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Abstract

Ranklets are non–parametric, multi–resolution and orientation selective features

modelled on Haar wavelets. A ranklet–based image representation is proposed in

this paper in order to solve a two–class classification problem. The first class is

constituted by masses, breast tumors with size ranging from 3 mm to 30 mm,

whereas the second class is constituted by non–masses. Masses and non–masses are

both extracted from the University of South Florida (USF) mammographic image

database, submitted to the ranklet transform and finally classified by means of a

Support Vector Machine (SVM). Experiments demonstrate that the proposed image

representation solves succesfully the two–class classification problem. Furthermore,

it achieves an improvement over the pixel–based and wavelet–based representations

tested on the same dataset by one of our previous works.
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1 Introduction

Breast cancer is one of the most common causes of death among women from

all over the world. Its detection and diagnosis at early stage is critical, since

primary prevention of cancers is thus far impossible. However, this task still

proves really arduous for the radiologists, due to the complexity of breast

tissues and similarity between tumoral and normal tissues. Computer Aided

Detection (CAD) systems have been expressly introduced in the last years in

order to aid the radiologists in the interpretation of mammograms, namely

the images produced on film by the X–ray analysis of a woman’s breast. CAD

systems work as an objective second reader that, by means of the automatic

detection of the regions suspected to be tumors, gives a further suggestion to

the radiologists. As an example, in Fig. 1 the CAD’s mark individuating a

suspected region is shown.

The most common lesions associated with the presence of breast tumor are

masses. In the mammogram, they appear as thickenings of the breast tissue

with size ranging from 3 mm to 30 mm. In order to detect them, the entire

mammographic image is scanned at different scales by the CAD system with

a resizeable window. Each sub–image scanned by the window—also known as

crop—is then resized to an image with pixel size 64 × 64. From each resized

crop, some relevant features are extracted, then by means of these features

the crop is classified as belonging to the mass class or to the non–mass class

by a trained learning machine, namely a Support Vector Machine (SVM). For

more details on the whole scanning scheme and on the application of SVM to

CAD systems for mammography, see respectively our previous works [1,2].
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It is quite clear that, one of the most important steps for the classification

problem is the extraction from each crop of a set of suitable features able to

distinguish between the two classes. This actually means choosing the image

representation that gives the best classification performances. Several works in

the literature have addressed this task focusing on the evaluation of texture–

based, histogram–based, pixel–based or wavelet–based features. Specifically, in

one of our most recent paper [3], some pixel–based and wavelet–based image

representations have been evaluated on the same dataset used here. Instead, in

this paper, a ranklet–based image representation is proposed. Ranklets have

been introduced and applied to face detection for the first time in some recent

works [4–6]. They are usually defined as non–parametric, multi–resolution and

orientation selective features modelled on Haar wavelets. The non–parametric

properties derive from the fact that the ranklet transform is based on the rank

transform, a transform that, given (x1, x2, . . . , xN) pixels, replaces the value

of each xi with the value of its order among all the other pixels. The multi–

resolution and orientation selective properties derive from the fact that the

ranklet transform is mainly modelled on the bi–dimensional Haar wavelets.

This means that, as for the wavelet trasform, it is possible to compute the

ranklet transform of each crop at different resolutions by means of a suitable

stretch and shift of the Haar supports. At the same time, for each resolution,

it is possible to compute the vertical, the horizontal and the diagonal ranklet

coefficients.

Several experiments have been carried out, in this paper, using ranklets as

features and SVM as classifier. In particular, several SVM’s kernels have been

evaluated, together with different combinations of resolutions and together

with the application of some pre–processing techniques to the original crops,

such as histogram equalization. Experiments demonstrate that the proposed
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representation is quite effective in solving the two–class classification problem.

Furthermore, it achieves an improvement over the pixel–based and wavelet–

based image representations evaluated on the same dataset in [3].

The rest of the paper is organized as follows. In Section 2 an overview of the

ranklet transform is given. Section 3 provides detailed informations about the

dataset used, the features extracted and the classification method adopted.

The experiments performed and the results achieved are discussed in Section

4. In Section 5 a critical discussion of the results is carried out. Conclusions

are drawn in Section 6.

2 Overview of the ranklet transform

In this Section, an overview of the ranklet transform is given. First, the rank

transform, the Wilcoxon test and the Mann–Whitney test are introduced, since

they are at the basis of the ranklet transform and are responsible of its non–

parametric properties. Second, the ranklet transform and the computation of

its orientation selective coefficients is discussed. Finally, the extension of the

ranklet transform to the multi–resolution case is described.

2.1 Introduction to some non–parametric statistics

2.1.1 Rank transform

Given a set of (x1, x2, . . . , xN) pixels, the rank transform π(x1, x2, . . . , xN)

substitutes each pixel’s intensity value with its relative order (rank) among all

the other pixels [7] . Here follows an example:
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π




55 99 25 153

26 75 92 200

21 64 88 154

101 190 199 222




=




4 9 2 11

3 6 8 15

1 5 7 12

10 13 14 16




(1)

In case the set of (x1, x2, . . . , xN) pixels contains pixels with equal intensity

values, midranks are introduced. Midranks are computed assigning to each

group of pixels with equal intensity values the average of the ranks they occupy.

For example:

π




55 99 25 153

25 64 92 200

21 64 64 154

101 190 199 222




=




4 9 2.5 11

2.5 6 8 15

1 6 6 12

10 13 14 16




(2)

2.1.2 Wilcoxon test

The rank transform is closely related to the Wilcoxon test. Given a set of

(x1, x2, . . . , xN) pixels, they are split into the two subsets T and C, with n

and m pixels each, so that n + m = N . In order to state whether the n pixels

in T have significantly higher intensity values than the m pixels in C, the

Wilcoxon test WS is introduced [8] and defined as the sum of the n ranks:
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WS =
n∑

i=1

π(xi) (3)

The n pixels in T are then judged to have significantly higher intensity values

than the m pixels in C if the Wilcoxon test is above a critical value τ , in other

words WS > τ . The value of τ determines the confidence level of the test.

2.1.3 Mann–Whitney test

In order to introduce a test equivalent to the Wilcoxon test, but with an

immediate interpretation in terms of pixels comparison, the Mann–Whitney

test WXY is introduced [8]:

WXY = WS − n(n + 1)

2
(4)

As can be easily demonstrated, the value of the Mann–Whitney test WXY is

equal to the number of pixel pairs (~xp, ~yq), with ~xp ∈ T and ~yq ∈ C, such that

the intensity value of ~xp is higher than the intensity value of ~yq. Therefore,

its values range from 0 to the number of pairs (~xp, ~yq) ∈ T × C, which is mn.

Notice, however, that in order to compute the value of WXY , these pairwise

comparisons are never carried out explicitly. This, in fact, would results in a

huge computational time. Instead, its value is obtained by the application of

the rank transform to the set of pixels (x1, x2, . . . , xN), thus leading to only

NLogN operations.

6



2.2 The ranklet transform

2.2.1 Haar wavelet supports

As already discussed in Section 1, the non–parametric properties of the ranklet

transform derive from the fact that it is based on non–parametric statistics

such as the rank transform, the Wilcoxon test and the Mann–Whitney test.

Similarly, the orientation selective properties of the ranklet transform derive

from the fact that it is manly modelled on Haar wavelets. Thus, in order to

arrive at the ranklet transform definition, the first step consists in introducing

the Haar wavelet supports.

Suppose that an image constituted by a set of (x1, x2, . . . , xN) pixels is given.

A possible choice in splitting the N pixels, in order to compute the Mann–

Whitney test, is to split them into two subsets T and C of size n = m = N/2,

thus assigning half of the pixels to the subset T and half to the subset C. With

this in mind, it is possible to define the two subsets T and C being inspired

by the three Haar wavelet supports, as shown in Fig. 2. In particular, for the

vertical Haar wavelet support, represented by the image hV , the two subsets

TV and CV are defined. Similarly, for the horizontal Haar wavelet support hH ,

the two subsets TH and CH are defined, whereas for the diagonal Haar wavelet

support hD, the two subsets TD and CD are defined.

Notice that, the arbitrariness that characterize the selection of the two subsets

T and C, is fundamental in order to be able to freely choose the two subsets

based on the Haar wavelet supports. In other words, this arbitrariness is at

the basis of the orientation selective properties of the ranklet transform.
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2.2.2 Ranklet coefficients

Once the rank transform, the Wilcoxon test, the Mann–Whitney test and

the Haar wavelet supports have been introduced, the definition of the ranklet

transform is straightforward. In fact, given an image constituted by a set of

(x1, x2, . . . , xN) pixels, it is possible to compute the horizontal, vertical and

diagonal ranklet coefficients in the following way:

Rj =
W j

XY

mn/2
− 1, j = V, H,D (5)

where W j
XY is computed by splitting the N pixels into the two subsets Tj

and Cj—differently for each j = V, H,D—as discussed for the Haar wavelet

supports.

The geometric interpretation of the ranklet coefficients Rj, with j = V, H,D,

is quite simple, see Fig. 3. Suppose that the image we are dealing with is

characterized by a vertical edge, with the darker side on the left, where CV is

located, and the brighter side on the right, where TV is located. Then RV will

be close to +1, as many pixels in TV will have higher intensity values than

the pixels in CV . Conversely, RV will be close to -1 if the dark and brigth side

are reversed. At the same time, horizontal edges or other patterns with no

global left–right variation of intensity will give a value close to 0. Analogous

considerations could be drawn for the other ranklet coefficients, RH and RD.

2.3 The multi–resolution ranklet transform

The close correspondence between the Haar wavelet transform and the ranklet

transform leads directly to the extension of the latter to its multi–resolution
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formulation. Similarly to what is usually done for the Haar wavelet transform,

the ranklet coefficients at different resolutions are computed simply stretching

and shifting the Haar wavelet supports. This means that the multi–resolution

ranklet transform of an image is a set of triplets of vertical, horizontal and

diagonal ranklet coefficients, each one corresponding to a specific resolution

and shift of the Haar wavelet supports.

For example, suppose that the multi–resolution ranklet transform of an image

with pixel size 16×16 is performed at resolutions 16, 4 and 2 pixels, as shown

in Fig. 4. This actually means that the ranklet transform of the image is

computed at resolution 16 pixels, by shifting the Haar wavelet support with

linear dimensions 16 pixels, at resolution 4 pixels, by shifting that with linear

dimensions 4 pixels and at resolution 2 pixels, by shifting that with linear

dimensions 2 pixels. Suppose also that the horizontal and vertical shifts of

the Haar wavelet supports along the horizontal and vertical dimensions of the

image are of 1 pixel. Then the multi–resolution ranklet transform of the image

is composed by 1 triplet RV,H,D of ranklet coefficients deriving from the ranklet

transform at resolution 16 pixels, 25 triplets RV,H,D from that at resolution 4

pixels and 49 triplets RV,H,D from that at resolution 2 pixels. Notice that, the

number nT of triplets RV,H,D at each resolution is computed as:

nT = (I + 1− S)2 (6)

where I and S represent the linear dimensions respectively of the image and

of the Haar wavelet support, as shown in Fig. 5.

9



3 The implemented method

In this Section, some informations about the materials and methods adopted

to test the ranklet–based image representation are given. First, the dataset

used is described. Second, the usage of ranklets as classification features is

discussed. Third, an overview of SVM together with some details concerning

the classification strategy adopted—a 10–fold cross validation procedure—are

given.

3.1 Dataset

The crops used to evaluate the ranklet–based image representation have been

extracted—and then resized to 64 × 64—from the mammographic images of

the Digital Database for Screening Mammography (DDSM). This database

has been collected by the University of South Florida (USF) and is composed

of images digitized with Lumisys scanner at 50 µm or Howtek scanner at 43.5

µm pixel size, with a 12–bit gray–level resolution. For detailed informations

about the DDSM mammographic image database, see [9].

The total number of crops used amounts to 6000 and is partitioned in 1000

crops representing the mass class and 5000 crops representing the non–mass

class. Notice that the crops used in this paper are exactly the same used to

evaluate the pixel–based and wavelet–based image representations in our pre-

vious work [3]. This is important in order to be able to directly compare the

ranklet–based image representation performances to those obtained, on the

same dataset, by means of the pixel–based and wavelet–based image represen-

tations.
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3.2 Ranklet coefficients as classification features

As already discussed, the main purpose of this paper is to understand whether

the non–parametric, multi–resolution and orientation selective properties of

the ranklet transform could be exploited in order to improve the performance

obtained for this two–class classification problem. The basic idea is to use the

ranklet coefficients, derived from the application of the ranklet transform to

the mass crops and to the non–mass crops, as classification features. To this

purpose, first the multi–resolution ranklet transform of each crop is performed

at different resolutions by stretching and shifting the Haar wavelet supports.

Then, each crop is presented to the classifier—an SVM—as a collection of

several ranklet triplets RV,H,D, each one corresponding to a specific stretch

and shift of the Haar wavelet supports.

In order to speed up the computational time of the multi–resolution ranklet

transform, the 6000 crops constituting the dataset are required to be resized

from a 64 × 64 to a 16 × 16 pixel size by means of a bilinear resizing, as

shown in Fig. 6. In this way, it is possible to compute the multi–resolution

ranklet transform of a crop at several resolutions, up to the highest ones,

in a reasonable time. Just to give an idea of the number of classification

features involved in the problem, Tab. 1 shows the correspondence between

the resolutions at which the multi–resolution ranklet transform is performed

and the number of ranklet coefficients computed. For example, the multi–

resolution ranklet transform of a crop with pixel size 16 × 16 at resolutions

[16,8,4,2] pixels results in 1 triplet RV,H,D from the resolution at 16 pixels, 81

triplets RV,H,D from the resolution at 8 pixels, 169 triplets RV,H,D from the

resolution at 4 pixels and 225 triplets RV,H,D from the resolution at 2 pixels,
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thus for a total of 3× (1 + 81 + 169 + 225) = 1428 ranklet coefficients. Notice

that, the lower is the linear dimension of the Haar wavelet support, the higher

is the resolution at which the multi–resolution ranklet transform is performed,

the higher is the number of ranklet coefficients produced. And viceversa. This

is consistent with the expression discussed in (6).

3.3 Classification

3.3.1 Support Vector Machine

As anticipated in the rest of the paper, an SVM has been chosen as classifier.

SVM constructs a binary classifier from a set of l training examples, consisting

of labeled patterns (xi, yi) ∈ RN×{±1}, i = 1, . . . , l, see [10,11]. The classifier

aims to estimate a function f : RN → ±1, from a given class of functions,

such that f will correctly classify unseen test examples (x, y). An example is

assigned to the class +1 if f(x) ≥ 0 and to the class −1 otherwise.

SVM selects hyperplanes in order to separate the two classes. Among all the

separating hyperplanes, SVM finds the one that causes the largest separation

among the decision function values for the borderline examples of the two

classes. The Maximal Margin Hyperplane (MMH) is computed as a decision

surface of the form:

f(x) = sgn

(
l∑

i=1

yiαi(x · xi) + b

)
(7)
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where the coefficients αi and b are calculated by solving the following quadratic

programming problem:





maximize
∑l

i=1 αi − 1
2

∑l
i,j=1 αiαj(xi · xj)yiyj

with
∑l

i=1 αiyi = 0 0 ≤ αi ≤ C

(8)

C is a regularization parameter, selected by the user. The classification of a

pattern x is therefore achieved according to the values of f(x) in (7). It is

worth mentioning that in a typical classification problem the hyperplane (7)

is determined only by a small fraction of training examples. These vectors,

named support vectors, are those with a distance from the MMH equal to half

the margin.

In the more general case in which the data are not linearly separable in the

input space, a non–linear transformation φ(x) is used to map the input vectors

into a high–dimensional space. The product K(xi,xj) ≡ φ(xi) · φ(xj) is called

kernel function. Admissible and typical kernels are:





K(xi,xj) = xi
Txj Linear Kernel

K(xi,xj) = (γxi
Txj + r)d, γ > 0 Polynomial Kernel

K(xi,xj) = exp(−γ‖xi − xj‖2), γ > 0 RBF Kernel

K(xi,xj) = tanh(γxi
Txj + r) Sigmoid Kernel

(9)

where γ, r and d are kernel parameters.
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3.3.2 Cross–validation

One of the most common problems one has to face, when dealing with a

two–class classification problem, is the lack of samples to train and test the

classifier. Cross–validation is a common procedure used to train and test a

classifier when the dimensionality of the dataset is limited [12]. Given a n–

dimensional dataset D, first the entire dataset is divided in f homogeneus sub–

datasets, also known as folds, F1, F2, . . . , Ff . Second, the classifier is trained

with the collection of the first f−1 folds, F1, F2, . . . , Ff−1, then is tested on Ff ,

the fold left over. The procedure is then permuted for each Fi, i = 1, . . . , f−1.

As discussed in Section 3.1, the dataset used in this work is composed of

1000 crops representing the mass class and 5000 crops representing the non–

mass class. Due to the restricted number of crops, a 10–folds cross–validation

procedure is implemented, therefore the dataset is divided into 10 folds, each

one containing 100 mass crops and 500 non–mass crops. In this way, for each

permutation of the cross–validation procedure, SVM is trained with 900 mass

crops and 4500 non–mass crops, then is tested on 100 mass crops and 500

non–mass crops.

4 Experiments and results

In this Section, details concerning the experiments performed and the results

obtained are given. First, a concise introduction to the Receiver Operating

Characteristic (ROC) curve analysis—and how it is used in this paper in

order to give the classification results—is delineated. Then, the three main

experiments performed are discussed.
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4.1 Receiver operating characteristic curve

The ROC curve analysis is a widely employed method in order to evaluate the

performance of a classifier used to separate two classes, as discussed in [13].

It is a plot of the classifier’s True Positive Fraction (TPF) versus its False

Positive Fraction (FPF). The quantity TPF is generally known as the system

sensitivity, whereas the quantity 1 – FPF as the system specificity.

In this paper, the quantity FPF is represented by the fraction of non–masses

incorrectly classified as belonging to the mass class, whereas the quantity TPF

by the fraction of masses correctly classified as belonging to the mass class.

The performances are compared using ROC curves generated by moving the

hyperplane of the SVM solution. This is achieved by changing the threshold

b introduced in (7). The fraction of true positives and false negatives for each

choice of b are computed. Each single point of the ROC curves is then obtained

by averaging the results of a 10–folds cross–validation technique applied to the

entire dataset.

4.2 The tests performed

In order to test the performances of the ranklet–based image representation,

three experiments are carried out. First, using as image representation the

ranklet coefficients resulting from the multi–resolution ranklet transform at

resolutions [16,8,4,2] pixels, several SVM kernels are varied. Second, using an

SVM polynomial kernel with degree 3, different ranklet–based representations

are tested by varying the resolutions at which the multi–resolution ranklet
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transform is performed. Third, the application of histogram equalization to

the crops, before the ranklet transform is performed, is evaluated.

The results obtained by means of the ranklet–based image representation are

compared with those obtained by the two most performing representations

evaluated and discussed in our previous work [3]. The first one is a pixel–

based representation in combination with histogram equalization, resizing and

scaling techniques. This means that the original crops with pixel size 64× 64

are first treated with histogram equalization, then resized to 16 × 16 and

finally their correspondent pixels are scaled in the range [0,1]. The second one

is a wavelet–based image representation and—specifically—it is based on the

Overcomplete Wavelet Transform (OWT), see [14]. In this case, the original

crops with pixel size 64× 64 are decomposed by OWT using the Haar wavelet

filters and retaining only the wavelet coefficients corresponding to the levels 4

and 6. For the sake of simplicity and in order to use a notation coherent with

that used in [3], these two image representations will be respectively reffered to

as PixHRS and Owt2. Notice that, in the first case the number of classification

features is equal to the number of pixels, namely 16 × 16 = 256, whereas in

the second case is equal to the number of wavelet coefficients corresponding

to the levels 4 and 6, thus about 3000.

4.2.1 Tests varying kernels

The first test is intended to understand the influence of the SVM kernel on

the classification performances. To this purpose, the results obtained with the

image representations PixHRS and Owt2, discussed in [3], are compared to

those obtained using as classification features the ranklet coefficients produced

by the multi–resolution ranklet transform at resolutions [16,8,4,2] pixels. In
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particular, fixed the ranklet–based image representation in this way, different

SVM kernels are evaluated, namely the polynomial kernels with degree 1, 2,

3 and 4.

Looking at Fig. 7, where the comparison is reported, the ranklet–based image

representation seems to improve its performances with increasing values of the

polynomial degree. In particular, while the linear SVM kernel has really poor

performances, the polynomial SVM kernels with degrees 2, 3 and 4 give better

results. What is particularly worth mentioning is that the results obtained

by the ranklet coefficients at resolutions [16,8,4,2] pixels, with polynomial

degrees 2, 3 and 4, perform better than PixHRS and Owt2, that were the

most performing image representations found in [3].

4.2.2 Tests varying resolutions

The second test is intended to comprehend the effect of the multi–resolution

properties of the ranklet transform on the classification performances. In order

to investigate this aspect, an SVM polynomial kernel with degree 3 is used,

since in the previous test it demonstrates to ensure interesting performances.

Then, fixed the SVM kernel, several combinations of different resolutions are

evaluated, namely those shown in Tab. 1.

Fig.8 shows the results obtained employing as image representation the ranklet

coefficients resulting from the multi–resolution ranklet transform at resolutions

[16,14,12,10,8,6,4,2], [16,8,4,2] and [16,8,2] pixels. It is evident from the ROC

curve analysis that all these combinations perform quite similarly and that

they all perfom better than PixHRS and Owt2. This result is quite important,

since it demonstrates that it is possible to obtain similar performances using

921 classification features, as for the case [16,8,2], as well as 2040 classification
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features, as for the case [16,14,12,10,8,6,4,2]. This means that, using the com-

bination of resolutions [16,8,2], it is possible to obtain results rather identical

to those obtained—with twice the number of features—by the combination of

resolutions [16,14,12,10,8,6,4,2], thus saving a lot of computational time.

Notice that, in the tests discussed above, all the resolutions have been taken

into account, as for the [16,14,12,10,8,6,4,2] case, or at least a sampled version

of them has been considered, as for the [16,8,4,2] and [16,8,2] cases. In other

words, low, intermediate and high resolutions have been all contemplated.

Fig.9 shows instead the results obtained employing as image representation

the ranklet coefficients resulting from the multi–resolution ranklet transform

at resolutions [16,4] and [16,2] pixels, thus ignoring the intermediate resolu-

tions. Looking at the performances, it is evident that they are not essential for

classification purposes. In fact, the results obtained for the [16,4] and [16,2]

cases are only slightly different from those obtained for the [16,8,4,2] case and

they all perform better than the PixHRS and Owt2 image representations.

As for the tests discussed above, this result demonstrates that it is possible

to obtain quite identical performances using 510 classification features, as for

the case [16,4], as well as 1428 classification features, as for the case [16,8,4,2].

As discussed above, this result is worthy, since it means avoiding unnecessary

waste of time.

Finally, in Fig.10 the results obtained by using as image representation the

ranklet coefficients resulting from the multi–resolution ranklet transform at

resolutions [16,14,12,10] and [16,8] pixels are shown. In this case, the high res-

olutions are ignored. Looking at the performances, it is evident that they

are important for classification purposes. In fact, the results achieved by

the [16,14,12,10] and [16,8] cases perform worse than those achieved by the

[16,8,4,2] case and by PixHRS and Owt2.
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4.2.3 Tests applying histogram equalization

The last test is intended to investigate the influence of histogram equalization

on the classification performances. In order to investigate this aspect, the SVM

kernel used is a polynomial kernel with degree 3 and the resolutions at which

the multi–resolution ranklet transform is performed are [16,8,4,2] pixels, since

in the previous tests this configuration demonstrates to be the most stable

and to ensure one of the best result. This configuration is compared to an

identical configuration, with the only difference that, in the latter, the crops

are submitted to histogram equalization before the multi–resolution ranklet

transform is applied.

In Fig. 11 the comparison between the two configurations is shown. It is quite

evident that the performances achieved by both the cases are almost the same.

This result is really important, since it demonstrates that a computational

expensive procedure as histogram equalization is generally uneffective—when

dealing with ranklet coefficients—in order to improve the classification results.

5 Discussion

The results presented in Section 4.2.1 demonstrate that—when dealing with

the ranklet–based image representation—the SVM polynomial kernels with

higher degrees are the best performing ones. Namely, the polynomial kernels

with degree 2, 3 and 4 achieve quite identical performances, but due to the

higher computational time of the latter and to the slightly worse results of the

former, that with degree 3 is preferable.

The results discussed in Section 4.2.2 prove that the low and high resolutions

at which the multi–resolution ranklet transform is performed are important to
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achieve good performances, whereas intermediate resolutions can be ignored

without affecting the classification results. These considerations suggest to

perform the multi–resolution ranklet transform at resolutions [16,4] or [16,2]

pixels, thus ignoring the intermediate resolutions. Or at least to perform it at

resolutions [16,8,4,2] or [16,8,2] pixels, thus using a sampled version of all the

resolutions. In both cases the main idea is to use a reduced number of ranklet

coefficients, namely only those influencing the classification performances.

Finally, the results discussed in Section 4.2.3 show that histogram equalization

is quite uneffective in order to improve the classification performances. This

result is consistent with the fact that the ranklet transform is based on non–

parametric statistics and could prove really useful when dealing with crops

whose intensity histograms are highly variable.

In order to give also some quantitative results, other than the ROC curve

analysis, the TPF values of some remarkable image representations, obtained

for FPF values close to 0.01, 0.02, 0.03, 0.04 and 0.05, are shown in Tab. 2.

In particular, the results obtained using PixHRS with an SVM linear kernel

and by Owt2 using an SVM polynomial kernel with degree 2 are reported.

They are compared to the best results obtained using a ranklet–based image

representation, namely using as classification features the ranklet coefficients

produced by the multi–resolution ranklet transform at resolutions [16,8,4,2]

pixels and an SVM polynomial kernel with degree 3.

6 Conclusions

In this paper, a ranklet–based image representation is first proposed and then

compared to PixHRS and Owt2, respectively, the most performing pixel–based
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and wavelet–based image representations previously evaluated in [3] to solve

the same two–class classification problem, namely mass classification in digital

mammograms. The results obtained demonstrate that the proposed image

representation solves succesfully the classification problem. Furthermore, with

an accurate choice of the SVM kernel and of the resolutions at which the multi–

resolution ranklet transform is performed, it achieves an improvement over the

pixel–based and wavelet–based image representations previously tested.
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Table 1

Number of ranklet coefficients for each different combination of resolutions.

Resolutions Number of ranklet coefficients

[16, 14, 12, 10, 8, 6, 4, 2] 2040

[16, 8, 4, 2] 1428

[16, 8, 2] 921

[16, 2] 678

[16, 4] 510

[16, 14, 12, 10] 252

[16, 8] 246

Table 2

Classification results comparison. TPF values obtained for FPF values close to 0.01,

0.02, 0.03, 0.04 and 0.05, are shown.

FPF ∼ 0.01 FPF ∼ 0.02 FPF ∼ 0.03 FPF ∼ 0.04 FPF ∼ 0.05

PixRHS .70± .06 .77± .07 .84± .05 .86± .05 .89± .03

Owt2 - .75± .05 .82± .05 .85± .05 .87± .05

Ranklets .76± .05 .82± .05 .87± .05 .89± .05 .91± .04
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Fig. 1. A mammogram. The square mark is the CAD’s automatic detection of a

suspected region.
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Fig. 2. The three Haar wavelet supports hV , hH and hD. From left to right, the

vertical, horizontal and diagonal Haar wavelet supports.
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⇒ RV,H,D = [+0.5938, 0, 0]

⇒ RV,H,D = [−0.5938, 0, 0]

Fig. 3. Ranklet transform applied to some trivial examples.
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⇒ 1 triplet RV,H,D

⇒ 25 triplets RV,H,D

⇒ 49 triplets RV,H,D

Fig. 4. Multi–resolution ranklet transform of an image with pixel size 16 × 16, at

resolutions 16, 4 and 2 pixels.
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I

S

Fig. 5. Linear dimensions I and S respectively of the image and of the Haar wavelet

support.

Fig. 6. The two classes after the bilinear resizing from a 64× 64 to a 16× 16 pixel

size. Mass class (top) vs. non–mass class (down).
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Fig. 7. ROC curves obtained varying SVM kernels.
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Fig. 8. ROC curves obtained varying the resolutions at which the multi–resolution

ranklet transform is performed. Low, intermediate and high resolutions are taken

into account.
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Fig. 9. ROC curves obtained varying the resolutions at which the multi–resolution

ranklet transform is performed. Low and high resolutions are taken into account.

Intermediate resolutions are ignored.
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Fig. 10. ROC curves obtained varying the resolutions at which the multi–resolution

ranklet transform is performed. Low and intermediate resolutions are taken into

account. High resolutions are ignored.
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Fig. 11. ROC curves obtained applying histogram equalization.
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