the integral in (5.3) is absolutely convergent
and

t∫

T0

∫

RN

|∂xiZ(x, t, ξ, τ)f(ξ, τ)| dξdτ ≤ C
√

t− T0 eC|x|2 . (5.4)

Next we set

Vf, δ(x, t) =

t−δ∫

T0

∫

RN

Z(x, t, ξ, τ)f(ξ, τ)dξdτ, 0 < δ < t− T0.

By Lebesgue’s Theorem we have

lim
δ→0+

Vf, δ(x, t) = Vf (x, t).

and

∂xiVf, δ(x, t) =

t−δ∫

T0

∫

RN

∂xiZ(x, t, ξ, τ)f(ξ, τ)dξdτ. (5.5)

In order to prove (5.3), it suffices to verify that

lim
δ→0+

∂xiVf, δ(x, t) =

t∫

T0

∫

RN

∂xiZ(x, t, ξ, τ)f(ξ, τ)dξdτ,

uniformly on BR1×]T0, T ]. This is an easy consequence of (5.5) and (5.4), indeed we have

∂xiVf, δ(x, t)−
t∫

T0

∫

RN

∂xiZ(x, t, ξ, τ)f(ξ, τ)dξdτ =

t∫

t−δ

∫

RN

∂xiZ(x, t, ξ, τ)f(ξ, τ)dξdτ ≤ C
√

δ eC|x|2 .

Lemma 5.2. For every positive ε and T there exists a constant C > 0 such that

|Zζ(z, ζ)− Zw(z, ζ)| ≤ C||ζ−1 ◦ w||αBΓε(z, ζ),

|∂xiZζ(z, ζ)− ∂xiZw(z, ζ)| ≤ C
||ζ−1 ◦ w||αB√

t− τ
Γε(z, ζ),

∣∣∂xixjZζ(z, ζ)− ∂xixjZw(z, ζ)
∣∣ ≤ C

||ζ−1 ◦ w||αB
t− τ

Γε(z, ζ), ,

for any i, j = 1, . . . , p0 and z, ζ, w ∈ RN+1 with 0 < t− τ ≤ T .
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Proof. We only prove the third estimate. We use the usual notations s = t− τ , ω = x−E(s)ξ,
η = D0

(
1√
s

)
ω and first note that

∂xixjZw(z, ζ) =
Ce−s trB

√
det Cw(s)

e−
1
4
〈C−1

w (s)ω,ω〉
((C−1

w (s)
)
ij

+
(C−1

w (s)ω
)
i

(C−1
w (s)ω

)
j

)
.

Then the thesis follows from the following estimates:∣∣∣∣∣
1√

det Cζ(s)
− 1√

det Cw(s)

∣∣∣∣∣ ≤ C
||ζ−1 ◦ w||αB√

det Cζ(s)
(5.6)

∣∣∣e− 1
4
〈C−1

ζ (s)ω,ω〉 − e−
1
4
〈C−1

w (s)ω,ω〉
∣∣∣ ≤ C ||ζ−1 ◦ w||αB e

− 1
4(µ+ε)

〈C−1(s)ω,ω〉
, (5.7)

∣∣∣∣
(
C−1

ζ (s)
)

ij
− (C−1

w (s)
)
ij

∣∣∣∣ ≤
C

s
||ζ−1 ◦ w||αB, (5.8)

∣∣∣∣
(
C−1

ζ (s)ω
)

i

(
C−1

ζ (s)ω
)

j
− (C−1

w (s)ω
)
i

(C−1
w (s)ω

)
j

∣∣∣∣ ≤
C

s
||ζ−1 ◦ w||αB|η|2, (5.9)

where C denotes the matrix in (3.2) with A ≡
(

Ip0 0
0 0

)
.

By Remark 3.3, (5.6) is equivalent to

|det Cζ(s)− det Cw(s)|
sQ

≤ C

∣∣∣∣det
(

D0

(
1√
s

)
Cζ(s)D0

(
1√
s

))
− det

(
D0

(
1√
s

)
Cw(s)D0

(
1√
s

))∣∣∣∣ ≤ C||ζ−1 ◦ w||αB.

(5.10)

A general result from linear algebra states that

| detM1 − det M2| ≤ C‖M1 −M2‖
where the constant C only depends on the dimension of the matrices M1,M2 and on ‖M1‖, ‖M2‖.
Then (5.10) follows from the estimate

sup
|ξ|=1

∣∣∣∣〈(Cζ(s)− Cw(s))D0

(
1√
s

)
ξ, D0

(
1√
s

)
ξ〉

∣∣∣∣ ≤ C||ζ−1 ◦ w||αB‖C(s)‖.

This concludes the proof of (5.6). Next we consider (5.7). An elementary inequality yields
∣∣∣e− 1

4
〈C−1

ζ (s)ω,ω〉 − e−
1
4
〈C−1

w (s)ω,ω〉
∣∣∣ ≤

∣∣∣〈
(
C−1

ζ (s)− C−1
w (s)

)
ω, ω〉

∣∣∣ e
− 1

4µ
〈C−1(s)ω,ω〉

≤ ‖D0(
√

s)(C−1
ζ (s)− C−1

w (s))D0(
√

s)‖ |η|2e− 1
4µ
〈C−1(s)ω,ω〉

≤ C‖D0(
√

s)(C−1
ζ (s)− C−1

w (s))D0(
√

s)‖ e
− 1

4(µ+ε)
〈C−1(s)ω,ω〉

.

On the other hand

‖D0(
√

s)(C−1
ζ (s)−C−1

w (s))D0(
√

s)‖

≤‖D0(
√

s)C−1
ζ (s)D0(

√
s)‖

∥∥∥∥D0

(
1√
s

)
(Cω(s)− Cζ(s))D0

(
1√
s

)∥∥∥∥
·‖D0(

√
s)C−1

w (s)D0(
√

s)‖ ≤ C||ζ−1 ◦ w||αB,
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and this proves (5.7). We omit the proof of (5.8) and (5.9) which are analogous.

Proposition 5.3. Under the hypotheses of Theorem 1.4 there exist ∂xixjVf ∈ C(ST0,T ) for
i, j = 1, . . . , p0, and it holds

∂xixjVf (x, t) =

t∫

T0

∫

RN

∂xixjZ(x, t, ξ, τ)f(ξ, τ)dξdτ. (5.11)

Proof. We first show that the integral in (5.11) exists. Fixed R > 0, we consider x ∈ RN such
that |x| < R and denote by BR the Euclidean ball in RN centered at the origin. For a suitable
R1 > R to be determined later, we split the integral in (5.11) as follows

t∫

T0

∫

RN

∂xixjZ(x, t, ξ, τ)f(ξ, τ)dξdτ =

t∫

T0

∫

BR1

∂xixjZ(x, t, ξ, τ)f(ξ, τ)dξdτ

+

t∫

T0

∫

RN\BR1

∂xixjZ(x, t, ξ, τ)f(ξ, τ)dξdτ ≡ K1 + K2.

We consider K1. For every τ ∈ ]T0, t[ and y ∈ RN , denoting w = (y, τ), we have
∫

BR1

∂xixjZ(x, t, ξ, τ)f(ξ, τ)dξ =
∫

BR1

∂xixjZ(x, t, ξ, τ)(f(ξ, τ)− f(y, τ))dξ

+ f(y, τ)
∫

BR1

∂xixj (Z(x, t, ξ, τ)− Zw(x, t, ξ, τ)) dξ

+ f(y, τ)
∫

BR1

∂xixjZw(x, t, ξ, τ)dξ

= I1 + I2 + I3. (5.12)

We put y = E(τ − t)x and by Proposition 3.6 and the regularity properties of f , we get

|I1| ≤ C

∫

RN

Γε(x, t, ξ, τ)
t− τ

|ξ −E(τ − t)x|βBdξ ≤ C

∫

RN

Γε(x, t, ξ, τ)

(t− τ)1−
β
2

|η|βBdξ, (5.13)

since
|ξ − E(τ − t)x|B ≤ C

√
t− τ |η|B,

for some constant C, where η = D0

(
1√
t−τ

)
(x− E(t− τ)ξ). Now, by Proposition 3.5, we have

|η|βΓε(x, t, ξ, τ) ≤ C Γ2ε(x, t, ξ, τ),

and since ∫

RN

Γ2ε(x, t, ξ, τ)dξ = 1, t > τ,
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we finally deduce

|I1| ≤ C

(t− τ)1−
β
2

. (5.14)

Next we consider I2. By Lemma 5.2 and the growth estimate (1.17), we have

|I2| ≤ C1|f(y, τ)|
∫

BR1

Γε(x, t, ξ, τ)
t− τ

|ξ − y|αBdξ

≤ C2e
C2|x|2

∫

RN

Γε(x, t, ξ, τ)
t− τ

|ξ − E(τ − t)x|αBdξ ≤

(by the previous argument)

≤ C

(t− τ)1−
α
2

.

Let us now consider I3. We first remark that, for any j = 1, . . . , p0, we have

∂xjZw(x, t, ξ, τ) = ∂ξjZw(x, t, ξ, τ)− Zw(x, t, ξ, τ)
N∑

k=1
k 6=j

(Cw(t− τ)(x− E(t− τ)ξ))k Ekj(t− τ).

Therefore we have
∫

BR1

∂xixjZw(x, t, ξ, τ)dξ =
∫

BR1

∂xiξjZw(x, t, ξ, τ)dξ

−
N∑

k=1
k 6=j

∫

BR1

∂xi

(
Zw(x, t, ξ, τ)

(Cw(t− τ)(x−E(t− τ)ξ)
)
k
Ekj(t− τ)

)
dξ =

(by the divergence theorem and denoting by ν the outer normal to BR1)

=
∫

∂BR1

∂xiZw(x, t, ξ, τ)νj dσ(ξ)

−
N∑

k=1
k 6=j

∫

BR1

∂xi

(
Zw(x, t, ξ, τ) (Cw(t− τ)(x−E(t− τ)ξ))k Ekj(t− τ)

)
dξ ≤

(by Proposition 3.6)

≤ C√
t− τ

.

We consider K2. We first note that

E(s) = IN + O(s), as s −→ 0.

Then for some positive constant C we have

|x− E(t− τ)ξ| ≥ C|ξ| − |x| ≥ CR1 −R ≡ R2 > 0,
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since |x| < R and assuming |ξ| ≥ R1 with R1 suitably large. Then we have

|K2| ≤ C

t∫

T0

∫

RN\BR1

Γε(x, t, ξ, τ)
t− τ

eC1|ξ|2dξdτ ≤

(by the change of variable ω = x−E(t− τ)ξ)

≤ Ce|x|
2

t∫

T0

∫

|ω|≥R2

1
t− τ

exp

(
−

∣∣C− 1
2 (t− τ)ω

∣∣2
4µ

+ C2 |ω|2
)

dωdτ.

Keeping in mind the asymptotic estimate of Lemma 3.2, clearly the last integral converges
(provided that T − T0 is suitably small).

So far we have proved the existence of the integral in (5.11), next we prove (5.11). We set

Vf (z) = V
(1)
f (z) + V

(2)
f (z),

where

V
(1)
f (x, t) =

t∫

T0

∫

BR1

Z(x, t, ξ, τ)f(ξ, τ)dξdτ, V
(2)
f (x, t) =

t∫

T0

∫

RN\BR1

Z(x, t, ξ, τ)f(ξ, τ)dξdτ.

By Lebesgue’s Theorem, we have

∂xixjV
(2)
f (x, t) =

t∫

T0

∫

RN\BR1

∂xixjZ(x, t, ξ, τ)f(ξ, τ)dξdτ.

In order to prove that

∂xixjV
(1)
f (x, t) =

t∫

T0

∫

BR1

∂xixjZ(x, t, ξ, τ)f(ξ, τ)dξdτ, (5.15)

we set

V
(1)
f, δ (x, t) =

t−δ∫

T0

∫

BR1

Z(x, t, ξ, τ)f(ξ, τ)dξdτ, 0 < δ < t− T0.

By the dominated convergence theorem and Proposition 5.1, we have

lim
δ→0+

∂xiV
(1)
f, δ (x, t) = lim

δ→0+

t−δ∫

T0

∫

BR1

∂xiZ(x, t, ξ, τ)f(ξ, τ)dξdτ

=

t∫

T0

∫

BR1

∂xiZ(x, t, ξ, τ)f(ξ, τ)dξdτ = ∂xiV
(1)
f (x, t).
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Hence, in order to show (5.15), it suffices to prove that

lim
δ→0+

∂xixjV
(1)
f, δ (x, t) =

t∫

T0

∫

BR1

∂xixjZ(x, t, ξ, τ)f(ξ, τ)dξdτ, (5.16)

uniformly on BR1×]T0, T ]. Denoting w = (y, τ) for y ∈ RN , we have

∂xixjV
(1)
f, δ (x, t)−

t∫

T0

∫

BR1

∂xixjZ(x, t, ξ, τ)f(ξ, τ)dξdτ =

t∫

t−δ

(J1(τ) + J2(τ) + J3(τ)) dτ,

where

J1(τ) =
∫

BR1

∂xixjZ(x, t, ξ, τ)(f(ξ, τ)− f(y, τ))dξ,

J2(τ) = f(y, τ)
∫

BR1

∂xixj (Z(x, t, ξ, τ)− Zw(x, t, ξ, τ)) dξ,

J3(τ) = f(y, τ)
∫

BR1

∂xixjZw(x, t, ξ, τ)dξ.

Proceeding as in the estimate of I1 in (5.13) by choosing y = E(τ − t)x, we obtain

t∫

t−δ

|J1(τ)|dτ ≤ C

t∫

t−δ

1

(t− τ)1−
β
2

dτ.

Analogously the terms J2 and J3 can be treated as I2 and I3 in (5.13), thus (5.16) follows
straightforwardly.

Proposition 5.4. Under the hypothese of Theorem 1.4 there exists Y Vf ∈ C(ST0,T ) and it
holds

Y Vf (z) =
∫

ST0,t

Y Z(z, ζ)f(ζ)dζ − f(z). (5.17)

Proof. The proof is analogous to that of Proposition 3.3 in [28]. As in the proof of Proposition
5.3, we split the domain of the integral in (5.17) in ]T0, t[×(RN \ BR1) and ]T0, t[×BR1 and we
only consider the second integral since the other one is straightforward.

We set

Vf, δ(x, t) =

t−δ∫

T0

∫

BR1

Z(x, t, ξ, τ)f(ξ, τ)dξdτ

and consider the integral path of −Y starting from z:

γ : R→ RN+1, γ(s) = (x(s), t(s)) = (E(s)x, t + s).
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Clearly, γ(0) = z and γ̇(s) = (−BT x(s), 1) = −Y (γ(s)). We show that

Y Vf, δ(x, t) =

t−δ∫

T0

∫

BR1

Y Z(x, t, ξ, τ)f(ξ, τ)dξdτ −
∫

BR1

Z(x, t, ξ, t− δ)f(ξ, t− δ)dξ. (5.18)

Indeed, for |s| < δ/2, we have

Vf, δ(γ(s))− Vf, δ(γ(0))
s

=

t−δ∫

T0

∫

BR1

Z(γ(s), ξ, τ)− Z(γ(0), ξ, τ)
s

f(ξ, τ)dξdτ

+
1
s

t+s−δ∫

t−δ

∫

BR1

Z(γ(s), ξ, τ)f(ξ, τ)dξdτ.

Since Z(z, ζ) is the fundamental solution of Lζ , there exists s∗ such that

Z(γ(s), ζ)− Z(γ(0), ζ)
s

=
d

ds
Z(γ(s), ζ)|s=s∗= −Y Z(γ(s∗), ζ) =

p0∑

i,j=1

aij(ζ)∂xixjZ(γ(s∗), ζ).

(5.19)

By Proposition 3.6 and since |s∗| < δ/2, the last term in (5.19) is a bounded function of
ζ ∈ RN×]T0, t− δ[. Thus we have

lim
s→0

t−δ∫

T0

∫

BR1

Z(γ(s), ξ, τ)− Z(γ(0), ξ, τ)
s

f(ξ, τ)dξdτ = −
t−δ∫

T0

∫

BR1

Y Z(x, t, ξ, τ)f(ξ, τ)dξdτ.

On the other hand

∫

BR1

Z(x, t, y, t− δ)f(y, t− δ)dξ − 1
s

t+s−δ∫

t−δ

∫

BR1

Z(γ(s), ξ, τ)f(ξ, τ)dξdτ =

(by setting ρ = τ−t+δ
s )

=

1∫

0

∫

BR1

(
Z(x, t, ξ, t− δ)− Z(γ(s), ξ, t− δ + ρs)

)
f(ξ, t− δ)dξdr

+

1∫

0

∫

BR1

Z(γ(s), ξ, t− δ + ρs)
(
f(ξ, t− δ)− f(ξ, t− δ + ρs)

)
dξdr = I(z, s) + J(z, s).

Since |s| < δ/2 then the integrand of I is a bounded function of (ξ, ρ) ∈ BR1 × [0, 1], therefore

lim
s→0

I(z, s) = 0.
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Analogously we have
lim
s→0

J(z, s) = 0.

This concludes the proof of (5.18).
Next we prove that

lim
δ→0+

Y Vf, δ(x, t) =

t∫

T0

∫

BR1

Y Z(x, t, ξ, τ)f(ξ, τ)dξdτ − f(x, t),

uniformly on BR× ]T0, T [. To this end, it suffices to note that, since Z(z, ζ) is the fundamental
solution of Lζ , we have

∣∣∣∣∣∣∣

t∫

t−δ

∫

BR1

Y Z(x, t, ξ, τ)f(ξ, τ)dξdτ

∣∣∣∣∣∣∣
≤

p0∑

i,j=1

t∫

t−δ

∫

BR1

∣∣aij(ξ, τ)∂xixjZ(x, t, ξ, τ)f(ξ, τ)
∣∣ dξdτ ≤

(proceeding as in the proof of Proposition 5.3, cf. (5.14))

≤ C

t∫

t−δ

1

(t− τ)1−
β
2

dτ.

Finally, since f is a continuous and bounded function on BR× ]T0, T [, we have

lim
δ→0+

∫

BR1

Z(x, t, ξ, t− δ)f(ξ, t− δ)dξ = f(x, t),

uniformly on BR× ]T0, T [ and this concludes the proof.

6 Proof of Theorems 1.4 and 1.5

In this section we prove of Theorems 1.4 and 1.5. We begin by a preliminary result.

Lemma 6.1. For every ε > 0 and T > 0 there exists a positive constant C such that

|Φ(x, t, ξ, τ)− Φ(y, t, ξ, τ)| ≤ C
|x− y|

α
2
B

(t− τ)1−
α
4

(Γε(x, t, ξ, τ) + Γε(y, t, ξ, τ)) ,

for any (ξ, τ) ∈ RN+1, t ∈ ]τ, τ + T ] and x, y ∈ RN .

Proof. We set w = (y, t) and note that if |x− y|B ≥ √
t− τ , then we have the trivial estimate

|LZ(z, ζ)− LZ(w, ζ)| ≤ C

(t− τ)1−
α
2

(Γε(z, ζ) + Γε(w, ζ)). (6.1)
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In the case |x− y|B <
√

t− τ , we first prove the following estimates:

|Z(z, ζ)− Z(w, ζ)| ≤ C√
t− τ

Γ
ε
2 (z, ζ),

|∂xk
Z(z, ζ)− ∂xiZ(w, ζ)| ≤ C

|x− y|B
t− τ

Γ
ε
2 (z, ζ),

|∂xixjZ(z, ζ)− ∂xixjZ(w, ζ)| ≤ C
|x− y|B
(t− τ)

3
2

Γ
ε
2 (z, ζ).

(6.2)

Since the proof is similar, we only consider the third estimate in (6.2). By using the Mean Value
Theorem, we have

|∂xixjZ(z, ζ)− ∂xixjZ(w, ζ)| ≤ max
ρ∈[0,1]

N∑

h=1

∣∣∂xhxixjZ(x + ρ(x− y), t, ξ, τ)(x− y)h

∣∣ .

Denoting s = t− τ , ω = x− E(s)ξ and C = Cζ(s), a short computation shows

∂xhxixjZ(z, ζ) = Z(z, ζ)
(
C−1

ih (C−1ω)j + (C−1ω)iC−1
jh + (C−1ω)hC−1

ij + (C−1ω)h(C−1ω)i(C−1ω)j

)

≡ Z(z, ζ) (ah(ω) + bh(ω) + ch(ω) + dh(ω)) .

Then we put v = x− y, ω̃ = ω + ρv and, by Lemma 3.4, we get
∣∣∣∣∣

N∑

h=1

vhah(ω̃)

∣∣∣∣∣ ≤
N∑

h=1

|C−1
ih vh(C−1ω̃)j | = |(C−1v)i||(C−1ω̃)j | ≤ C

s

∣∣∣∣D0

(
1√
s

)
v

∣∣∣∣
∣∣∣∣D0

(
1√
s

)
ω̃

∣∣∣∣ .

Since |v|B <
√

s, we have
∣∣∣D0

(
1√
s

)
v
∣∣∣ ≤ C

∣∣∣D0

(
1√
s

)
v
∣∣∣
B

= C |v|B√
s

, therefore

∣∣∣∣∣
N∑

h=1

vhah(ω̃)

∣∣∣∣∣ ≤ C
|v|B|η̃|B

s
3
2

,

where η̃ = D0

(
1√
s

)
ω̃. The same estimate holds substituting ah with bh or ch. Moreover

∣∣∣∣
N∑

h=1

vhdh(ω̃)
∣∣∣∣ ≤

N∑

h=1

|(C−1ω̃)hvh(C−1ω̃)i(C−1ω̃)j | ≤ |v|B|η̃|3B
s

3
2

.

Collecting all the terms and using Proposition 3.5, we obtain

∣∣∂xixjZ(z, ζ)− ∂xixjZ(w, ζ)
∣∣ ≤ |v|B

(|η̃|B + |η̃|3B
)

s
3
2

Z(x + ρv, t, ξ, τ) ≤ |x− y|B
s

3
2

Γ
ε
3 (x + ρv, t, ξ, τ).

By a standard argument we have that, if |x− y|B <
√

t− τ then

Γ
ε
3 (x + v, t, ξ, τ) ≤ Γ

ε
2 (x, t, ξ, τ).
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This concludes the proof of the third inequality in (6.2) at least for |x− y|B <
√

t− τ . Next we
show how to deduce from (6.2) an estimate similar to (6.1). We recall that (w)−1 ◦z = (x−y, 0)
and we have

|LZ(z, ζ)− LZ(w, ζ)| =
∣∣∣∣

p0∑

i,j=1

aij(z)∂xixjZ(z, ζ) +
p0∑

i=1

ai(z)∂xiZ(z, ζ)

−
p0∑

i,j=1

aij (w) ∂xixjZ(w, ζ)−
p0∑

i=1

ai(w)∂xiZ(w, ζ)

+ Y Z(z, ζ)− Y Z(w, ζ) + c(z)Z(z, ζ)− c(w)Z(w, ζ)

− LζZ(z, ζ) + LζZ(w, ζ)
∣∣∣∣

≤
p0∑

i,j=1

|aij(z)− aij(w)||∂xixjZ(w, ζ)|

+
p0∑

i,j=1

|aij(z)− aij(ζ)||∂xixjZ(z, ζ)− ∂xixjZ(w, ζ)|

+
p0∑

i=1

|ai(z)− ai(w)||∂xiZ(w, ζ)|

+
p0∑

i=1

|ai(w)||∂xiZ(z, ζ)− ∂xiZ(w, ζ)|

+ |c(z)− c(w)||Z(w, ζ)|+ |c(z)||Z(z, ζ)− Z(w, ζ)| ≤
(by the regularity properties of the coefficients, by Proposition 3.6 and by (6.2))

≤ C

(
|x− y|αB

t− τ
Γ

ε
2 (w, ζ) + ||ζ−1 ◦ z||αB

|x− y|B
(t− τ)

3
2

Γ
ε
2 (z, ζ) +

|x− y|αB√
t− τ

Γ
ε
2 (w, ζ)

+
|x− y|B

t− τ
Γ

ε
2 (z, ζ) + |x− y|αBΓ

ε
2 (w, ζ) +

|x− y|B√
t− τ

Γ
ε
2 (z, ζ)

)
.

Since
||ζ−1 ◦ z||αB = (t− τ)

α
2

(
1 +

∣∣D0

(
(t− τ)−

1
2
)
(x−E(t− τ)ξ)

∣∣α
B

)
,

we may use Proposition 3.5 to deduce

|LZ(z, ζ)− LZ(w, ζ)| ≤ C

(
|x− y|B

(t− τ)
3−α

2

+
|x− y|αB

t− τ

)
(Γε(z, ζ) + Γε(w, ζ)). (6.3)

On the other hand, if |x− y|B <
√

t− τ , it holds

|x− y|B
(t− τ)

3−α
2

+
|x− y|αB

t− τ
≤ |x− y|B

(t− τ)
3−α

2

( |x− y|B√
t− τ

)−1+α
2

+
|x− y|αB

t− τ

( |x− y|B√
t− τ

)−α

=
|x− y|

α
2
B

(t− τ)1−
α
4

.

(6.4)
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Combining (6.1), (6.3) and (6.4), finally we get

|LZ(z, ζ)− LZ(w, ζ)| ≤ C
|x− y|

α
2
B

(t− τ)1−
α
4

(Γε(z, ζ) + Γε(w, ζ)) . (6.5)

By (6.5) and an inductive argument, it is possible to show that, if M1 is the constant in (4.9)
such that |LZ(z, ζ)| ≤ M1

Γε(z,ζ)

(t−τ)1−
α
2
, then we have

|(LZ)k(z, ζ)− (LZ)k(w, ζ)| ≤ M̃k
|x− y|

α
2
B

(t− τ)1−
α
4

(Γε(z, ζ) + Γε(w, ζ))Mk
1 (t− τ)k,

where

M̃k = C0Γk
E

(α

2

) ΓE

(
α
4

)

ΓE

(
α
2

(
k + 1

2

)) ,

for some positive constant C0. The thesis follows since the power series with coefficients M̃k has
radius of convergence equal to infinity.

Proof. (of Theorem 1.4) Let Γ be the function defined in (4.1), (4.2) and (4.6) by means of
Proposition 4.1:

Γ(z, ζ) = Z(z, ζ) +
∫

Sτ,t

Z(z, w)Φ(w, ζ)dw, z 6= ζ. (6.6)

(1) By Corollary 4.4 and Proposition 4.1, it is clear that Γ(·, ζ) ∈ L1
loc(RN+1)∩C(RN+1\{ζ})

for every ζ ∈ RN+1.
(2) Thanks to estimate (4.8) and Lemma 6.1, we may apply Propositions 5.1, 5.3 and 5.4

to conclude that there exist and are continuous functions for z 6= ζ the following derivatives:

∂xiΓ(z, ζ) = ∂xiZ(z, ζ) +
∫

Sτ,t

∂xiZ(z, w)Φ(w, ζ)dw,

∂xixjΓ(z, ζ) = ∂xixjZ(z, ζ) +
∫

Sτ,t

∂xixjZ(z, w)Φ(w, ζ)dw,

Y Γ(z, ζ) = Y Z(z, ζ) +
∫

Sτ,t

∂xiY Z(z, w)Φ(w, ζ)dw − Φ(z, ζ),

for every i, j = 1, . . . , p0. By using the above formulas, we directly obtain

LΓ(z, ζ) = LZ(z, ζ) +
∫

Sτ,t

LZ(z, w)Φ(w, ζ)dw − Φ(z, ζ) = 0

for z 6= ζ, since Φ satisfies the integral equation (4.5).
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(3) By (4.1) and since
∫
RN

Z(x, t, ξ, τ)dξ = 1 for t > τ , we have

∣∣∣∣∣∣

∫

RN

Γ(x, t, ξ, τ)g(ξ)dξ − g(x0)

∣∣∣∣∣∣
≤

∫

RN

Z(z, ζ)|g(ξ)− g(x0)|dξ +

∣∣∣∣∣∣

∫

RN

J(z, ζ)g(ξ)dξ

∣∣∣∣∣∣
≤

(by Proposition 3.1 and Corollary 4.4)

≤ µN

∫

RN

Γ+(z, ζ)|g(ξ)− g(x0)|dξ + C1(t− τ)
α
2

∫

RN

Γε(x, t, ξ, τ)|g(ξ)|dξ −→ 0,

as (x, t) → (x0, τ) with t > τ , by a straightforward computation using the explicit expression of
Γ+ and Γε.

(4) By the results in Section 4, the function u in (1.19) is well-defined in ST0,T for T −T0 > 0
suitably small. We set

V (z) =
∫

ST0,t

Γ(z, ζ)f(ζ)dζ,

and we prove that
LV = −f, in ST0,T .

Using expression (6.6) of Γ we rewrite V = Vf + Vf̂ where Vf is the potential in (5.1) and

f̂(z) =
∫

ST0,t

Φ(z, ζ)f(ζ)dζ.

In order to apply Propositions 5.1, 5.3 and 5.4 to the potential Vf̂ , we show that f̂ verifies
estimates (1.17) and (1.18). By (4.8) we have

∣∣∣f̂(z)
∣∣∣ ≤ C

∫

ST0,t

Γε(z, ζ)
(t− τ)1−

α
2

|f(ζ)|dζ ≤

(proceeding as in the proof of (5.2))

≤ C(t− T0)
α
2 eC|x|2 .

On the other hand, by Lemma 6.1 we infer

∣∣∣f̂(x, t)− f̂(y, t)
∣∣∣ ≤

t∫

T0

∫

RN

|Φ(x, t, ξ, τ)− Φ(y, t, ξ, τ)| |f(ξ, τ)|dξdτ

≤ C|x− y|
α
2
B

t∫

T0

1
(t− τ)1−

α
4

∫

RN

(Γε(x, t, ξ, τ) + Γε(y, t, ξ, τ)) |f(ξ, τ)|dξdτ

≤ C(t− T0)
α
4 |x− y|

α
2
B eC(|x|2+|y|2).
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Therefore we can apply Propositions 5.1, 5.3 and 5.4 and we get, for z ∈ ST0,T ,

LV (z) = LVf (z) + LVf̂ (z) = −f(z)− f̂(z) +
∫

ST0,t

LZ(z, ζ)
(
f(ζ) + f̂(ζ)

)
dζ

= −f(z) +
∫

ST0,t

f(ζ)


−Φ(z, ζ) + LZ(z, ζ) +

∫

Sτ,t

LZ(z, w)Φ(w, ζ)dw


 dζ = −f(z),

by (4.5). Since, for t > T0, it holds

L

∫

RN

Γ(x, t, ξ, T0)g(ξ)dξ =
∫

RN

LΓ(x, t, ξ, T0) = 0,

by Step (2), we conclude that Lu = f in ST0,T . Moreover, by Corollary 4.4

|V (z)| ≤ C

∫

ST0,t

Γε(z, ζ)|f(ζ)|dζ ≤

(proceeding as in the proof of (5.2))

≤ C(t− T0)eC|x|2 ,

therefore, by Step (3), we have that u ∈ C
(
RN × [T0, T [

)
and u(·, T0) = g.

(5-6-7) The uniqueness result can be proved proceeding exactly as in the classical parabolic
case (see, for instance, [16]). Then the reproduction property (1.21) and formula (1.22) follow
immediately.

(8) Estimate (1.24) is included in Corollary 4.4. Analogously, by Proposition 3.6 and (4.8)
we have

|∂xiΓ(z, ζ)| ≤ CΓε(z, ζ)√
t− τ

+ CΓε(z, ζ)

t∫

τ

1

(t− s)
1
2

1
(s− τ)1−

α
2

ds ≤ C
Γε(z, ζ)√

t− τ
,

for any i = 1, . . . , p0 and z, ζ ∈ RN+1 with 0 < t− τ < T . The proof of (1.26) is less trivial:
∣∣∂xixjΓ(z, ζ)

∣∣ ≤ ∣∣∂xixjZ(z, ζ)
∣∣ +

∣∣∂xixjJ(z, ζ)
∣∣ ≤

(by Propositions 3.6 and 5.3)

≤ C
Γε(z, ζ)
t− τ

+

∣∣∣∣∣∣∣

∫

Sτ,t

∂xixjZ(z, w)Φ(w, ζ)dw

∣∣∣∣∣∣∣
≤

(managing the singularity of the integral as in the proof of Proposition 5.3)

≤ C
Γε(z, ζ)
t− τ

+ C

t∫

τ

1
(t− s)

α
4

1
(s− τ)

α
4

ds ≤ C
Γε(z, ζ)
t− τ

.
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Proof. (of Theorem 1.5) The proof of the existence and the properties of Γ∗ is analogous to that
of Theorem 1.4. In order to prove (1.29), we first note that the Green’s identity holds:

vLu− uL∗v =
p0∑

i,j=1

∂xi

(
aij

(
v∂xju− u∂xjv

)
+ uv

(
ai − ∂xjaij

))
+

N∑

i,j=1

∂xj (bijxiuv)− ∂t(uv),

(6.7)
for any u, v ∈ C∞

0 (RN+1). Then we consider the functions

u(w) = Γ(w, ζ), v(w) = Γ∗(w, z)

for w = (y, s) with τ < s < t. Given R, δ > 0, we integrate the identity (6.7) over the domain
{(y, s) | |y| < R, τ + δ < s < t− δ} and we obtain

∫

|y|<R

u(y, t− δ)v(y, t− δ)dy −
∫

|y|<R

u(y, τ + δ)v(y, τ + δ)dy = IR,δ,

where

IR,δ =
p0∑

i,j=1

t−δ∫

τ+δ

∫

|y|=R

(
aij

(
v∂yju− u∂yjv

)− uv∂yjaij

)
νidσ(w)

+
N∑

i,j=1

t−δ∫

τ+δ

∫

|y|=R

bijyiνjuvdσ(w).

By (1.25)-(1.26) (and the analogous estimates for Γ∗), we get

lim
R→+∞

IR,δ = 0,

so that ∫

RN

u(y, t− δ)v(t, t− δ)dy =
∫

RN

u(y, τ + δ)v(t, τ + δ)dy

and the thesis follows by letting δ → 0+.

Proof. (of Theorem 1.6) We only sketch the proof since it suffices to proceed as in [16], Th. 16
page 29, by using Theorem 1.5 and the estimates (1.25)-(1.26) in Theorem 1.4.

It is not restrictive to assume T0 = 0. We first prove that u = 0 in a suitable thin strip
S0,ε. Fixed (y, s) ∈ S0,ε, for any R > |y|, we consider hR ∈ C∞

0 (BR+1), 0 ≤ hR ≤ 1, such that
hR ≡ 1 on BR and with the first and second order derivatives bounded uniformly w.r.t. R.
We integrate the Green’s identity (6.7) with u = u(ζ) and v(ξ, τ) = hR(ξ)Γ(y, s, ξ, τ) over the
domain {ζ ∈ RN+1 : ξ ∈ BR+1 , 0 < τ < s− δ}, for some δ > 0. Since Lu = 0 we have

−
s−δ∫

0

∫

BR+1

u(ξ, τ)L∗v(ξ, τ)dξdτ =

s−δ∫

0

∫

BR+1

(vLu− uL∗v) (ξ, τ)dξdτ =
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(by the divergence theorem)

=−
∫

BR+1

u(ξ, s− δ)h(ξ)Γ(y, s, ξ, s− δ)dξ +
∫

BR+1

u(ξ, 0)h(ξ)Γ(y, s, ξ, 0)dξ

+
p0∑

i,j=1

s−δ∫

0

∫

∂BR+1

(
aij

(
v∂ξju− u∂ξjv

)− uv∂ξjaij

)
dσ(ζ) +

N∑

i,j=1

s−δ∫

0

∫

BR+1

bijξiuvνjdσ(ζ).

(6.8)

The last three terms in (6.8) are null by hypothesis, then letting δ → 0+, we get

u(y, s) = lim
δ→0+

∫

BR+1

u(ξ, s− δ)h(ξ)Γ(y, s, ξ, s− δ)dξ =

s∫

0

∫

BR+1

u(ξ, τ)L∗v(ξ, τ)dξdτ.

Since L∗Γ(y, s, ξ, τ) = 0, we deduce

u(y, s) =

s∫

0

∫

BR+1\BR

u(ξ, τ)
( p0∑

i,j=1

aij(ξ, τ)
(
2∂ξihR(ξ)∂ξjΓ(y, s, ξ, τ) + Γ(y, s, ξ, τ)∂ξiξjhR(ξ)

)

−
p0∑

i=1

ai(ξ, τ)Γ(y, s, ξ, τ)∂ξi
hR(ξ)−

N∑

i,j=1

bijξi∂ξj
hR(ξ)Γ(y, s, ξ, τ)

)
dξdτ.

(6.9)

By means of Theorem 1.5 and (1.25)-(1.26), it is straightforward to conclude that if ε is suitably
small, then the integral at the right hand side of (6.9) tends to zero as R → +∞, so that
u(y, s) = 0. The thesis follows by repeating the previous argument finitely many times.
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