
Gauge invariance and asymptotic behavior

for the Ginzburg-Landau equations of superconductivity

Valeria Berti∗ Mauro Fabrizio∗ Claudio Giorgi†

Abstract

In this paper we study the gauge-invariance of the time-dependent Ginzburg Landau equations
through the introduction of a model which uses observable variables. Since different choices of gauge
lead to a different representation of such variables, the classical formulations of the Ginzburg Landau
model do not allow to establish the property of gauge-invariance. With a suitable decomposition of
the unknown fields, we write the problem in terms of real variables and deduce some energy estimates
which prove the existence of a maximal attractor for the system.

Keywords: Superconductivity, gauge-invariance, global attractor.
AMS subject classifications: 82D55, 35B41.

1 Introduction

This paper has two different aims. In the first part we examine the gauge invariance of the time-dependent
Ginzburg-Landau equations, (also called Gor’kov-Eliashberg equations [6], [11]), which describe the be-
havior of a superconductor during the phase transition between the normal and the superconducting
state. As already pointed out by several authors ([2], [7]), such equations are invariant up to a gauge
transformation and the invariance of the model means that the physical problem cannot be affected by the
particular choice of the gauge. However, the results in literature do not allow to establish this property.
Indeed, even if it is possible to write the problem by means of observable variables (i.e. in a gauge-
invariant form), an existence and uniqueness theorem of the solution of this system is not proved yet.
Accordingly, it is not clear if another choice of gauge yields solutions which are different from a physical
point of view. More precisely, in Section 2 we introduce a decomposition of the velocity of superconducting
electrons and observe that the choice of the gauge in the classical formulations is equivalent to the choice
of a particular decomposition. The lack of a theorem of uniqueness for the problem written by means
of observable variables implies that, by changing the gauge, the velocity of superconducting electrons
could assume a decomposition which leads to a different phase space. Therefore, since we cannot state
the gauge invariance of the model, in the second part of the paper, we study the asymptotic behaviour
of the solutions in the London gauge, although the long-time behavior has been studied also in [10] with
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the Lorentz gauge. The existence and uniqueness of the solution with the choice of London gauge has
been proved in [12]. In the same paper the authors prove also the existence of the global attractor for the
Ginzburg-Landau system with a technique which does not make use of energy estimates. In Section 4, we
deduce some energy estimates which allow to prove the existence of the global attractor. The estimates
are established for a system of real equations which is obtained by means of the decomposition of the
observable variables and which is equivalent to the classical Gor’kov-Eliashberg system.

2 Superconductivity and gauge invariance of the Ginzburg-Lan-
dau equations

The most outstanding property of a superconductor is the complete disappearance of the electrical resis-
tivity at some low critical temperature Tc, which is characteristic of the material. However, there exists
a second effect which is equally meaningful. This phenomenon, called Meissner effect, is the perfect dia-
magnetism. In other words, the magnetic field is expelled from the superconductor, independently of
whether the field is applied in the superconductive state (zero-field-cooled) or already in the normal state
(field-cooled).

In the London theory [8], [9] and in the paper [4] it is assumed that the supercurrent Js inside the
superconductor is related to the magnetic field H by the constitutive equation

∇× ΛJs = −µH (2.1)

where Λ(x) is a scalar coefficient characteristic of the material and µ is the magnetic permeability. The
equation (2.1) is able to describe both the effects of superconductivity, namely the complete disappearance
of the electrical resistivity and the Meissner effect.

An important step in the phenomenological description of superconductivity was the Ginzburg-
Landau theory ([5]), which describes the phase transition between the normal and the superconducting
state.

Landau argued that this transition induces a sudden change in the symmetry of the material and
suggested that the symmetry can be measured by a complex-valued parameter ψ, called order parameter.
The physical meaning of ψ is specified by saying that f2 = |ψ|2 is the number density, ns, of supercon-
ducting electrons. Hence ψ = 0 means that the material is in the normal state, i.e. T > Tc, while |ψ| = 1
corresponds to the state of a perfect superconductor (T = 0).

There must exist a relation between ψ and the absolute temperature T and this occurs through the
free energy e. If the magnetic field is zero, at constant pressure and around the critical temperature Tc

the free energy e0 is written as
e0 = −a(T )|ψ|2 + b(T )|ψ|4

where higher-order terms in |ψ|4 are neglected, so that the model is valid around the critical temperature
Tc for small values of |ψ|.

Suppose that the superconductor occupies a bounded domain Ω, with regular boundary ∂Ω and
denote by n the unit outward normal to ∂Ω. If a magnetic field occurs, then the free energy of the
material is given by∫

Ω

e(ψ, T,H)dx =
∫

Ω

[e0(ψ, T ) + µH2 +
1

2m∗
| − i~∇ψ − e∗Aψ|2]dx−

∫
∂Ω

A×Hex · n da (2.2)
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where m∗ is the mass of the superelectron and e∗ is its effective charge, A is the vector potential related
to H and ~ is Planck’s constant. The vector Hex represents the external magnetic field on the boundary
∂Ω and we suppose ∇×Hex = 0.

The generalization of the Ginzburg-Landau theory to the evolution problem was analyzed by Schmid
[11], Gor’kov and Eliashberg [6] in the context of the BCS theory of superconductivity. Now the total
current density J is given by J = Js + Jn, where Jn obeys the Ohm’s law

Jn = σE,

while the supercurrent Js satisfies the London equation (2.1). In order to describe the physical state of
the evolution system, Gor’kov and Eliashberg consider three variables, the wave function ψ, the vector
and scalar potential A and φ, which are related to the electrical and magnetic fields E,H by means of
the equations

E = −∂A
∂t

+∇φ , µH = ∇×A (2.3)

The evolution model of superconductivity is governed by the differential system ([6], [11])

γ(
∂ψ

∂t
− ie∗

~
φψ) = − 1

2m∗
(i~∇+ e∗A)2ψ + αψ − β |ψ|2 ψ (2.4)

σ(
∂A
∂t
−∇φ) = − 1

µ
∇×∇×A + Js (2.5)

with

Js = − i~e∗
2m∗

(ψ∗∇ψ − ψ∇ψ∗)− e2∗
m∗
|ψ|2 A (2.6)

and γ a suitable coefficient representing a relaxation time. The associated boundary conditions are given
by

(i~∇+ e∗A)ψ · n|∂Ω = 0 , (∇×A)× n|∂Ω =µHex × n (2.7)

The system (2.4)-(2.6) must be invariant under a gauge transformation

(ψ,A,φ)←→ (ψei e∗
~ χ,A+∇χ,φ− χ̇) (2.8)

where the gauge χ can be any smooth scalar function of (x, t).
Various gauges have been considered ([2], [7], [12], [15]). In the London gauge, χ is chosen so that ∇·

A = 0, A · n|∂Ω = 0. In the Lorentz gauge we have φ = − 1
µσ∇·A and the boundary conditionA · n|∂Ω =

0. Finally, in the zero electrical potential gauge we have φ = 0. It is not possible to have both φ = 0, and
the London gauge simultaneously.

The gauge invariance of the system (2.4)-(2.6) has been stated in many papers, where it is emphasized
that the choice of the gauge is technical and does not affect the physical meaning of the solutions. We will
show that this problem is still open. To this aim, we observe that the system (2.4)-(2.6) can be written
by means of the observable variables f,Js,H,E, which are necessarily independent by the choice of the
gauge. Indeed from (2.4) we deduce the equation ([3])

γ
∂f

∂t
=

~2

2m∗
4f −

(
e2∗

2m∗

)−1

J2
sf

−1 + αf − βf3 (2.9)
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and in view of (2.6) we obtain London’s equation

∇× Λ(f)Js = −µH (2.10)

where Λ(f) = 2m∗
e2
∗
f−2.

Equation (2.5) is essentially Ampere’s law

∇×H = Js + Jn + ε
∂E
∂t

when ∂E
∂t is supposed negligible, namely when we consider the quasi-steady approximation.

Finally, by substituting the relation (2.10) in Maxwell equation

∇×E = −µ∂H
∂t

(2.11)

we have
∂Λ(f)Js

∂t
= E−∇φs (2.12)

where φs(x, t) is a smooth scalar function. The equation (2.12) corresponds to the Euler equation for a
non-viscous electronic liquid (see [9], pag. 59) “where φs is the thermodynamic potential per electron; a
function, in particular, of the concentrations of the superelectrons”.

In order to obtain the complete equivalence with the problem (2.4)-(2.6), “the pressure” φs has to
be related to the ∇ ·E by means of the identity ([1])

φs =
~2σ

2m∗γ
Λ(f)∇ ·E (2.13)

Hence, in the quasi-steady approximation, equations (2.9)-(2.12) can be written also in the new
form

γ
∂f

∂t
=

~2

2m∗
4f − e2∗

2m∗
p2

sf + αf − βf3 (2.14)

1
µ
∇×∇× ps+Λ−1(f)ps + σE = 0 (2.15)

E =
∂ps

∂t
+∇φs

where ps = Λ(f)Js denotes the velocity of superelectrons.
Moreover by means of (2.13) and (2.15), we get

∇ · (Λ−1(f)ps) = −σ∇ ·E = −2m∗γ

~2
Λ−1(f)φs (2.16)

Concerning the boundary conditions, we assume

E · n|∂Ω = 0 (2.17)
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Together with the conditions (2.7), the previous relation yields

∇f · n|∂Ω = 0 , (∇× ps)× n|∂Ω = −µHex × n , fps · n|∂Ω = 0, f∇φs · n|∂Ω = 0 (2.18)

The equivalence between the systems (2.4)-(2.7) and (2.14)-(2.18) holds only if we consider regular
solutions. Concerning the weak solutions, we observe that the two different representations could lead to
set the problem in different functional spaces. In order to examine such equivalence we will show how
it is possible to obtain the original system (2.4)-(2.6) starting from the real equations (2.14)-(2.16). The
method we will follow will be able to exploit the physical meaning of the choice of gauge.

The main assumption for this procedure is the decomposition of the velocity ps in the form1

ps = −A +∇θ (2.19)

where θ is an arbitrary scalar field and A satisfies the relations (2.3).
The system (2.14)-(2.16) can be written in non dimensional form as

ḟ − 1
k2
4f + (f2 − 1)f + f |ps|2 = 0, (2.20)

η(ṗs +∇φs) +∇×∇× ps + f2ps = 0 (2.21)
k2fφs + f∇ · ps + 2∇f · ps = 0 (2.22)

and, by using (2.19), we get

ḟ − 1
k2
4f + (f2 − 1)f + f |A−∇θ|2 = 0, (2.23)

η(Ȧ−∇φ) +∇×∇×A + f2(A−∇θ) = 0 (2.24)
k2f(θ̇ − φ) + f∇ · (A−∇θ) + 2∇f · (A−∇θ) = 0 (2.25)

where
φ = θ̇ + φs , (2.26)

By means of the decomposition (2.19) we obtain the original Gor’kov-Eliashberg system

ψ̇ − ikφψ +
(
i

k
∇+ A

)2

ψ − (1− |ψ|2)ψ = 0 (2.27)

η(Ȧ−∇φ) +∇×∇×A = − i
2

[ψ∗(∇ψ − iAψ)− ψ(∇ψ∗ + iAψ∗)] (2.28)

In fact, if we put
ψ = f eikθ

then by (2.23), (2.25) we have (2.27) and by (2.24) we obtain (2.28). Therefore the systems (2.27)-(2.28),
(2.20)-(2.22) and (2.23)-(2.25) are formally equivalent.

1In order to simplify our notations, hereafter we consider the Ginzburg-Landau equations in a non dimensional form.
Moreover we denote by a superimposed dot the partial derivative with respect to the variable t.
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From a physical point of view, the representation (2.19) means that ps is decomposed as the sum of
an irrotational field and a vector A, whose definition depends on the choice of the gauge. For instance,
if we consider London gauge, A will be a solenoidal field. Accordingly, the decomposition (2.19) is not
unique. In order to obtain the uniqueness of the solution, we need to choose a decomposition for ps,
which corresponds to fix the gauge in the classical Gor’kov-Eliashberg system. Hence the properties of
the vector ps could change when we choose a differnt gauge. As already pointed out in the Introduction,
the invariance up to gauge transformations can be estabilished once we have proved an existence and
uniqueness theorem for the system (2.20)-(2.22) with appropriate initial and boundary conditions. In
this way the solution of the problem cannot be affected by the choice of the decomposition (2.19).
Unfortunately, such a result seems not to have been proved in literature. Thus, the gauge invariance of
the Ginzburg-Landau model remains an open problem.

For this reason, in the following we will perform a choice of the decomposition (2.19), namely we
will suppose

∇ ·A = 0, A · n|∂Ω = 0
∫

Ω

φdx = 0 (2.29)

Accordingly, we restrict our attention to the system

ḟ − 1
k2
4f + (f2 − 1)f + f |A−∇θ|2 = 0, (2.30)

η(Ȧ−∇φ) +∇×∇×A + f2(A−∇θ) = 0 (2.31)
k2f(θ̇ − φ) + f∇ · (A−∇θ) + 2∇f · (A−∇θ) = 0, (2.32)

and associate the corresponding boundary conditions

∇f · n|∂Ω = 0 , (∇×A)× n|∂Ω = Hex × n , f∇θ · n|∂Ω = 0, ∇φ · n|∂Ω = 0 (2.33)

Moreover, by taking the divergence of (2.31) and using (2.29)1, we obtain the following equation

η4φ−∇ · [f2(A−∇θ)] = 0 (2.34)

Hence, the equation (2.32) yields
η4φ+ k2f2(θ̇ − φ) = 0 (2.35)

3 Existence, uniqueness and properties of solutions

With different choices of gauge, existence and uniqueness results have been proved for the system (2.27)-
(2.28) with the initial and boundary conditions

ψ(x, 0) = ψ0(x), A(x, 0) = A0(x), (3.1)
∇ψ · n|∂Ω = 0 (∇×A)× n|∂Ω = −Hex × n|∂Ω (3.2)

A · n|∂Ω = 0, ∇φ · n|∂Ω = 0 (3.3)

We recall here some results proved in [12] and [14] which make use of London gauge. In order to
obtain a precise formulation of the problem we introduce the following functional space

V0 = {A ∈ H1(Ω) : ∇ ·A = 0, A · n|∂Ω = 0}
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Moreover we denote by ‖ · ‖p and ‖ · ‖Hs the norms in Lp(Ω) and Hs(Ω) respectively. For each A ∈ V0,
the inequalities

‖A‖H1 ≤ K1‖∇ ×A‖2 (3.4)
‖A‖H1/2(∂Ω) ≤ K2‖∇ ×A‖2 (3.5)

hold with K1,K2 positive constants depending on the domain Ω.
The following theorem, proved in [12], ensures the well posedness of the problem.

Theorem 3.1 If (ψ0,A0) ∈ H1(Ω) × V0, there exists a unique solution (ψ,A) of the problem (2.27)-
(2.28) with boundary and initial conditions (3.1)-(3.3) such that ψ ∈ L2(0, T ;H2(Ω)) ∩ C(0, T ;H1(Ω)),
A ∈ L2(0, T ;V0 ∩H2(Ω)) ∩ C(0, T ;V0).

In view of the equivalence between the systems (2.27)-(2.28) and (2.30)-(2.32), we can obtain an
existence and uniqueness theorem for the problem (2.27)-(3.3), by writing the functional spaces of the
Theorem 3.1 in terms of the variables f,∇θ,A, φ.

We conclude this section by showing a property of the solutions of the Ginzburg-Landau equations,
which will be useful for the proof of the estimates in the following section.

Proposition 3.1 If (f,ps, φs) is a solution such that f0(x)2 ≤ 1 almost everywhere in Ω, then f(x, t)2 ≤
1 a.e. in Ω× [0, T ].

By multiplying the equation (2.20) by f we obtain

∂

∂t

1
2
f2 +

1
k2
|∇f |2 − 1

2k2
4f2 + (f2 − 1)2 + (f2 − 1) + f2p2

s = 0,

so that
∂

∂t
(f2 − 1)− 1

k2
4(f2 − 1) + 2(f2 − 1) ≤ 0,

Now let us multiply the previous inequality by h = (f2 − 1)+ = max{f2 − 1, 0}. In this way we deduce

∂

∂t

1
2
h2 − 1

k2
h4h+ 2h2 ≤ 0,

Hence, by integrating on Ω, we obtain

∂

∂t

1
2
‖h‖22 +

1
k2
‖∇h‖22 + 2‖h‖22 ≤ 0,

The assumption f0(x)2 ≤ 1, allows to conclude that

1
2
‖h‖22 +

∫ t

0

[
1
k2
‖∇h‖22 + 2‖h‖22

]
dτ ≤ 0,

for each t ∈ [0, T ], so that f2 ≤ 1 almost everywhere in Ω× [0, T ].
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4 Energy estimates

In this section we examine the asymptotic behavior of the solution of the Ginzburg-Landau system. To
this end, we will define an energy functional E0 and prove the inequality which guarantees the existence
of an absorbing set for the system. Let

E0(f,ps) =
1
2

∫
Ω

[
1
k2
|∇f |2 +

1
2
(f2 − 1)2 + |∇ × ps|2 + f2|ps|2

]
dx (4.1)

the energy associated to the system (2.20)-(2.22). By means of the decomposition (2.19) we can express
the energy functional (4.1) in terms of the variables (f,∇θ,A), namely

E0(f,∇θ,A) =
1
2

∫
Ω

[
1
k2
|∇f |2 +

1
2
(f2 − 1)2 + |∇ ×A|2 + f2|A−∇θ|2

]
dx

Moreover, we observe that E0 can be written as a function of the variables (ψ,A) in the form

E0(ψ,A) =
1
2

∫
Ω

[∣∣∣∣( ik∇+ A)ψ
∣∣∣∣2 +

1
2
(|ψ|2 − 1)2 + |∇ ×A|2

]
dx

Note that E0(ψ,A) has to be invariant up to gauge transformations of the form (2.8), since the energy
depends on the observable variables (f,ps) through the relation (4.1).

Theorem 4.1 If the initial data satisfy E0(f0,∇θ0,A0) ≤M , then there exists a constant Γ, depending
on Ω and Hex, such that for each Γ′ > Γ, E0(f,∇θ,A) ≤ Γ′ holds for t > t0, where t0 depends on M and
Γ′ − Γ.

Proof. Henceforth, we denote by cj , j ∈ N, an arbitrary positive constant. By multiplying the equation
(2.30) by ḟ + c1f , integrating on Ω and keeping (2.33)1 into account, we obtain the equation∫

Ω

[
ḟ2 +

1
k2
∇f · ∇ḟ + fḟ |A−∇θ|2 + (f3 − f)ḟ

]
dx

+c1
∫

Ω

[
fḟ +

1
k2
|∇f |2 + f2|A−∇θ|2 + (f2 − 1)f2

]
dx = 0

Hence
d

dt

∫
Ω

[
1

2k2
|∇f |2 +

(
f4

4
− f2

2

)
+
c1
2
f2

]
dx

+
∫

Ω

[
ḟ2 + fḟ |A−∇θ|2 +

c1
k2
|∇f |2 + c1(f4 − f2) + c1f

2|A−∇θ|2
]
dx = 0 (4.2)

Similarly, by multiplying the equation (2.31) by Ȧ + c2A, integrating by parts and using (2.33)2,
we have

d

dt

∫
Ω

[
1
2
|∇ ×A|2 +

ηc2
2
|A|2

]
dx+

d

dt

∫
∂Ω

A ·Hex × nda

+
∫

Ω

[
η|Ȧ|2 + f2(A−∇θ) · Ȧ + c2|∇ ×A|2 + c2f

2(A−∇θ) ·A
]
dx+

∫
∂Ω

c2A ·Hex × nda = 0

(4.3)
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Note that, in the previous equation the term involving ∇φ vanishes as a consequence of (2.29)1.
Finally, if we multiply equations (2.32) and (2.35) by fθ̇ and −φ respectively and integrate on Ω,

we obtain the relations ∫
Ω

[
k2f2θ̇2 − k2f2φθ̇ − f2(A−∇θ) · ∇θ̇

]
dx = 0 (4.4)∫

Ω

[
η|∇φ|2 − k2f2φθ̇ + k2f2φ2

]
dx = 0 (4.5)

where the boundary integrals vanish in view of (2.33)3 and (2.33)4.
The equations (4.2)-(4.5) yield

d

dt

∫
Ω

[
1

2k2
|∇f |2 +

1
4
(f2 − 1)2 +

c1
2
f2 +

1
2
|∇ ×A|2 +

ηc2
2
|A|2 +

1
2
f2|A−∇θ|2

]
dx

+
d

dt

∫
∂Ω

A ·Hex × nda+
∫

Ω

[ c1
k2
|∇f |2 + c1(f4 − f2) + c2|∇ ×A|2 + c1f

2|A−∇θ|2
]
dx

+c2
∫

∂Ω

A ·Hex × nda+
∫

Ω

[
ḟ2 + k2f2(θ̇ − φ)2 + ηȦ2 + η|∇φ|2

]
dx

= −
∫

Ω

c2f
2(A−∇θ) ·Adx (4.6)

Let us introduce the functional

F =
1
2

∫
Ω

[
1
k2
|∇f |2 +

1
2
(f2 − 1)2 + c1f

2 + |∇ ×A|2 + ηc2|A|2 + f2|A−∇θ|2
]
dx

+
∫

∂Ω

A ·Hex × nda+
K2

2

2
‖Hex × n‖2H−1/2(∂Ω)

where the constant K2 is defined in (3.5). Note that F is positive definite since the relation (3.5) implies∫
∂Ω

A ·Hex × nda ≥ −‖A× n‖H1/2(∂Ω)‖Hex × n‖H−1/2(∂Ω) ≥ −K2‖∇ ×A‖2 ‖Hex × n‖H−1/2(∂Ω)

≥ −1
2
‖∇ ×A‖22 −

K2
2

2
‖Hex × n‖2H−1/2(∂Ω)

Therefore F ≥ 1
2E0 ≥ 0.

On the other hand, the functional F can be written as

F = E0 +
∫

Ω

[c1f2 + ηc2|A|2]dx+
∫

∂Ω

A ·Hex × nda+
K2

2

2
‖Hex × n‖2H−1/2(∂Ω),

so that

F ≤ E0 +
∫

Ω

c1(f2 − 1)dx+ ηc2K1‖∇ ×A‖22 +K2‖∇ ×A‖2 ‖Hex × n‖H−1/2(∂Ω)

+
K2

2

2
‖Hex × n‖2H−1/2(∂Ω) + c1vol(Ω)
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Therefore, we can prove the existence of two positive constants C1, C2, depending on Hex and Ω, such
that

1
2
E0 ≤ F ≤ C1E0 + C2 (4.7)

The relation (4.6) yields

d

dt
F +

∫
Ω

[ c1
k2
|∇f |2 + c1(f2 − 1)2 + c1f

2 + c2|∇ ×A|2 + c3|A|2 + c1f
2|A−∇θ|2

]
dx

+
∫

∂Ω

c2A ·Hex × nda+
K2

2

2
‖Hex × n‖2H−1/2(∂Ω) +

∫
Ω

[
ḟ2 + k2f2(θ̇ − φ)2 + η|Ȧ|2 + η|∇φ|2

]
dx

=
∫

Ω

[
c3|A|2 − c2f2(A−∇θ) ·A

]
dx+

K2
2

2
‖Hex × n‖2H−1/2(∂Ω) + c1k

2vol(Ω) (4.8)

Concerning the right-hand side, observe that

IΩ :=
∫

Ω

[
c3|A|2 − c2f2(A−∇θ) ·A

]
dx ≤ c3‖A‖22 + c2‖f(A−∇θ)‖2 ‖fA‖2

≤ K1c3‖∇ ×A‖22 + c2

(
1

2c4
‖f(A−∇θ)‖22 +

c4
2
‖fA‖22

)
Moreover, in view of Proposition 3.1, we have

‖fA‖22 ≤ ‖A‖22 ≤ K1‖∇ ×A‖22,

so that with the choices of c4 = 1
2K1

, c2 = c1c4, c3 = c2
4K1

, we obtain

IΩ ≤
c2
2
‖∇ ×A‖22 +

c1
2
‖f(A−∇θ)‖22.

Substitution in (4.8), leads to the inequality

d

dt
F +

∫
Ω

[ c1
k2
|∇f |2 + c1(f2 − 1)2 + c1f

2 +
c2
2
|∇ ×A|2 + c3|A|2 +

c1
2
f2|A−∇θ|2

]
dx

+
∫

∂Ω

c2A ·Hex × nda+
K2

2

2
‖Hex × n‖2H−1/2(∂Ω) +

∫
Ω

[
ḟ2 + k2f2(θ̇ − φ)2 + η|Ȧ|2 + η|∇φ|2

]
dx

≤ C

where

C =
K2

2

2
‖Hex × n‖2H−1/2(∂Ω) + c1vol(Ω)

By putting λ = 2min
{
c1,

c2
2 ,

c3
ηc2

, 1
}

, we have proved the inequality

d

dt
F + λF +

∫
Ω

[
ḟ2 + k2f2(θ̇ − φ)2 + η|Ȧ|2 + η|∇φ|2

]
dx ≤ C (4.9)

10



Hence
d

dt
F + λF ≤ C,

The application of Gronwall lemma yields

F(t) ≤ F(0)e−λt +
C

λ

(
1− e−λt

)
≤ F(0)e−λt +

C

λ
.

Therefore, in view of the relation (4.7) we obtain the inequality

E0(t) ≤ 2F(t) ≤ 2C1E0(0)e−λt + Γ

where Γ = 2C1 + C
λ . The assumption on the initial data allows to prove the inequality

E0(t) ≤ 2C1Me−λt + Γ

Hence, for each Γ′ > Γ, the inequality E0(t) ≤ Γ′ holds if t > t0 = max
{

0, 1
λ log 2C1M

Γ′−Γ

}
.

5 Higher-order energy estimates

We introduce now the higher-order energy functional defined as

E1(ψ,A) =
1
2

∫
Ω

[
|( i
k
∇+ A)2ψ|2 + |∇ ×∇×A|2

]
dx

Like the functional E0, the energy E1 can be written by means of the variables (f,∇θ,A) as

E1(f,∇θ,A) =
1
2

∫
Ω

[
(− 1
k2
4f + f |A−∇θ|2)2 + (−1

k
f4θ+

2
k
∇f · (A−∇θ))2 + |∇×∇×A|2

]
dx (5.1)

or by means of (f,ps) as

E1(f,ps) =
1
2

∫
Ω

[
(− 1
k2
4f + fp2

s)
2 + (

1
k
f∇ · ps +

2
k
∇f · ps)2 + |∇ ×∇× ps|2

]
dx

We prove now some energy estimates for the functional (5.1). In order to simplify our notations we define

P = − 1
k2
4f + f |A−∇θ|2, Q = −1

k
f4θ + 2∇f · (A−∇θ) . (5.2)

Moreover we denote by cj , j ∈ IN, a generic positive constant.
By multiplying the equation (2.30) by Ṗ + c1P − kθ̇Q and integrating in Ω, we obtain∫

Ω

[
d

dt

P 2

2
+ c1P

2 + ḟ Ṗ + f(f2 − 1)[Ṗ + c1P − kθ̇Q] + c1ḟP − kḟ θ̇Q− kθ̇PQ
]
dx = 0 (5.3)

11



Similarly, by multiplying (2.32) by Q̇+ c1Q+ kθ̇P , we have∫
Ω

[
d

dt

Q2

2
+ c1Q

2 + f(θ̇ − φ)Q̇+ c1f(θ̇ − φ)Q+ f(θ̇ − φ)θ̇P + θ̇PQ

]
dx = 0

Now we consider the equation (2.35) and multiply it by 4φ, obtaining∫
Ω

[ η
k2

(4φ)2 + f2(θ̇ − φ)4φ
]
dx = 0 (5.4)

The relations (5.3)-(5.4) yield

1
2
d

dt

∫
Ω

(
P 2 +Q2

)
dx+

∫
Ω

[
c1P

2 + c1Q
2 +

η

k2
(4φ)2

]
dx+ I1 + I2 = 0 (5.5)

where I1 and I2 are defined as

I1 =
∫

Ω

[
ḟ Ṗ + c1ḟP − kḟ θ̇Q+ kf(θ̇ − φ)Q̇+ c1kf(θ̇ − φ)Q+ k2f(θ̇ − φ)θ̇P + f2(θ̇ − φ)4φ

]
dx

I2 =
∫

Ω

f(f2 − 1)[Ṗ + c1P − kθ̇Q]dx

By integrating by parts and keeping the boundary conditions (2.33) into account, we get

I1 =
∫

Ω

[
1
k2
|∇ḟ |2 + ḟ2|A−∇θ|2 + 2fḟ(A−∇θ) · (Ȧ−∇θ̇) +

c1
k2
∇f · ∇ḟ + c1fḟ |A−∇θ|2

−2ḟ θ̇∇f · (A−∇θ) + fḟφ4θ − f2(θ̇ − φ)4θ̇ + 2f(θ̇ − φ)∇ḟ · (A−∇θ)
+2f(θ̇ − φ)∇f · (Ȧ−∇θ̇)− c1f2(θ̇ − φ)4θ + 2c1f(θ̇ − φ)∇f · (A−∇θ)− fθ̇(θ̇ − φ)4f

+k2f2(θ̇ − φ)θ̇|A−∇θ|2 − 2f(θ̇ − φ)∇f · ∇φ− f2(∇θ̇ −∇φ) · ∇φ
]
dx

Since ∇·A = 0, in the previous expression we can replace4θ and4θ̇ by −∇·(A−∇θ) and −∇·(Ȧ−∇θ̇)
respectively and integrating by parts. A straightforward computation proves that I1 can be written as

I1 =
∫

Ω

[
|R|2 + |S|2 +

c1
2
d

dt

(
1
k2
|∇f |2 + f2|A−∇θ|2

)
− k2

4
φ2|∇f |2 − 1

4
f2φ2|A−∇θ|2

+f(φ− θ̇)∇f · ∇φ− c1f2(Ȧ−∇φ) · (A−∇θ)

−f2|Ȧ|2 − fḟ(A−∇θ) · ∇φ+ fφ∇f · Ȧ
]
dx

where

R = ḟ(A−∇θ) + f(Ȧ−∇θ̇) + f∇φ− θ̇∇f +
1
2
φ∇f

S =
1
k
∇ḟ + kfθ̇(A−∇θ)− k

2
fφ(A−∇θ)
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Concerning I2, we observe that

I2 =
∫

Ω

[
− 1
k2

(f3 − f)4ḟ + ḟ(f3 − f)|A−∇θ|2 + 2(f4 − f2)(A−∇θ) · (Ȧ−∇θ̇)

− c1
k2

(f3 − f)4f + c1f
2(f2 − 1)|A−∇θ|2 + (f4 − f2)θ̇4θ − 2θ̇(f3 − f)∇f · (A−∇θ)

]
dx

and, by integrating by parts, we obtain

I2 =
∫

Ω

[
1
k2

(3f2 − 1)∇f · ∇ḟ + (f3 − f)(A−∇θ) · [ḟ(A−∇θ) + f(Ȧ−∇θ̇)]

+(f4 − f2)Ȧ · (A−∇θ) + 2θ̇(2f3 − f)A · ∇f +
c1
k2

(3f2 − 1)|∇f |2 + c1f
2(f2 − 1)|A−∇θ|2

−2fθ̇(2f2 − 1)∇θ · ∇f − 2θ̇(f3 − f)∇f · (A−∇θ)
]
dx

The definition of R and S, yields

I2 =
∫

Ω

{
(f3 − f)(A−∇θ) ·R +

1
k

(3f2 − 1)∇f · S

+f3φ(A−∇θ) · ∇f − (f4 − f2)(A−∇θ) · (∇φ− Ȧ) +
c1
k2

(3f2 − 1)|∇f |2

+c1f2(f2 − 1)|A−∇θ|2
}
dx

Let us consider the equation (2.31), multiply it by ∇×∇× Ȧ+ c2∇×∇×A and integrate in Ω. Keeping
the boundary conditions (2.33)2 into account, we get the relation∫

Ω

d

dt

[
1
2
|∇ ×∇×A|2 +

ηc2
2
|∇ ×A|2

]
dx

+
∫

Ω

[
η|∇ × Ȧ|2 + |∇ ×∇×A|2 +∇× Ȧ · [2f∇f × (A−∇θ) + f2∇×A]

+c2f2(A−∇θ) · ∇ ×∇×A
]
dx+

∫
∂Ω

Ȧ ·Hex × nda = 0 (5.6)

From the relations (5.5)-(5.6), we obtain

d

dt
E1 +

d

dt

∫
Ω

[
c1
2k2
|∇f |2 +

c1
2
|f(A−∇θ)|2 +

c2η

2
|∇ ×A|2 +

1
4
(f2 − 1)2

]
dx

+
∫

Ω

[
c1P

2 + c1Q
2 +

η

k2
(4φ)2 + η|∇ × Ȧ|2 + |∇ ×∇×A|2 + |R|2 + |S|2

]
dx ≤ I3

where E1 is defined by (5.1) and

I3 =
∫

Ω

[
1
4
φ2|∇f |2 +

k2

4
f2φ2|A−∇θ|2 − f(φ− θ̇)∇f · ∇φ+ c1f

2(Ȧ−∇φ) · (A−∇θ)
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+f2|Ȧ|2 + fḟ(A−∇θ) · ∇φ− fφ∇f · Ȧ
]
dx

−
∫

Ω

{
(f3 − f)(A−∇θ) ·R +

1
k

(3f2 − 1)∇f · S

+f3φ(A−∇θ) · ∇f − (f4 − f2)(A−∇θ) · (∇φ− Ȧ) +
c1
k2

(3f2 − 1)|∇f |2

+c1f2(f2 − 1)|A−∇θ|2 + (f2 − 1)fḟ
}
dx−

∫
∂Ω

Ȧ ·Hex × nda

−
∫

Ω

{
∇× Ȧ · [2f∇f × (A−∇θ) + f2∇×A] + c2f

2(A−∇θ) · ∇ ×∇×A
}
dx (5.7)

Hence

d

dt
(E1 + γE0) +

∫
Ω

[
c1P

2 + c1Q
2 +

η

k2
(4φ)2 + η|∇ × Ȧ|2 + |∇ ×∇×A|2 + |R|2 + |S|2

]
dx ≤ I3 (5.8)

where γ = min{c1, c2η, 1}.
In order to estimate the right-hand side of (5.8), we need some lemmas. We use repeatedly the

Theorem 4.1 with Γ′ = 2Γ. Moreover we denote by C(Γ) a generic constant depending on Γ (i.e. depending
on Ω and Hex), which may vary even in the same formula.

Lemma 5.1 If the initial data satisfy the inequality E0(f0,∇θ0,A0) ≤M , then

‖∇φ‖2 ≤ C(Γ) (5.9)

for t > t0.

Proof. Consider the equation (2.34) and multiply it by φ. An integration by parts and use of the boundary
conditions (2.33) yield ∫

Ω

η|∇φ|2dx ≤ −
∫

Ω

f2(A−∇θ) · ∇φdx

In view of Proposition 3.1, we have

‖∇φ‖22 ≤
1
η

∫
Ω

|f2(A−∇θ) · ∇φ|dx ≤ 1
η
‖f(A−∇θ)‖2 ‖∇φ‖2,

so that
‖∇φ‖22 ≤

1
η2
‖f(A−∇θ)‖22 ≤

2
η2
E0(f,∇θ,A)

The application of Theorem 4.1 proves (5.9).

Lemma 5.2 If Ω ⊂ IR2 and the initial data satisfy E0(f0,∇θ0,A0) ≤ M , there exist positive constants
C1(Γ), C2(Γ) and C3(Γ) such that

I3 ≤ C1(Γ) + C2(Γ)(‖P‖22 + ‖Q‖22 + ‖∇ ×∇×A‖22) + C3(Γ)[‖kf(θ̇ − φ)‖22 + ‖Ȧ‖22 + ‖ḟ‖22]

+
1
2
(‖R‖22 + ‖S‖22 + η‖∇ × Ȧ‖22 +

η

k2
‖4φ‖22)
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Proof. In view of the definitions (5.2), we have

P 2 +Q2 = |( i
k
∇+ A)2ψ|2 = | − 1

k2
4ψ + A2ψ +

2i
k

A · ∇ψ|2

Therefore, by means of the inequality |x+ y|2 ≤ 2|x|2 + 2|y|2, ∀x, y ∈ Cl , we obtain

|4ψ|2 ≤ 2k4(P 2 +Q2) + 2k4|2i
k

A · ∇ψ + A2ψ|2 ≤ 2k4(P 2 +Q2) +
16
k2
|A|2|∇ψ|2 + 4k4|A|4|ψ|2

The previous inequality and the condition |ψ| ≤ 1, yield

‖4ψ‖22 ≤ 2k4(‖P‖22 + ‖Q‖22) +
(

4k4 +
8
νk2

)
‖A‖44 +

8ν
k2
‖∇ψ‖44

for each ν > 0. Moreover, when Ω ⊂ IR2, the classical interpolation inequality

‖h‖24 ≤ K3‖h‖2 ‖h‖H1 h ∈ H1(Ω) (5.10)

implies
‖∇ψ‖44 ≤ K2

3‖∇ψ‖22‖∇ψ‖2H1 ≤ K2
3

(
‖∇ψ‖42 + ‖∇ψ‖22‖4ψ‖22

)
,

so that, in view of Theorem 4.1, we obtain

‖4ψ‖22 ≤ 2k4(‖P‖22 + ‖Q‖22) + C(Γ) + 8νC(Γ)‖4ψ‖22

By choosing ν such that 8νC(Γ) < 1
2 , we have

‖4ψ‖22 ≤ 4k4(‖P‖22 + ‖Q‖22) + C(Γ) (5.11)

In order to estimate the terms of (5.7), we will use Holder’s and Young’s inequalities, Sobolev embeddings,
the interpolation inequality (5.10), the relations (5.9), (5.11) and the condition f2 ≤ 1. Accordingly, we
have

J1 :=
∫

Ω

φ2(|∇f |2 + k2f2|A−∇θ|2)dx ≤
∫

Ω

[φ2|∇ψ|2 + 2k2φ2f2(A−∇θ) ·A− k2φ2f2|A|2]dx

≤ ‖φ‖24‖∇ψ‖24 + 2k2‖f(A−∇θ)‖2 ‖φ‖26‖A‖6 + k2‖A‖24 ‖φ‖24 ≤ K3‖φ‖24‖∇ψ‖2‖∇ψ‖H1 + C(Γ)
≤ C(Γ) + ‖4ψ‖22 ≤ C(Γ) + 4k2(‖P‖22 + ‖Q‖22)

J2 :=
∫

Ω

f(φ− θ̇)∇f · ∇φ ≤ ‖f(φ− θ̇)‖2 ‖∇ψ‖4‖∇φ‖4

≤ ‖f(φ− θ̇)‖22 +K2
3‖∇ψ‖2 ‖∇φ‖2 ‖∇ψ‖H1 ‖∇φ‖H1

≤ ‖f(φ− θ̇)‖22 + C(Γ)‖4ψ‖22 +
η

4k2
‖4φ‖22 + C(Γ)

J3 :=
∫

Ω

[c1f2(Ȧ−∇φ) · (A−∇θ) + f2|Ȧ|2]dx ≤ c1‖f(A−∇θ)‖2(‖Ȧ‖2 + ‖∇φ‖2) + ‖Ȧ‖22
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≤ C(Γ) + 2‖Ȧ‖22

J4 :=
∫

Ω

[fḟ(A−∇θ) · ∇φ− fφ∇f · Ȧ]dx ≤ ‖ḟ‖2 ‖∇φ‖4(‖fA‖4 + ‖f∇θ‖4) + ‖Ȧ‖2 ‖∇f‖4‖φ‖4

≤ ‖ḟ‖2 ‖∇φ‖4(‖A‖4 +
1
k
‖∇ψ‖4) + ‖Ȧ‖2 ‖∇ψ‖4‖φ‖4

≤ C(Γ)(‖ḟ‖22 + ‖Ȧ‖22) +K3‖4φ‖2 ‖∇φ‖2 +K2
3‖∇φ‖2 ‖∇ψ‖2 ‖4φ‖2 ‖4ψ‖2 +K3‖4ψ‖2 ‖∇ψ‖2

≤ C(Γ)(‖ḟ‖22 + ‖Ȧ‖22) + C(Γ)(‖P‖22 + ‖Q‖22) +
η

4k2
‖4φ‖22 + C(Γ)

J5 :=
∫

Ω

[−f(f2 − 1)(A−∇θ) ·R− 1
k

(3f2 − 1)∇f · S]dx

≤ 2‖f(A−∇θ)‖2 ‖R‖2 +
4
k
‖∇f‖2 ‖S‖2 ≤

1
2
‖R‖22 +

1
2
‖S‖22 + C(Γ)

J6 :=
∫

Ω

f3φ(A−∇θ) · ∇fdx ≤ ‖f(A−∇θ)‖2 ‖φ‖4‖∇f‖4 ≤ C(Γ) +K3‖∇ψ‖2 ‖∇ψ‖H1

≤ C(Γ) + ‖4ψ‖22 ≤ C(Γ) + 4k2(‖P‖22 + ‖Q‖22)

J7 :=
∫

Ω

[−(f4 − f2)(A−∇θ) · (∇φ− Ȧ) +
c1
k2

(3f2 − 1)|∇f |2 + c1f
2(f2 − 1)|A−∇θ|2

+(f2 − 1)fḟ ]dx ≤ C(Γ) + ‖Ȧ‖22 + ‖ḟ‖22

J8 := −
∫

∂Ω

Ȧ ·Hex × nda ≤ K2‖∇ × Ȧ‖2 ‖Hex × n‖H−1/2(∂Ω)

≤ η

4
‖∇ × Ȧ‖22 +

K2
2

η
‖Hex × n‖2H−1/2(∂Ω)

J9 := −
∫

Ω

∇× Ȧ · [2f∇f × (A−∇θ) + f2∇×A]dx

≤ 2‖∇ × Ȧ‖2 ‖∇f‖4 ‖f(A−∇θ)‖4 + ‖∇ × Ȧ‖2 ‖∇ ×A‖2

≤ η

4
‖∇ × Ȧ‖22 +

6
η
‖∇f‖24(‖fA‖4 + ‖f∇θ‖4)2 +

3
η
‖∇ ×A‖22

≤ η

4
‖∇ × Ȧ‖22 +

12
η
‖∇f‖24(‖A‖24 + ‖f∇θ‖24) + C(Γ)

≤ η

4
‖∇ × Ȧ‖22 + C(Γ)‖∇ψ‖24 +

12K2
3

ηk2
‖∇ψ‖22‖4ψ‖22 + C(Γ)

≤ η

4
‖∇ × Ȧ‖22 + C(Γ)‖4ψ‖22 + C(Γ)

J10 := −
∫

Ω

c2f
2(A−∇θ) · ∇ ×∇×Adx ≤ C(Γ) + ‖∇ ×∇×A‖22
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From the previous estimates, we deduce the inequality

I3 ≤ C1(Γ) + C2(Γ)(‖P‖22 + ‖Q‖22 + ‖∇ ×∇×A‖22) + C3(Γ)[‖kf(θ̇ − φ)‖22 + ‖Ȧ‖22 + ‖ḟ‖22]

+
1
2
(‖R‖22 + ‖S‖22 + η‖∇ × Ȧ‖22 +

η

k2
‖4φ‖22)

Lemma 5.3 If E0(f0,∇θ0,A0) ≤M , the following inequalities hold∫ t+1

t

[
‖ḟ‖22 + ‖kf(θ̇ − φ)‖22 + η‖A‖22

]
dτ ≤ C(Γ) (5.12)∫ t+1

t

E1(τ)dτ ≤ C(Γ) (5.13)

for t > t0.

Proof. Let us consider the relation (4.9) and integrate in the time interval [t, t+ 1]. We have

F(t+ 1)−F(t) + λ

∫ t+1

t

F(τ)dτ +
∫ t+1

t

[
‖ḟ‖22 + ‖kf(θ̇ − φ)‖22 + η‖A‖22

]
dτ ≤ C(Γ).

Since the functional F is positive definite, we obtain∫ t+1

t

[
‖ḟ‖22 + ‖kf(θ̇ − φ)‖22 + η‖A‖22

]
dτ ≤ C(Γ) + F(t).

Thus, keeping (4.7) into account, by Theorem 4.1, we prove (5.12).
In order to prove (5.13) we observe that, by definition (5.1), we obtain∫ t+1

t

E1(τ)dτ =
1
2

∫ t+1

t

∫
Ω

[
P 2 +Q2 + |∇ ×∇×A|2

]
dx dτ .

Moreover, by using equations (2.30)-(2.32), we have∫ t+1

t

E1(τ)dτ =
1
2

∫ t+1

t

∫
Ω

{
[ḟ + f(f2 − 1)]2 + k2f2(θ̇ − φ)2 + [η(Ȧ−∇φ) + f2(A−∇θ)]2

}
dxdτ

≤
∫ t+1

t

[
‖ḟ‖22 + ‖f(f2 − 1)‖22 +

k2

2
‖f(θ̇ − φ)‖22 + 2η2(‖Ȧ‖22 + ‖∇φ‖22) + ‖f2(A−∇θ)‖22

]
dτ

so that in view of (5.12), of Lemma 5.1 and of Theorem 4.1, we obtain (5.13).

Theorem 5.1 If Ω ⊂ IR2, the system (2.30)-(2.32) possesses a maximal attractor.
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Proof. In view of Lemma 5.2, from (5.8) we have

d

dt
(E1 + γE0) +

∫
Ω

[
c1P

2 + c1Q
2 +

η

2k2
(4φ)2 +

η

2
|∇ × Ȧ|2 + |∇ ×∇×A|2 +

1
2
|R|2 +

1
2
|S|2

]
dx

≤ C1(Γ) + 2C2(Γ)E1 + C3(Γ)[‖kf(θ̇ − φ)‖22 + ‖Ȧ‖22 + ‖ḟ‖22]

Hence
d

dt
(E1 + γE0) ≤ C1(Γ) + 2C2(Γ)(E1 + γE0) + C3(Γ)[‖kf(θ̇ − φ)‖22 + ‖Ȧ‖22 + ‖ḟ‖22]

The inequalities (5.12) and (5.13) allow to apply the uniform Gronwall lemma (see [13]) which proves
that E1(t) is bounded for t > t0. This guarantees the existence of the maximal attractor for the system.
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