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Abstract

We adapt the Levi’s parametrix method to prove existence, estimates and qualitative
properties of a global fundamental solution to ultraparabolic partial differential equations of
Kolmogorov type. Existence and uniqueness results for the Cauchy problem are also proved.

1 Introduction

In this paper we adapt the classical Levi’s parametrix method to construct a global fundamental
solution to the following differential equation of Kolmogorov type:

Po Po N
Lu= )" aij(2)0pzu+ Y ai(2)0pu+ Y bijwida,u+ c(z)u — dyu =0, (1.1)
ij=1 i=1 ij=1

where z = (z,t) € RN xR and 1 < py < N. By convenience, hereafter the term “Kolmogorov
equation” will be shortened to KE. We assume the following hypotheses:

[H.1] the matrix Ag = (a;j)i j=1,..p, i symmetric and uniformly positive definite in RP°: there
exists a positive constant p such that

2 Po
I < " aomy < bl e R, e RN, (12)
ij—=1

[H.2] the matrix B = (b;;) has constant real entries and takes the following block from:

x By 0 ... 0
x * DBy 0

: (1.3)
* % * ... B,
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where B; is a pj_1 X pj matrix of rank p;, with
Po>p1>...2pr > 1, po+pi+...+p =N,
and the x—blocks are arbitrary.

The regularity hypotheses on the coefficients a;;, a;, ¢ will be specified later: roughly speaking,
we assume the Holder continuity with respect to some homogeneous norm naturally induced by
the equation.

The prototype of (1.1) is the following equation

OpyayU + T10pu — Opu = 0, (r1,22,t) € R3, (1.4)

whose fundamental solution was explicitly constructed by Kolmogorov [20]. In his celebrated
paper [18], Hormander generalized this result to constant coefficients KFEs, i.e. equations of the
form (1.1), with constant a;; and a; = c=0for i = 1,..., po, satisfying the following condition:

Ker(A) does not contain non-trivial subspaces which are invariant for B. (1.5)

In (1.5), A denotes the N x N matrix

Ay O
A= . 1.6
(¢ 0) (1.6
Let us recall that, for constant coefficients equations, condition (1.5) is equivalent to the struc-
tural assumptions [H.1]-[H.2] which in turn are equivalent to the classical Hormander condition:

rank Lie (X1,...,Xp,Y) = N + 1, (1.7)
at any point of RV*1. In (1.7), Lie (X1,..., Xp,,Y) denotes the Lie algebra generated by the

vector fields

Po
Xi = ayy, i=1,...,po, and Y = (z, BD) — 9, (1.8)
j=1

where (-, -) and D respectively denote the inner product and the gradient in RY. A proof of the
equivalence of these conditions is given by Kupcov in [21], Theorem 3 and by Lanconelli and
Polidoro in [23], Proposition A.1.

We recall that a constant coefficients KEs have the remarkable property of being invariant
with respect to the left translations in the law defined by

(z,t)o (&,7) = (E+ E(T)z,t + 7), (z,t), (& 1) e RY x R, (1.9)

where .
E(t) =P, (1.10)

Moreover, let us consider the family of dilations (D())),.o on RV T defined by

D(A) = (Do(N), N?) = diag (ALpy, NIy, ..., AT, A?), (1.11)



where I, denotes the p; x p; identity matrix. It is known that if (and only if) all the *-blocks
in (1.3) are zero matrices, then L is also homogeneous of degree two with respect to (D(A)) in
the sense that

LoD(\) = (D(\) o L), VA > 0.

We remark explicitly that Gg = (RNH,O,D(/\)) is a homogeneous Lie group only determined
by the matriz B.

In some particular cases, variable coefficients KEs were first studied by Weber [32], II'in [19]
and Sonin [31] who used the parametrix method to construct a fundamental solution. Yet in
these papers unnecessary restrictive conditions on the regularity of the coefficients are required.
Assuming that the KE in (1.1) satisfies the hypotheses [H.1]-[H.2] and that the *-blocks in (1.3)
are zero matrices, the previous results were considerably generalized in a series of papers by
Polidoro [28], [29], [30], by assuming a notion of regularity modeled on the homogeneous Lie
group Gp (cf. Definitions 1.2 and 1.3 below). Some of the results of Polidoro were extended to
non-homogeneous KEs by Morbidelli [24]. We also refer to [22] for a survey of the most recent
results about KEs. In this note we aim to consider the general case of (1.1) satisfying [H.1]-[H.2]
with arbitrary #-blocks.

The interest in obtaining results for the general class of KEs is not academic. It is well-
known that “homogeneous” KEs (i.e. KEs with null %-blocks in (1.3)) play a central role in
the stochastic theory of diffusion processes. On the other hand, more general KEs have been
recently considered for applications in mathematical finance. In the next section we briefly recall
some of the main motivations for studying KEs.

In order to state our main results, we recall the definition of homogeneous norm and B-Hoélder
continuity given by Polidoro [28].

Definition 1.1. Given a constant matriz B of the form (1.3) and (D()))ys defined as in
(1.11), let (gj)j=1,...n be such that

D()\) = diag( AT, N2, ... NN A2,

For every z = (x,t) € RNt we set

N 1
= 1
lolp =) |l and |2l = |2[B + [t[>. (1.12)
j=1
Clearly || - || 3 is @ norm on R¥*! homogeneous of degree one with respect to the dilations

(D(A)-

Definition 1.2. We say that a function f is B-Hélder continuous of order o € ]0,1] on a
domain Q of RNTL, and we write f € C%(Q), if there exists a constant C' such that

f(2) = FQOI<ClI¢CT ozl VzCeQ (1.13)
In (1.13), (™! denotes the inverse of ¢ in the law “o” in (1.9).

Next, we give the definition of solution to equation Lu = f.



Definition 1.3. We say that a function u is a solution to the equation Lu = f in a domain
Q of RNTL if there exist the Euclidean derivatives Oz Uy Op,z;u € C(2) fori,j=1,...,po, the
Lie' derivative Yu € C(S2) and equation

Z i5(2) 0z, u(2) + Z a;(2)0z,u(z) + Yu(z) + c(z)u(z) = f(z) (1.14)
i,j=1 i=1

is satisfied at any z € ).
We are now in position to state the following

Theorem 1.4. Assume that L in (1.1) verifies hypotheses [H.1]-[H.2] and that the coefficients
aij, a;,c € CERNTY) are bounded functions. Then there exists a fundamental solution T' to L
with the following properties:

1. T(-¢) € L%OC(RN—H) N C(RN+1 \ {C}) for every ¢ € RN+,

2. T(-,¢) is a solution to Lu = 0 in RNTI\ {¢} for every ¢ € RN*Y (in the sense of Definition
1.3);

3. let g € C(RY) such that
l9(x)] < Coelel®, vz e RY, (1.15)

for some positive constant Cy. Then there exists

i /F(:c,tjf,T)g(f)df = g(=zp), Vo € RY; (1.16)
z,t)—(xqg,T

t>T RN

4. let g € CRY) werifying (1.15) and f be a continuous function in the strip St, 1, =
RN x|Ty, T1[, such that

1f(z,8)] < C1eC PP V(. t) € Spym (1.17)
and for any compact subset M of RV there exists a positive constant C' such that
\f(z,t) — fy,t)| < Clz —yl?,  VYa,ye M, t €Ty, T, (1.18)

for some 8 €]0,1[. Then there exists T € |Ty, Th] such that the function

ulir, 1) = / D(a,t,€, To)g(€)ds — / / P(xt,€,7)f (6, 7)dedr (1.19)

RN To RN

LA function u is Lie differentiable w.r.t. the vector field Y in (1.8), at the point z = (x,t), if there exists and
it is finite
lim
6—0
where v denotes the integral curve of Y from z:

~v(8) = (E(=6)x,t — §), d eR.
Clearly, if u € C* then Yu(z,t) = (z, BDu(z,t)) — Owu(z, t).

u(y(9)) —u(v(0)) _
s = Yu(z),



s a solution to the Cauchy problem

Lu = f mn STO,Ta
(1.20)
u(-,To) =g in RY;

5. if u is a solution to the Cauchy problem (1.20) with null f and g, and verifies estimate
(1.17), then u = 0 (see also Theorem 1.6 below). In particular, the function in (1.19) is
the unique solution to problem (1.20) verifying estimate (1.17);

6. the reproduction property holds:
Mwt67) = [Tty olsendy,  VogeRY, r<s<n (121
RN
7. if ¢(z) = ¢ is constant then
/F(m,t,{,T)df =e 7 vz eRN, <t (1.22)
RN
8. let I'® denote the fundamental solution to the constant coefficients KE
Lf = (,u + €)AR100 + <.1‘, BV) — O (1.23)

where € > 0, p is as in (1.2) and Agwo denotes the Laplacian in the variables x1, ..., Zp,.
Then for every positive € and T, there exists a constant C, only dependent on u, B, and
T, such that

I(z,¢) < C T5(2,0), (1.24)
|02, (2, Q) < N I(z¢), (1.25)
One P20 < 2T, IO S0, (120)

foranyi,j=1,...,p0 and 2, € RN with0 <t —7 < T.
Under the further hypothesis

[H.3] for every i,j = 1,...,po, there exist the derivatives 0,a;j, Ou,z;0ij, Or;0i € C’g(RN“)
and are bounded functions,

we define as usual the adjoint operator L* of L:

PO Po
L= a;j0sav+ ) af0zv — (&, BVv) + v+ O (1.27)
i,j:l =1
where
Po Po Po
a%k = —a; +2 Zaxiaij, cf=c+ Z 6mimjaij — Zaﬂfiai — tr(B)’ (1.28)
7=l ij=1 i=1

and we prove the following result.



Theorem 1.5. There exists a fundamental solution I'* of L* verifying the dual properties in the
statement of Theorem 1.4. Moreover it holds

[*(2,¢) =T(¢,2),  Vz,¢eRVHL 22 (1.29)
We close this section by stating a further uniqueness result.

Theorem 1.6. Assume that L in (1.1) verifies the hypotheses [H.1]-[H.2]-[H.3] and that the
coefficients a;j;,a;, c € C%(RNJFI) are bounded functions. If u is a solution to the Cauchy problem
(1.20) with null f and g, such that

T

//\u(a:,t)]eclx|2d:cdt < 400

To RN
for some positive constant C, then u = 0.

The paper is organized as follows. In the next section we present some motivation for studying
KEs. In Section 3 we collect some preliminaries. In Section 4 we present the parametrix method
for constructing a fundamental solution. In Section 5 we provide some potential estimates.
Section 6 is devoted to the proofs of Theorems 1.4, 1.5 and 1.6.

Acknowledgements. We wish to thank Sergio Polidoro and Daniele Morbidelli for several
helpful conversations.

2 Some motivation

In this section we give some motivation for the study of KEs from probability, physics and
finance. The operator (1.4) is the lowest dimension version of the following degenerate parabolic
operator in RV*! with N = 2n:

L=> 07 +Y 0, — 0O (2.1)
j=1 j=1

Kolmogorov introduced (2.1) in 1934 in order to describe the probability density of a system
with 2n degree of freedom. The 2n-dimensional space is the phase space, (r1,...,x,) is the
velocity and (2,41, ...,%2,) the position of the system. We also recall that (2.1) is a prototype
for a family of evolution equations arising in the kinetic theory of gases that take the following
general form

Yu=J(u). (2.2)

Here R?" 5 z —— u(x,t) € R is the density of particles which have velocity (21, ...,7,) and
position (Zy41, ..., T2) at time ¢,

n
Yu= ijf)xn+ju + 3tu
J=1



is the so called total derivative of u and J(u) describes some kind of collision. This last term
can take different form, either linear or non-linear. For instance, in the usual Fokker-Planck
equation, we have

J(u) =— Z O, (aijaxju + biu) + Z a0z, u + cu (2.3)

ij=1 i=1

where a;;, a;,b; and ¢ are functions of (z,t). J(u) may also occur in non-divergence form and
the coefficients may depend on z € R?"*! as well as on the solution u through some integral
expressions. This kind of operator is studied as a simplified version of the Boltzmann collision
operator. A description of wide classes of stochastic processes and kinetic models leading to
equations of the previous type can be found in the classical monographies [8], [13] and [9].

Linear KEs also arise in mathematical finance in some generalization of the celebrated Black

& Scholes model [7]. Consider a “stock” whose price S; is given by the stochastic differential
equation

d St = /LSt dt + O'St th, (24)

where p and o are positive constants and W; is a Wiener process. Also consider a “bond” whose
price B; only depends on a constant interest rate r:

B, = Bye'".

Finally, consider an “European option” which is a contract which gives the right (but not the

obligation) to buy the stock at a given “exercise price” E and at a given “expiry time” T'. The

problem studied in [7] is to find a fair price of the option contract. Under some assumptions

on the financial market, Black & Scholes show that the price of the option, as a function of the

time and of the stock price V (¢, S;), is the solution of the following partial differential equation
oV ov 1 ,0*V

—TV-{—E-FTS%'FgU 952 =0

in the domain (S,t) € R"x]0, T[, with the final condition
V(T, St) = max(St — E,0).

In the last decades the Black & Scholes theory has been developed by many authors and math-
ematical models involving KEs have appeared in the study of the so-called path-dependent
contingent claims (see, for instance, [1], [4], [5] and [33]). Asian options are options whose ex-
ercise price is not fixed as a given constant E, but depends on some average of the history of
the stock price. In this case, the value of the option at the expiry time T is (for a a geometric
average option):

M t
V (S, Mp) = max (ST - eT,O) , M= / log(S;)dr.
0

If we suppose by simplicity that the interest rate is r = 0, the Black & Scholes method leads to
the following degenerate equation

S2ORV + (log $)onV + OV =0, S,t>0, MeR (2.5)



which can be reduced to the KE (1.4) by means of an elementary change of variables (see [6],
page 479). A numerical study of the solution of the Cauchy problem related to (2.5) is also
proposed in [6].

A more recent motivation from finance comes from the model by Hobson & Rogers [17].
In the Black & Scholes theory the hypothesis that the volatility ¢ in the stochastic differential
equation (2.4) is constant contrasts with the empirical observations. Aiming to overcome this
problem, many authors proposed different models based on a stochastic volatility (see [14] for a
survey). However the presence of a second Wiener process leads some difficulties in the arbitrage
argument underlying the Black & Scholes theory. The model proposed by Hobson and Rogers for
European options assumes that the volatility only depends on the difference between the present
stock price and the past price. This simple model seems to capture the features observed in the
market and avoid the problems related to the use of many sources of randomness.

As in the study of Asian options, in the Hobson & Rogers model for European options the
value of the option V (¢, Sy, My) is supposed to depend on the time ¢, on the price of the stock
St, on some average M; and must satisfy the following differential equation

1
5az(s — M) (05V — 9sV) + (S — M)omV + 9,V =0, (2.6)

that is a non-homogeneous KE with Holder continuous coefficients. In the recent paper [12] the
Cauchy problem related to (2.6) has been studied numerically. In [11] the stability and the rate of
convergence of different numerical methods for solving (2.6) are tested. The numerical schemes
proposed in these papers rely on the approximation of the directional derivative Y by the finite
difference —u(w’y’t)fu(g’ywx’t*a): hence this method, which is respectful of the non-Euclidean

geometry of the Lie group, seems to provide a good approximation of the solution.

Finally we recall that KEs with non linear total derivative term of the form
Agu+ 0yg(u) — Ou = f, x=(x1,...,2,) €ER", y,t € R, (2.7)

have been considered for convection-diffusion models (cf. [15] and [25]), for pricing models of
options with memory feedback (cf. [27]) and for mathematical models for utility functional and
decision making (cf. [2], [3], [10] and [26]). The linearized equation of (2.7)

g'(u)ayv — 0w = —A,v,

if ¢’(u) is different from zero and smooth enough, can be reduced to the form (1.1) with N = n+2
and

A=|: L and  B=|° 5
0 10 0 - 0 0
0 - 0 0 0 - 0 0

3 Preliminaries

In this section we recall some known results for constant coefficients KEs i.e. equations of the

form
Do

Z ;jOp;z;u + (x, BDu) — 0y = 0, (3.1)
ij=1



with constant a;;’s and satisfying hypotheses [H.1]-[H.2]. Moreover we prove some preliminary
result.
First we recall the explicit expression of the fundamental solution to equation (3.1). We set

ct) = /0 tE(s)AET(s)ds, teR, (3.2)

where E(+) is as in (1.10). It is known (see, for instance, [23]) that [H.1]-[H.2] are equivalent to
condition
C(t) > 0, vt > 0. (3.3)

If (3.3) holds then a fundamental solution to (3.1) is given by
[z, t,,7)=T(x—-E({t—1)§t—1), (3.4)

where I'(z,t) =0 if t <0 and

—Mex —1 1)z, x) —t tr i
F(x,t)—\/m p< L(c e tt(B)), £t > 0. (3.5)

Let us remark that I'(-,-) is a C™ function outside the diagonal of RV+! x RV*! and satisfies
the usual properties (1.21) and (1.22) (with ¢ = 0). If all the *-blocks in (1.3) are zero matrices,
then I' is also D(\)-homogeneous:

D(D(A\)z) = A" 9I(2), VzeRY\ {0}, A>0,
where
Q=po+3p1+...+(2r+1)p,

is the so-called homogeneous dimension of R with respect to the dilations group in RY
Do(\) = diag( Ay, NIy, ..., AT ). (3.6)

Next we prove some estimates for the fundamental solution to constant coefficients KEs
which generalize some result in [28], Section 2. Given B in the form (1.3), we denote by By the
matrix obtained by substituting the *-blocks with null blocks and we set Ey(t) = e~tBo ,teR.
Moreover, for t € R and ¢ € RV we set

t

Ce(t) Z/E(S)A(C)ET(S)d& Ceo(t) Z/Eo(S)A(C)EoT(S)dS- (3.7)
0

0
: o . _( Iy, O
In the following statements we also denote by C the matrix in (3.2) with A = and

t

)= [ Eats) (0 ) B .
0



where I,,, denotes the identity matrix in RP°. Hypothesis (1.2) yields an immediate comparison
between the quadratic forms associated to C¢ and C:

poHC(t) < Ce(t) < pC(t) (3.8)

for any t € RT and ¢ € RVTL. Since C¢(t), t > 0, is symmetric and positive definite, analogous
estimates hold for CC_ L Ce¢o and C; é in terms of C~1,Cy and Cy ! respectively.
Let us now denote respectively by I'™ and I'~ the fundamental solutions of the operators

1
LT = pAgeo + (x, BV) — 0y, L™ = ;AR;;O + (z, BV) — 0.

Moreover, for fixed w € RY¥*!, we denote by Z,, the fundamental solution to the frozen Kol-

mogorov operator
po

L, = Z ;5 (W) Og,z; + (2, BDu) — 0.
ij=1

An explicit expression of I',I'~ and Ty, is given by (3.4)-(3.5).
Proposition 3.1. For every z,{,w € RNTL 4t holds

/'LlJVF_(’Z7<) < Zw(Z,C) < MNF+(Z’C)

Proof. We only prove the second inequality. We first note that, by (3.8), we have

det Cy(t) > p~NdetC(t),  Vt >0, (3.9)
and
ex 1 C,! EN N
p 4( W (Hw,w) | <exp 4H<C (t)w, w) Vi >0, we RY. (3.10)
Given z,¢ € RN+ for convenience we set s =t — 7, w = 2 — E(s)¢ and cy = (4%)_%. Then
we have B
ey e st 1,4 )
Zy(2,() = ———==exp | —(C,, (S)w,w) | <
(2.0 = e (M e
(by (3.9) and (3.10))
—strB
yene L1 ) N+
<p2———e —— (T (s)w,w) | =T (2,0).
<t O e (— g o)) =T 0)
O

The next lemma provides an asymptotic comparison near 0 of C¢ and C¢ o.

Lemma 3.2. There exist two positive constants Cy and to, only dependent on p in (1.2) and
the matrixz B, such that

(1~ Cot) Ceo(t) < Ce(t) < (1+ Cot) Ceolt) (3.11)

for any ¢ € RNF! and t € [0,t0).

10



Lemma 3.2 can be proved following the arguments in [23], handling with care the dependence
of the coefficients on (. The proof will be omitted.

Remark 3.3. As an immediate consequence of (3.8) and Lemma 3.2, for some positive t; we

have
1 1
ﬂco(t) < 5 Ceo(t) < Ce(t) = 2Cco(t) < 2uCo(?), (3.12)
and
det Ce(t
(2p) Ndet Co(1) < 27Ndet Cep(1) < etf;f() < 2Ndet Ceo(1) < (21)Ndet Co(1),  (3.13)

for any ¢ € RNTY and t € [0,t1]. Analogous estimates also holds for Cgl.

Lemma 3.4. For every T > 0 there exists a positive constant C, only dependent on u, B and
T, such that

Da(-L
|(Cot (D)), | < ¢ 0(\/?)1/|, (3.14)
’(Cgl(t))ij < % (3.15)

for everyi,j=1,...,po, t €10,T], w € R¥*! and y € RV,

Proof. We only show (3.14) since the proof of (3.15) is analogous. Let ¢; be as in Remark 3.3:
we first consider the case ¢t €]0,t1]. We recall that (Do(\)y); = Ay; for i =1,...,po and

C24() = Dy (\}%) C2(1)Dy (%) (3.16)

see [23]. Then we have

(o) i (1))

(3.17)
+1’<C‘1(1)D <1> > =0 +1
NG w,0 0 N Y i =1h 2.
In order to estimate I;, we note that
| Do(vD) (et ) = cabh®)) DoV | =
(3.18)

= sup [((€5'(8) = Cob(®) Do(VBIE, Do(v)E)] <

l¢1=1

11



(by Remark 3.3 since 0 < ¢ <t;)

< \2}131 (Cor o) Do(V1)E, Do(V)E)| =

(by (3.16) and Remark 3.3)

= sw {Cob(ME ] < plCy ()]

Hence we infer

n< e oo ()]

On the other hand, again by Remark 3.3, we have

I < 'Cw}f)” ]Do Q%) y] < Lol

The proof of the case t € [t1,T] is easier:

()4

(€00 = 5 | (Potvirest 0paviDa () v) | <
(by (3.8)) 1
<3, ol o ()

O
In the next statement Z(z,() denotes the parametrix of L i.e. the fundamental solution,
with pole at (, to the constant coefficients Kolmogorov operator

Po
ij=1
Moreover I'¢, ¢ > 0, denotes the fundamental solution to the constant coefficients KE (1.23).

Proposition 3.5. Given € > 0 and a polynomial function p, there exists a constant C, only
dependent on €, u, B and p, such that, if we set n = ‘Do ((t — T)_%> (x — E(t—71)&)|, then we
have

lp ()| Zw(z,¢) < CT(2,0), (3.19)
for any z, ¢, w € RVFL,

Proof. For convenience, we set s =t — 7 and w = z — E(s)¢. By Lemma 3.2, we may consider
to > 0 such that (3.11) holds and

W+
o+

NI

(1-Coto)® > : (3.20)

™

12



where Cp is the constant in (3.11). We first prove (3.19) for s € [0,%]. Then, by (3.8), we have

% e trB

D e (5 €5 o)) <

Ip(In)|Zw(z,¢) < 1

(by Lemma 3.2 and (3.8))

cN,u% e~strB (1 — Coto)

< bl exp <—4M<Col(1)ﬁ,n>>

(&1 e strB (1 — C()t())
<———exp| —77—7=<~
det C(s) 4(p+5%)

(00—1(1)17,77)) <
(by Lemma 3.2 applied to the matrix C)

Cl e—strB (_ (1 _ Cot0)2

< it (- )

(by (3.20))
< CT%(2,0).

We next consider s > tg. In this case, by Proposition 3.1, we have

Ip(InD1Z(2,¢) < Cilp(|w])T*(2,¢)
and the thesis follows by a standard argument. O

Next we prove some estimates for the derivatives of Z,(z, ().

Proposition 3.6. For everye > 0 and T > 0 there exists a positive constant C, only dependent
on w, B, e and T, such that

C

t—1T1

C

t—T1

|aszw(Z7C)| S FE(ng)a ‘81‘iijw(Zvc)| S FE(27<)5

for every z,(,w € RNFL such that 0 <t — 7 < T and every i,j =1,...,po.

Proof. We put again s =t — 7 and w =  — E(s)§. Then, for i =1,...,pg, we have

00 Zu(2, )l = 5 (Ca (), Zul2) <
(by (3.14)) o
SARICOREE

and the first estimate follows by Proposition 3.1. The proof of the second estimate is analogous.
O

13



4 The parametrix method

In this section we describe the Levi’s parametrix method to construct a fundamental solution
I’ for the KE (1.1). Throughout this section, we assume that L in (1.1) verifies hypotheses
[H.1]-[H.2] and that the coefficients a;j, a;,c € C%(RNT1) are bounded functions. We remind
that Z,, denotes the fundamental solution to the “frozen” Kolmogorov operator

Po
L, = Z ;5 (0)Op,z; + (x, BDu) — 0,
ij=1

and Z(z,() = Z¢(2,() is the so-called parametrix. Hereafter z = (z,t) and ( = (§, 7). According
to Levi’s method, we look for the fundamental solution I' in the form

I'(z,0) = Z(2,¢) + J(2,0). (4.1)
The function J is unknown and supposed to be of the form
160 = [ 2GwewOde, S =B, (12)
ST,t

where ® has to be determined by imposing that I' is solution to L:
0=LT(z,0) = LZ(2,¢) + LI(,0),  z# (. (4.3)

Assuming that J can be differentiated under the integral sign, we get

LJ(z,¢) = / LZ(z,w)®(w,()dw — ®(z,(), (4.4)
Srt
hence, (4.3) yields
B(2, ) = LZ(2,0) + / LZ(2, w)®(w, C)duw. (4.5)
Srt

Thus we obtain an integral equation whose solution ® can be determined by the successive

approximation method:
“+o00

O(2,0) = Y (LZ)k(2,Q), (4.6)

k=1

where
(LZ)l(Zv C) = LZ(Z7 4),

(LZ)par(2:C) = / LZ(z,w)(LZ)(w, C)dw.
Srt

The previous arguments are made rigorous by the following propositions.

14



Proposition 4.1. There exists ko € N such that, for every T > 0 and ¢ € RN, the series

“+o0

> (LZ)(-0) (4.7)

k=ko

converges uniformly in the strip Syt = {(x,t) eRN* r <t < T}. Moreover the function
O(-,() defined by (4.6) solves the integral equation (4.5) in Srr and satisfies the following
estimate: for any e > 0 there exists a positive constant C' such that

I_‘E'
(0 Vz € Sy (4.8)

(2, Q)| < Cm

Proposition 4.2. For every ¢ € RNTL the function J(-,C) defined by (4.2) solves equation
(4.4) in RNTI\ {¢} in the sense of Definition 1.1.

The remainder of this section is devoted to the proof of Proposition 4.1. The proof of
Proposition 4.2 is more involved since it requires the study of some singular integrals which will
be made in the next section. Then Proposition 4.2 will be a direct consequence of the results in
the Section 5 and Lemma 6.1.

Lemma 4.3. For every e > 0 and T > 0 there exists a positive constant C, only dependent on
e, T,u and B, such that

M,
(LZ2)k(2,0)] € ———5T°(2,0), (4.9)
(t—7) " 2
for any k € N and z,{ € RVNT with 0 <t — 7 < T, where
Da(2
M, = CF-E (2,3 : (4.10)
I'e(%)

and I'g the Euler’s Gamma function. As a consequence there exists kg € N such that the function

(L2)(+,Q) is bounded for k > ko in Sy 1.

Proof. We use the notations of Proposition 3.5 and we prove estimate (4.9) by an inductive
argument. For z # (¢, we have

1LZ(2,0)] < | D (aij(2) = aij(0) 00, Z(2,O)| + | > ai(2)02,Z(2, Q)| + |e(2)] Z(2,C).
ij=1 i=1

By assumption a;; € C%(RVT!) so that

Jaij(2) = ai;(Q)] < CLll¢™ o 2||% = Cult — )= [|(n, DI

Hence, by Proposition 3.6, we infer

Po % 2
D (05 (2) = 400, 200 < Caller Dl =
Q=1

15



and, since the coefficients are bounded functions,

N T3(z,¢)
;ai(z)aﬁzu,g) <O =

By Proposition 3.1, we have
‘C(Z)Z(Z, C)‘ < C4FE(Za C)

Therefore (4.9) for k = 1 easily follows from the above estimates and Proposition 3.5.
Let us now assume that (4.9) holds for & and prove it for k£ 4+ 1. We have

(C2pn(e 0l = | [ L2G ) L2, Odu| <
ST,t
(by the inductive hypothesis and denoting (y, s) = w)

t

M M
S/ 11 [ b ko /Fg(x’t,y,S)Fe(y7875,7—)dyd5:
(t—’]’) T2 (5—7’)1_7

T RN

(by the reproduction property (1.21) for I'?)

t

_T¢ M M,
=T (27C>/(t—7')13 (8_7_)1—%1 d37

T

and the thesis follows by the well known properties of the Euler’s Gamma function.
The boundedness of (LZ), for k > ko suitably large, directly follows from (4.9) and the
explicit expression of I'*. Indeed, by (3.13) of Remark 3.3, we have

(LZ)k(2, Q)] < CMy(t — 7)F %7, (4.11)

for some constant C'. Then it suffices that kg > % O

Proof of Proposition 4.1. The convergence of the series (4.7) follows from the previous lemma
(cf. (4.11)). Indeed the power series
D> Miyers*

k>1

with M}, as in (4.10), has radius of convergence equal to infinity.
Then, proceeding as in Lemma 4.3, it is straightforward to prove that ® verifies estimate
(4.8) and solves (4.5). O

Corollary 4.4. For every € > 0 and T > 0 there exists a positive constant C, only dependent
on e, T, and B, such that

and the fundamental solution T" in (4.1) verifies estimate (1.25)
I'(z,¢) < CT%(2,0),

for any z,( € RN*L with 0 <t —7 < T.
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Proof. We have
LW@K/7®MWMMWS

ST,t
(by (4.8))
<C//I‘E:rty, . s ’flf)d ds =
T RN )
(by the reproduction property of I'?)
/ d
s
= CT*(z, / T
=0 [ g
and (4.12) follows. The estimate of I is a direct consequence of (4.12) and the estimate of Z in
Proposition 3.1. 0
5 Potential estimates
We consider the potential
Vo= [ 205 Sn=RY Xt 6.1)

Sty t

where f € C(St, 1) satisfies the growth estimate (1.17)
b)) < Cre®F T V¥ (at) € Spy

and 7 is the parametrix of (1.1). In this section we aim to study the regularity properties of V
by adapting the arguments used by Polidoro [28].

We first show that the integral in (5.1) is convergent in the strip Sg;, 1 for some T € [Ty, T1].
Indeed, by Proposition 3.1, we have

t
Via)] < Co [ [Tt g m)e e dear <
To RN
(denoting s =t — 7 and w = x — E(s)§)
L 2
(€ (s)w,w) + C1¢]7 | dedT <

<%//¢@c (

To RN

(by the change of variables n = C~2(s)w)

< C’4/ / exp (—‘ZE +C ‘E(—s)(w - Cé(s)n)r) dndr < C(t — TO)eCII‘Q, (5.2)

To RN

17



for some positive constant C', assuming that ¢ € |Ty, T'] with 7' — Tj suitably small and using the
fact that ||C(s)|| tends to zero as s — 0.

Proposition 5.1. There exist 0,,Vy € C (S,1) fori=1,...,po and it holds

Do, Vi () //a Zwot€,7) f(€, 7)dedr. (5.3)

To RN

Proof. By Proposition 3.6 and the above argument, the integral in (5.3) is absolutely convergent
and

t
//WMMw@ﬂﬂ¢M%MSCW—%éW? (5.4)
To RN

Next we set

Vi s(x,t) = / /Z(w,t,f,T)f(ﬁ,T)dde, 0<d<t—"Tp.
To RN
By Lebesgue’s Theorem we have

611%1 Vi s(x,t) = Vi(x,t).

and

axin’g({L',t) = aziZ($>t7§7T)f(€aT)d§dT- (5.5)
/1

In order to prove (5.3), it suffices to verify that

Jim 0,V (1) //axlz .t €, 7) (€, 7)dedr,

To RN

uniformly on Bg, x|Tp,T]. This is an easy consequence of (5.5) and (5.4), indeed we have

00,V 5(a 1) — //@th&V@)@h—//%zxtaﬁ@)%w<&@§“

To RN t—d RN
O

Lemma 5.2. For every positive € and T there exists a constant C' > 0 such that

|Z¢(2,€) = Zu(2,¢)] < Cll¢™ o wl|30*(2,0),

-14 a
00, 2c(2.6) = 01, Zu(,0) < OB 12,0,

-1 o wlle
‘8ZZI]ZC(Z7C) - axlszw(zag)‘ < CHCt_THB Fa(Z,C),,

for anyi,j=1,...,po and z,{,w € RN with0 <t —7 < T.

18



Proof. We only prove the third estimate. We use the usual notations s =t — 7, w = x — E(s)¢,

n =Dy (%) w and first note that

Opn Zu(z.0) = S dea o) (€' (), + (€a's)), (€' (s)0), )
;T Lw\ <~y dot Cw<3> w ij w i \Fw j
Then the thesis follows from the following estimates:
-1 «
VdetCe(s)  /detCyl(s) det C¢(s)
[ema G ) RO < 0 1¢ T 0wl T O (5.7)
_ _ C . o
(), - (€', = Slie ol (5:5)
(M) (e (0)0) — (CaM (o), (€5 (s)w), | < 11 ol (5.9)
¢ i ¢ j w i \Cw il = g BIN :
o : _( Iy O
where C denotes the matrix in (3.2) with A = L
By Remark 3.3, (5.6) is equivalent to
|det C¢(s) — det Cu ()]
s@
< Cdet (Do (2 Ce(s)D ! det (Do (= Cw(8)D ! < Ol|¢ o wl|%
J— S —_— — E— w S — ~ ow .
< o\ 5) % o\ /s o\ /s o\ s B
(5.10)

A general result from linear algebra states that
]det M; — det MQ’ < CHMI — MQH

where the constant C' only depends on the dimension of the matrices My, Ms and on || M ||, || M2]|.
Then (5.10) follows from the estimate

1 (€)= Cu(s) Do (}) €D (}) 5>\ < Cllc o wlBlCE).

This concludes the proof of (5.6). Next we consider (5.7). An elementary inequality yields

—1

6_%<Cgl(5)w’w> - 6_%<C;1(8)w’w>’ < ’<<CC_1(S> - C;1(8)> w,w>‘ e_ﬁ(c (s)w,w)
_Lic1(s)ww
< | Do(V35)(C7 (5) = Co(5) Do(v/5)|| [pf?e 3 (CT (1)

< C|Do(v/5)(CT () — C () Do(V/3)| e T € (),
On the other hand

1Do(v3)(C-1(5)-C () Dol(V5)]
<Iu(ve a2 (72) €uts) — ectonpn ()|
IDo(VE)C; () Do(v/3)] < ClIc o w3,
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and this proves (5.7). We omit the proof of (5.8) and (5.9) which are analogous. O

Proposition 5.3. Under the hypotheses of Theorem 1.4 there exist Oy,x,Vy € C(St1) for
1,7 =1,...,po, and it holds

t
Do Vi (1) = / / Dure, Z (10, 4,6,7) (€, 7)dE T, (5.11)

To RN

Proof. We first show that the integral in (5.11) exists. Fixed R > 0, we consider # € RY such
that |z| < R and denote by Bgr the Euclidean ball in RY centered at the origin. For a suitable
R;1 > R to be determined later, we split the integral in (5.11) as follows

To RN To Br,

t t
/ / Oprw, 2,1, €, 7) (€, 7)dEdT = / Oura, Z(2, 1, €,7) F(€, 7)dEdT
t

+ / / aﬂfﬂfyz(xv t7 ga T)f(§7 T)dde = Kl + KQ-

To RN\BRl

We consider Ki. For every 7 €]Tp,t[ and y € RV, denoting w = (y, 7), we have

/ 8Iiij(x,t,§,T)f(£,T)d€ = / aa:ia:jZ(x7t7§77-)(f(§7T) - f(y77-))d€
Bp, Brp,

+ f,7) / Oure, (Z(2,1,6,7) — Zup(e,,€,7)) dE

Br,
) / Do, Zoo i, ,€,7)dE
BRl

=11+ I+ Is. (5.12)

We put y = E(7 — t)x and by Proposition 3.6 and the regularity properties of f, we get
re(x,t, &7 re(x,t, &7
mi<o [FEEED e prpaae <o [CEEE Dy Gy
t—T (t—71)72
RN RN

since
£ — E(t —t)z|p < CVt—7 |n|B,

for some constant C, where 1 = Dy (\/%) (x — E(t — 7)§). Now, by Proposition 3.5, we have

n|°Te(2,t,&,7) < CT*(x,t,€,7),

and since

/ an(x7 t? E’ T)d{ = 17 t > T?

RN
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we finally deduce

n<—% (5.14)
(=

Next we consider Iz. By Lemma 5.2 and the growth estimate (1.17), we have

Ié(z,t, &7 o
R e
Brg,
154
< CgeCQ|x|2 / F(f’_t’gﬂ-) 1€ — E(1 — t)z|Bd¢ <
RN !

(by the previous argument)

C
<——=
(t—7)t72
Let us now consider I3. We first remark that, for any j = 1,...,py, we have
N
8:3ij(£7 t, 5? T) = a{ij(xa i, 57 7—) - Zw(xa L, 57 7—) Z <Cw(t - T)([E - E(t - T)é-))k Ek](t - T)'
o
Therefore we have
[ n Zutw e = [ Org Zuo .67
Br, Br,
N
- Z / 8% (Zw(l‘, t) g: T) (Cw(t - T)(l' - E(t - T)é))kEkj(t - T)) d§ =
t;; Ry

(by the divergence theorem and denoting by v the outer normal to Bg,)

- / O, Zw (z, 4, &, T)vj do (€)

O0BR,
N

- Z / 8@ (Zw(.%', t 57 T) (Cw(t - 7')((L' - E(t - T)g))k Ekj(t - T))df <
zij Bry

(by Proposition 3.6)

IA
~
|
B

We consider K9. We first note that
E(s) = Iy + O(s), as s — 0.
Then for some positive constant C' we have

lz — E(t — 7)€| > Cl¢| — 2] > CRy — R= Ry > 0,
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since |z| < R and assuming |£| > R; with R; suitably large. Then we have

15
’K2’<C/ / P $,t7§7 01|£‘2d§d7-§

t—1T1
To ]RN\BR

(by the change of variable w = — E(t — 7)&)

t

1 2
1 C2(t—
< Celzl? / / ; exp (—w + Cy |w|2> dwdr.
-7

To |w|>R2

Keeping in mind the asymptotic estimate of Lemma 3.2, clearly the last integral converges
(provided that T' — Ty is suitably small).

So far we have proved the existence of the integral in (5.11), next we prove (5.11). We set
1 2
Vi(2) = Vi (@) + VP (),

where
t

t
(1)(33,75)://Z(m,t,ﬁ,v')f({,r)dfdr, Vf(Q)(:v,t):/ / Z(x,t,&,7) f(&,T)dédr.

To Br, To RN\Bpg,

By Lebesgue’s Theorem, we have

t

0V @ty = [ [ Ouun, 2t 60 6

To RN\BRl

In order to prove that

t
00V @t) = [ [ Ouur, 200t 6.1 (6 e (5.15)

To Br,
we set
V(lé)(‘r’t) = / / Z($at,577)f(£,7)d£d7', 0<d <t—T0.
To Br,
By the dominated convergence theorem and Proposition 5.1, we have

lim 0, Vi xt-hm//@ Z(x,t,&,7)f(€,7)dedT

d—0t
To Bry

t
_ / / O, 2,1, €, 7) (€, ) dEdr = 0, VD (a,1).

Ty Br,
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Hence, in order to show (5.15), it suffices to prove that

Tim 0,0, VI (e, 1) / / Duse, Z (3,1, €, 7) (€, 7)dEdr,

To BR1

uniformly on Bg, x|Ty, T]. Denoting w = (y, 1) for y € RV, we have

t

8a:la:JVf§ //&vﬂ] z,t,§, )f(§7 )dng_/(J1< )+J2( )+J3( ))d

To Br, t—5
where

Jl(T) - / 8$i$jZ($,t,§,T)(f<f,T) - f(y,’i'))df,

Br,

Jo(r) = fly,7 / Ouee, (Z(2,1,6,7) — Zup(ar,1,€,7)) de,

Js(7) = F(y,7) / Onre, Zuo (1,1, €, 7).
Br,

Proceeding as in the estimate of I; in (5.13) by choosing y = E(7 — t)x, we obtain

t t
1
/\J1(7)|d7<0/1ﬂd7.
) ) (t—7)"2

(5.16)

Analogously the terms Jo and Js can be treated as Iy and I3 in (5.13), thus (5.16) follows

straightforwardly.

O

Proposition 5.4. Under the hypothese of Theorem 1.4 there exists YVy € C(Sg,r) and it

holds
YV(2) = / Y Z(2,0) F(Q)dC — £(2).

STt

(5.17)

Proof. The proof is analogous to that of Proposition 3.3 in [28]. As in the proof of Proposition
5.3, we split the domain of the integral in (5.17) in Ty, t[x(RY \ Bpg,) and |Ty, t[x Bg, and we

only consider the second integral since the other one is straightforward.

We set s
Vs 1) = / / Z(a.t.6,7) (€, 7)dédr

Ty Br,

and consider the integral path of —Y starting from z:

v: R — RNFL v(s) = (x(s),t(s)) = (E(s)z,t + s).



Clearly, v(0) = z and #(s) = (—=BTx(s),1) = =Y (v(s)). We show that

t—0
YV g(ast) = / / Y Z(.t,€,7) f (€, 7)dédr — / Z(w,t, 60— 6)f(Et— O)de.  (5.18)

To Br, Br,

Indeed, for |s| < §/2, we have

Vi,5(7(s)) vf(S Z04(0),£.7)
f(& 7)d&dr
STAS
1 t+s—6
s / /Z(V(S)’fﬁ)f(fﬁ)d&dr
t—6 Bg,

Since Z(z,() is the fundamental solution of L¢, there exists s* such that

200,90 = Z000:9) _ 4 7y )= Y Z((5).Q) = 3 5(0)0nsa, Z(1(57), ).

s ds

1,j=1

(5.19)

By Proposition 3.6 and since |s*| < §/2, the last term in (5.19) is a bounded function of
¢ € RV x|Ty,t — 6[. Thus we have

t—§ t—6
. 2(7(8)7577) — 2(7(0)7577—) _ x - . -
lim / / . f(&,m)dedr = / / Y Z(a,t,€,7) (€, 7)dédr.

s—0
To Bg, To Bg,

On the other hand

t+s—9

/ Z(x7t7 yat_d)f(y7t_5)d§_ % / / Z(7(3)7§7T)f(€77)d€d7—2
Br, t—6 Br,
(by setting p = T= t+5)
/ [ (2t6t-5)- 209). 60 - 5+ p9)) f(6.t - D)

0 Bg,
1
[ [ 2606t =54 ps) (56t = 8) = F(Et = 5+ ps))ddr = 1(z.5) + J(2,9)
0 Bg,
Since |s| < 0/2 then the integrand of I is a bounded function of (£, p) € Bg, x [0,1], therefore

hm I(z,s) =0.

S—)
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Analogously we have
hm J(z,s) =0.

s—0

This concludes the proof of (5.18).
Next we prove that

hm YVi 5(x,t) / / YZ(x,t,&,7)f(& 1)dsdT — f(z,1),

To Br,

uniformly on Brx |Tp, T[. To this end, it suffices to note that, since Z(z,() is the fundamental
solution of L., we have

j“/nYthg,)ﬂ& d&h<<§: /’/|%]& Oura, 20,16, 7) 16, )| deidr <
1)

t=6 Br 03=14"5 By,

(proceeding as in the proof of Proposition 5.3, cf. (5.14))

<C

t

71 d
T.
(t — T)l_g

& —

Finally, since f is a continuous and bounded function on Brx Ty, T'[, we have

511%14' Z(x7t7§7t_5)f(§7t_5)d§:f(xat)v
BR1

uniformly on Brx |Tp, T'[ and this concludes the proof. O

6 Proof of Theorems 1.4 and 1.5

In this section we prove of Theorems 1.4 and 1.5. We begin by a preliminary result.

Lemma 6.1. For every e > 0 and T > 0 there exists a positive constant C' such that

|z — y’B
= (

for any (&,7) e RN t €1, 7+ T] and z,y € RV,

@ (2,t,6,7) = @ (y,4,¢,7)| < C (2, 8,6, 7) +T5(y, 1, €, 7)),

Proof. We set w = (y,t) and note that if |z — y|5 > v/t — 7, then we have the trivial estimate

L2(2.0) = L2001 S [ g (00,0 + P50 ). (6.1
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In the case | — y|g < /t — 7, we first prove the following estimates:

12(2,0) = 2(w,0)| £ < =T (2,0),
—T
00,2(2.0) ~ 90, 2w, 0)| < = MB s (- ) 6:2)
0nie, 2(21C) — D, Z(0,0)) < CE YB3 2 )
(t—r7)2

Since the proof is similar, we only consider the third estimate in (6.2). By using the Mean Value
Theorem, we have

’aliitjz(z7<) - 811'96; (w, ()| < max Z ‘awhxzxj (+p(x —y),t,&7)(x — y)h} .

p€lo, 1]
Denoting s =t — 7, w = — E(s)§ and C = C¢(s), a short computation shows
Ouaiay 2(2,€) = Z(2,0) (CH(C7'w); + (€7'w)iCt + (CTHlnCt + (CTrw)n(C T w)i(C ™ w); )
= Z(z,Q) (ap(w) + bp(w) + cp(w) + dp(w)) .

Then we put v = x — y, @ = w + pv and, by Lemma 3.4, we get

N N

- C 1 1Y -
D onan@)| <Y (C (€@ = [(CT )l [(CTR);] < = | Do ()v Dy ()w .
W W s1oAVs Vs
Since |v|p < /s, we have ‘DO (7> U’ <C ‘Do (%) v‘ = C‘:J/‘?, therefore
3 o]
tha @) <C BSTIB’
h=1 82

where 17 = Dy <7) w. The same estimate holds substituting a;, with b or ¢,. Moreover

N N | |73
zvhdhm’syr(c D) un(CR)i(C7I0);| < —EGNE,
h=1 h=1 52

Collecting all the terms and using Proposition 3.5, we obtain

v nls + |73 —
v|p (|17|B3 |77|B)Z($+pv’t7€’7_) < lz—ylg
S2 S

D5 (2 + pv,t,€,7).

10,2, Z(2,C) = Opya; Z(w, ()| <

[N

By a standard argument we have that, if |z — y|z < v/t — 7 then

U5 (z +v,t,&,7) <T2(x,t,&,7).
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This concludes the proof of the third inequality in (6.2) at least for |z — y|5 < \/ t — 7. Next we
show how to deduce from (6.2) an estimate similar to (6.1). We recall that (w)~!loz = (z—y,0)
and we have

po
1LZ(2,¢) = LZ(w, Q)| =| Y aij(2)0,0,Z +Za, 2)0n, Z (2
=
po
- Z @i (10) Dy, Z(w,€) = > ai(w)dy, Z(w, )
,7=1 i=1

~— .

+YZ2(2,0) — YZ(w,C) + e(2) Z(2,C) — e(w)Z(w,C)

— LcZ(2,¢) + Le Z(w, C)’

< Z |CL” CLU )Haxlsz(w7g)|

731

+ Z |az] _a/lj )Hazim] (2,¢) — mzz] (waC)‘

7]1

+Z’az — a;(w)]|0z, Z(w, ¢)|

+Z!az MOw, Z(2,¢) = 02, Z(w, 0]

+ \ ( ) = c(w)[[Z(w, Q)| + [e(2)[| Z(2,¢) = Z(w, ()] <
(by the regularity properties of the coefficients, by Proposition 3.6 and by (6.2))

Xr — & € o o Xr — € Xr —
gc('ty“graw,oﬂrg Vo sl EmMB s ¢ 4 Y,
-7 (t—7)2 t—7

rs(, >+\x—y\%r%<w,c>+'””‘y'Bﬁ(z,c)).

T

| y|B

+t—

N

Since
¢ oz =(t—7)2 (1 +|Do((t = 7)) (@ — B(t - 7)5)@) ,

we may use Proposition 3.5 to deduce

L2(.0) - LZ(w. Q)| < C ( i “Z‘_‘TaB) O+ Tw0).  (63)

On the other hand, if |z — y|z < v/t — 7, it holds

-1+ & _ 2
e —ylp  Jz—ylp  le—ylp (!w—y!B> 2+\x—y\%<!w—y13> a:(\w—y\é

(t—m)3" =T T -\ VT t—7 \Vi-r t—7)-%
(6.4)
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Combining (6.1), (6.3) and (6.4), finally we get

r—ul2
L2(:,0) = 1200, )] £ €T (2.0 + 1. (65)
By (6.5) and an inductive argument it is possible to show that, if M; is the constant in (4.9)

such that |[LZ(z,¢)| < M; = ()1 =0 , then we have

L20(.0) = (B2)x, ) < Mg "B (02, ) 4 T, )M = )

where

e (%)

=Gt (3) £ g vy

for some positive constant Cy. The thesis follows since the power series with coefficients Mk has
radius of convergence equal to infinity. O

Proof. (of Theorem 1.4) Let T be the function defined in (4.1), (4.2) and (4.6) by means of
Proposition 4.1:

['(z,¢) = Z(z,¢) + / Z(z,w)®(w, ¢)dw, z#C. (6.6)

S‘r,t

(1) By Corollary 4.4 and Proposition 4.1, it is clear that T'(-, () € Li
for every ¢ € RV+1,

(2) Thanks to estimate (4.8) and Lemma 6.1, we may apply Propositions 5.1, 5.3 and 5.4
to conclude that there exist and are continuous functions for z # ¢ the following derivatives:

RYTHNCRY\{C})

loc

00 T(2,C) = 0, Z(2 / O, Z (2, w)®(w, ) dw
O s, (2, C) = Ora, Z(21C) + / O o, 2z, w)B(w, )

YT'(z,() =YZ(z,¢) + / 02, Y Z(z,w)®(w, ()dw — (2, (),

ST,t

for every 7,5 = 1,...,po. By using the above formulas, we directly obtain

LD(2,¢) = LZ(2,) + / LZ(z,w)®(w, C)dw — Bz, ) = 0

ST,t

for z # (, since ® satisfies the integral equation (4.5).
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(3) By (4.1) and since [ Z(x,t,&,7)d¢ =1 for t > 7, we have
RN

/ P(a,t,€,7)9(E)dE — g(xo)| < / 2(2,0)|g(€) — glzo)|dé + / J(z Og(e)de| <

RN RN RN

(by Proposition 3.1 and Corollary 4.4)

< / I+ (2, O)lg(€) — g(xo)|de + Cr(t — )3 / I (2,1, €,7)|g(€)]dE — 0,

RN RN

as (x,t) — (o, 7) with t > 7, by a straightforward computation using the explicit expression of
't and I'®.

(4) By the results in Section 4, the function u in (1.19) is well-defined in Sz, 1 for T'—Tp > 0
suitably small. We set

V() = / P(z.0)F(C)dC,
STyt

and we prove that
LV = —f, in STO,T-

Using expression (6.6) of I we rewrite V =V + Vi where Vy is the potential in (5.1) and

f(2) = / B(z,0) F(O)dC.

STyt

In order to apply Propositions 5.1, 5.3 and 5.4 to the potential Vf, we show that f verifies
estimates (1.17) and (1.18). By (4.8) we have

fol<o [ HEc s

STyt

(proceeding as in the proof of (5.2))
<Ot —Ty)2eClP,

On the other hand, by Lemma 6.1 we infer

fat) -~ fon| < [ [ e - ow.eg il
To RN

t
<0l —vlj [ oy [ @ em £ 1506 7) 16 e

To RN

< Ot~ To) F | — y|§ C(F00),
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Therefore we can apply Propositions 5.1, 5.3 and 5.4 and we get, for z € St T,

LV(2) = LVy(2) + LVi(=) = —f(2) — f(2) + / LZ(2,0)(F(O) + F(O)d¢

STo,t

- )+ / 1O | ~8(20) + 1220 + / LZ(zw)®(w, O)dw | d¢ = —f(2),

STt Srt

by (4.5). Since, for ¢ > T, it holds

L/F(Qf,t,f,Tg)g(é)df_ /LF(.%’,t,f,To) =0,
RN RN

by Step (2), we conclude that Lu = f in Sp, 7. Moreover, by Corollary 4.4

‘<C/P€ Q)|d¢ <
STyt

(proceeding as in the proof of (5.2))
<C(t— To)ecmz,

therefore, by Step (3), we have that u € C (RY x [Ty, T[) and u(-, Tp) = g.

(5-6-7) The uniqueness result can be proved proceeding exactly as in the classical parabolic
case (see, for instance, [16]). Then the reproduction property (1.21) and formula (1.22) follow
immediately.

(8) Estimate (1.24) is included in Corollary 4.4. Analogously, by Proposition 3.6 and (4.8)
we have

< &0 o) /

T

1 1 1 adsgcr(%()
(t—s)z(s—7)72 t—T1

102,1(2, Q)] <

Y

¥

for any i = 1,...,pg and z,¢ € RV with 0 < t — 7 < T. The proof of (1.26) is less trivial:
102,20, T(2,0)| < |02, Z(2,C)| + 0,2, 7 (2, )| <
(by Propositions 3.6 and 5.3)
t—T1

< C——== (= /8%95] z,w)®(w, ()dw| <

(managing the singularity of the integral as in the proof of Proposition 5.3)

t
gCF (Z’OJFC/ L L ds<C'F (2, O.

(t—S)%(S—T)4 t—T
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Proof. (of Theorem 1.5) The proof of the existence and the properties of I'* is analogous to that
of Theorem 1.4. In order to prove (1.29), we first note that the Green’s identity holds:

Po N
vLu —ul*v = Z O, (aij (v@a;ju — u@mjv) + uv (ai — 8mjaij)) + Z Oz, (bijriuv) — Op(uv),
i,j=1 i,j=1

(6.7)
for any u,v € C§°(RMT1). Then we consider the functions

ww) =L(w,(),  v(w)=TI"(w,z)
for w = (y,s) with 7 < s < t. Given R,§ > 0, we integrate the identity (6.7) over the domain
{(y,9) | [yl < R, T+ 0 <s<t—4d} and we obtain
/ u(y,t = 0)v(y,t — d)dy — / u(y, 7 +6)v(y, 7 + 8)dy = Irs,
lyl<R ly| <R

where

t

—5
Po
Igs = Z / / (aij (vOy;u — udy,v) — uvdy,aij) vido(w)

W= 215 lyl=R
N =0

+Z / /biijjuvda(w).
W=l s =R

By (1.25)-(1.26) (and the analogous estimates for I'*), we get

li Irs =
R*l}foo R 0’
so that
/ u(y,t — O)v(t, t — d)dy = / u(y, 7+ 0)v(t, 7 + 0)dy
RN RN
and the thesis follows by letting § — 0. O

Proof. (of Theorem 1.6) We only sketch the proof since it suffices to proceed as in [16], Th. 16
page 29, by using Theorem 1.5 and the estimates (1.25)-(1.26) in Theorem 1.4.

It is not restrictive to assume Ty = 0. We first prove that v = 0 in a suitable thin strip
So,e. Fixed (y,s) € So,, for any R > |y|, we consider hr € C§°(Bpr+1), 0 < hg < 1, such that
hr = 1 on Br and with the first and second order derivatives bounded uniformly w.r.t. R.
We integrate the Green’s identity (6.7) with v = u(¢) and v(§,7) = hr(§)I'(y, s, &, 7) over the
domain {¢ € RN+ : ¢ € Bry1,0< 7 < s— 4§}, for some § > 0. Since Lu = 0 we have

- 76 / w(e, )L o€, 7)dedr — 76 / (vLu — uL*v) (&, 7)dédr —
0

Bry1 0 Bgry1
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(by the divergence theorem)

- / u(€,s — OYh(E)T (g, 5.6, 5 — 6)dE + / u(€, 0)h(E)T (y, 5, €, 0)de

BR+1 BR+1
Po s— N s—0 (68)
+ Z / / (aij (v0¢,u — ude,v) — uvde,a;) do(C) + Z / / bij&uvrdo(Q).
4J=17 OBRr11 W=t Bri1
The last three terms in (6.8) are null by hypothesis, then letting § — 07, we get
ulys) = lim [ ul€s —OMOT s s =0 = [ [ u(erLiolé e
Br+1 0 Bry1
Since L*I'(y, s,&,7) = 0, we deduce
Y Po
U(y,S) _/ / U,(f,T)( Z aij(éaT) (28§th<€)a£]F(y787€7T) +P(y73a€77)8§Z£JhR(§))
0 Bry1\Br L=t
Po N
- Z ai(§7 T)F(y7 S, €7 7—)6& hR(ﬁ) - Z bz]§18§] hR(£>F<y7 S, 57 T)) dng
i=1 i,j=1
(6.9)

By means of Theorem 1.5 and (1.25)-(1.26), it is straightforward to conclude that if € is suitably
small, then the integral at the right hand side of (6.9) tends to zero as R — 400, so that
u(y, s) = 0. The thesis follows by repeating the previous argument finitely many times. O
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