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Abstract. We prove a Harnack inequality for the positive solutions of ultraparabolic
equations of the type

L0 u + V u = 0,

where L0 is a linear second order hypoelliptic operator and V belongs to a class of
functions of Stummel-Kato type. We also obtain the existence of a Green function and
an uniqueness result for the Cauchy-Dirichlet problem.

1. Introduction

We prove some regularity results for the solutions of the equation in RN+1

L0 u + V u = 0, (1.1)

where V is a singular potential belonging to a Stummel-Kato class (see Definition 1.1
below) and L0 is a linear second order operator of the form

L0 =
m∑

k=1

X2
k + X0 − ∂t. (1.2)

We always denote by z = (x, t) the point in RN+1; the Xk’s in (1.2) are smooth vector
fields on RN , i.e.

Xk(x) =
N∑

j=1

ak
j (x)∂xj

, k = 0, . . . , m,

where any ak
j is a C∞ function. In the sequel we also consider the Xk’s as vector fields in

RN+1 and we denote
Y = X0 − ∂t. (1.3)

We say that a curve γ : [0, T ] → RN+1 is L-admissible if it is absolutely continuous and
satisfies

γ′(s) =
m∑

k=1

λk(s)Xk(γ(s)) + µ(s)Y (γ(s)), a.e. in [0, T ],

for suitable piecewise constant real functions λ1, . . . , λm, µ, with µ ≥ 0. We next state
our main assumptions:

[H.1]: there exists a homogeneous Lie group G =
(
RN+1, ◦, δλ

)
such that

(i): X1, . . . , Xm, Y are left translation invariant on G;
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(ii): X1, . . . , Xm are δλ-homogeneous of degree one and Y is δλ-homogeneous of
degree two;

[H.2]: for every (x, t), (ξ, τ) ∈ RN+1 with t > τ , there exists an L-admissible path
γ : [0, T ] → RN+1 such that γ(0) = (x, t), γ(T ) = (ξ, τ).

Operators of this kind have been studied by Kogoj and Lanconelli in [11]. The above
hypotheses and the main properties of homogeneous Lie groups will be discussed in detail
in the next section, here we recall that assumptions [H.1]-[H.2] yield the well known
Hörmander condition [10]:

rank Lie{X1, . . . , Xm, Y }(z) = N + 1, for every z ∈ RN+1, (1.4)

then L0 is hypoelliptic (i.e. every distributional solution to L0u = 0 is a smooth, classic
solution; see, for instance, Proposition 10.1 in [11]). Hence L0 belongs to the general
class of the hypoelliptic operators on homogeneous groups first studied by Folland [8].
We recall that a general theory of function spaces related to Hörmander operators has
been developed by Rothschild and Stein in [23], and by Nagel, Stein and Wainger in [20].
An invariant Harnack inequality for the positive solutions of L0u = 0 and a Gaussian
upper estimate of its fundamental solution Γ0 have been proved in [11]. We also recall
that Gaussian lower bounds for operators verifying assumptions [H.1]-[H.2] on Lie group
of step three have been given in [21]; and one-side Liouville theorems are provided in [12].

Let us point out that several meaningful examples of operators of the form (1.2) satisfy
assumptions [H.1]-[H.2]:

• heat operators on Carnot groups

∆G − ∂t, (1.5)

where ∆G =
∑m

k=1 X2
k denotes the sub-Laplacian on a homogeneous Carnot group

G (see Varopoulos, Saloff-Coste and Coulhon [27]);
• heat operators with drift on Carnot groups

∆G + X0 − ∂t, (1.6)

(see Alexopoulos [1]);
• Kolmogorov type operators

∆Rm + 〈Bx,∇〉 − ∂t, (1.7)

where ∆Rm is the Laplace operator on Rm and B is a constant N ×N real matrix
(see [15] and its bibliography for a survey on known results on Kolmogorov type
operators. In [17] necessary and sufficient conditions are given on matrix B in
order to satisfy assumptions [H.1]-[H.2]);

• operators on the “link of a Carnot and a Kolmogorov group”

∆G + 〈Bx,∇〉 − ∂t (1.8)

here the domain of the solution is Rm × Rp × Rq × R,G is a Carnot group on
Rm×Rp and B is a (m+ q)× (m+ q) matrix as in the Kolmogorov operator (1.7)
(see [11] Example 9.7).
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We are concerned with the regularity of the operator

LV = L0 + V , (1.9)

where V belongs to the following Stummel-Kato class (defined by the fundamental solution
Γ0 of L0).

Definition 1.1. Let Ω be an open subset contained in RN+1. A function V ∈ L1(Ω)
belongs to the space SK(Ω) related to L0 if

lim
h→0

ηV(h) = 0, lim
h→0

η∗V(h) = 0, (1.10)

where

ηV(h) = sup
(x,t)∈Ω

∫

(y,s)∈Ω, t−h2<s<t

Γ0(x, t, y, s)|V(y, s)|dyds,

η∗V(h) = sup
(y,s)∈Ω

∫

(x,t)∈Ω, s<t<s+h2

Γ0(x, t, y, s)|V(x, t)|dxdt.

(1.11)

We say that u is a weak solution of LVu = 0 if

(1) there exists p > 1 such that u,X1u, ..., Xmu ∈ Lp
loc(Ω),

(2) Vu ∈ L1
loc(Ω),

(3)
∫
Ω

∑m
k=1 XkuX∗

kϕ +
∫

Ω
uY ∗ϕ +

∫
Ω

uVϕ = 0, for every ϕ ∈ C∞
0 (Ω).

As in the Euclidean setting, the Stummel-Kato class can be related to the Morrey spaces
Lp,λ(Ω,L0); in Section 3 we will prove the inclusion L1,λ(Ω,L0) ⊂ SK(Ω) for λ ∈]Q−2, Q[,
where Q is the homogeneous dimension of G (see Section 2 for the definitions). We also
give a simple sufficient condition for the integrability of Vu: we show that, if the derivatives
Xju, XjXku, for j, k = 1, ..., m and Y u belong to L1

loc(Ω) then Vu ∈ L1
loc(Ω).

Our main result is an invariant Harnack inequality for the positive solutions to LVu = 0.
The proof of the Harnack inequality given by Kogoj and Lanconelli in [11] (for the solutions
to L0u = 0) is based on a mean value theorem and follows the same lines of the classical
proof of the Harnack inequality for harmonic functions. That approach has been used
in the study of Kolmogorov operators (1.7) by Kuptsov in [13], later by Garofalo and
Lanconelli in [9] then by Lanconelli and Polidoro in [17] and relies on some accurate
estimates of the derivatives X1Γ0, . . . XmΓ0 of the fundamental solution of L0. Here we
use a method based on the Green function G0 of L0 related to suitable “cylindrical”
open sets and on a pointwise lower bounds for G0. This technique is inspired by some
arguments by Safanov in [24], and used in [14] where Kusuoka and Stroock obtain Harnack
inequality for solutions to certain degenerate equations. It has been also used by Fabes
and Stroock in [6], [7] to study uniformly elliptic and parabolic operators with measurable
coefficients and later adapted by Montanari in [19] to obtain an Harnack inequality for
L0 belonging to a class of totally degenerate hypoelliptic operators. The same method
has been successfully used by the authors in [22], in the study of Kolmogorov operators
(1.7).

We finally recall some papers where the second order part of the operator L0 has non-
smooth coefficients. We quote Sturm [26] and Zhang [28], that consider the operator
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(1.9) where L0 is uniformly parabolic, Citti, Garofalo and Lanconelli [5], and Lu [18],
that consider the Schrödinger operator related to sum of square of Hörmander’s vector
fields LV =

∑m
k=1 X2

k + V , Zhang [29], who study the analogous parabolic operator LV =∑m
k=1 X2

k − ∂t + V as (1.5). Recently Bramanti and Brandolini in [4] consider operators,
without potential function, of the following type: L =

∑m
i,j=1 aij(x)XiXj, where aij belong

to to the Sarason class V MO. They extend to spaces of homogeneous type some regularity
estimates.

We end this introduction with a short outline of this paper. In Section 2 we recall the
known facts about homogeneous Lie groups and on the boundary value problems for L0,
that will needed through in the sequel, then we state our main results. In Section 3 we
discuss the main properties of the fundamental solution and of the Green function for L0.
In Section 4 we construct a Green function for LV by the Levi parametrix method; some
Lp estimates and a pointwise lower bound for the Green function are proved. Then, in
Section 5 we prove the results of this paper, in a preliminary statement only for bounded
potentials V , then, by a limiting argument, for every V in the Stummel-Kato class.

2. Known facts and statement of main results

In this section we briefly recall the basic properties of homogeneous Lie groups; we then
give the statements of our main results.

A Lie group G =
(
RN+1, ◦) is said homogeneous if there exists a family of dilations

(δλ)λ>0 of the form

δλ : RN+1 → RN+1, δλ(x1, . . . ξN , t) = (λα1x1, . . . λ
αN ξN , λα0t)

for some positive α1, . . . αN , α0, with the following property

δλ

(
z ◦ ζ

)
=

(
δλz

) ◦ (
δλζ

)
, for every z, ζ ∈ RN+1 and λ > 0. (2.1)

Hypotheses [H.1]-[H.2] imply that RN has a direct sum decomposition

RN = V1 ⊕ · · · ⊕ Vn

such that, if we decompose any point x ∈ RN as x = x(1) + · · ·+ x(n) with x(k) ∈ Vk, then
the dilations are

δλ(x
(1) + · · ·+ x(n), t) = (λx(1) + · · ·+ λnx(n), λ2t), (2.2)

for any λ > 0. If we let mk = dimVk, the natural number

Q = 2 +
n∑

k=1

k mk

is usually called the homogeneous dimension of G with respect to (δλ)λ>0. We also intro-
duce the following δλ-homogeneous norms on RN+1 and RN :

‖(x, t)‖G =

(
n∑

k=1

∣∣x(k)
∣∣ 2n!

k + |t|n!

) 1
2n!

|x|G =

(
n∑

k=1

∣∣x(k)
∣∣ 2n!

k

) 1
2n!



Harnack inequality for hypoelliptic ultraparabolic equations... 5

(
∣∣x(k)

∣∣ is the Euclidean norm of x(k)). We denote by

d(z, ζ) = ‖ζ−1 ◦ z‖G
the quasi-distance between two points z, ζ ∈ RN+1, and by

Br(z) =
{
ζ ∈ RN+1 : d(z, ζ) < r

}

the ball with center at z and radius r. Recall that there exists a positive constant c such
that

d(z, w) ≤ c
(
d(z, ζ) + d(ζ, w)

)
, d(z, w) ≤ c d(w, z), (2.3)

for every z, ζ, w ∈ RN+1 (see [8], Proposition 1.4).
We also recall that, due to the fact that X0, . . . Xm only depend on the space variable

x, the composition law ◦ is Euclidean in the time variable t, i.e.

(x, t) ◦ (y, s) = (σ(x, t, y, s), t + s) (2.4)

for a suitable smooth function σ (see [11], Proposition 10.2). Moreover, since X1, . . . , Xm

and Y are homogeneous vector fields of degree 1 and 2, respectively, we have
(
(x, t) ◦ (y, s)

)(1)
= x(1) + y(1),

(
(x, t) ◦ (y, s)

)(k)
= x(k) + y(k) + σk(x, t, y, s) (2.5)

for k = 2, . . . , m, where σk(x, t, y, s) is a polynomial function that only depends on
x(k+1), · · · + x(m), t, y(k+1), · · · + y(m) and s. As a consequence, the determinant of the
Jacobian matrix of the function z 7→ z0 ◦ z equals one, thus the Lebesgue measure of
RN+1 is left-invariant under left translations, namely

meas (z0 ◦ E) = meas (E) , (2.6)

for every z0 ∈ RN+1 and every measurable set E ⊂ RN+1.
Another consequence of the homogeneity of the vector fields X1, . . . , Xm and Y is that

they are of the form

Xk =
n∑

j=1

ak
j−1(x

(1), . . . , x(j−1)) · ∇(j), k = 1, . . . ,m,

Y =
n∑

j=2

bj−2(x
(1), . . . , x(j−2)) · ∇(j) − ∂t,

(2.7)

where ∇(j) =
(
0, . . . , 0, ∂

x
(j)
1

, . . . , ∂
x
(j)
mj

, 0, . . . , 0
)

denotes the gradient with respect to the

variable x(j) and ak
j and bj are δλ−homogeneous polynomial functions of degree j with

values in Vj+1 and Vj+2 respectively. As a first consequence we have that X∗
k = −Xk for

k = 1, . . . , m and Y ∗ = −Y, thus the formal adjoint of L0 is L0
∗ =

∑m
k=1 X2

k − Y.
Let us explicitly note that hypothesis [H.2] and formula (2.7) imply that, if we write

L0 as

L0 ≡
N∑

i,j=1

ai,j(x)∂xixj
+

N∑
j=1

bj(x)∂xj
− ∂t, (2.8)
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then the m×m block matrix (ai,j(x))i,j=1,...,m is constant and positive definite. From (2.7)

it also follows that Y (0) = b0 · ∇(2)− ∂t for a constant vector b0 ∈ V2, thus, up to a linear
change of coordinates, we may assume that b0 ≡ 0.

We next recall some results, due to Lanconelli and Pascucci [16], concerning the bound-
ary value problem for L0. Let k ∈ N and ε > 0 be two constants that well be chosen in
the sequel. We denote

O = Beucl(ke1,k+kε) ∩Beucl(−ke1,k+kε), (2.9)

where Beucl(x,r) is the Euclidean ball of RN with center at x and radius r. Moreover, for
positive T we let

Q(T ) = O×]0, T [, S = O × {
0
}
, S(T ) = O × {

T
}
, and M(T ) = ∂O×]0, T [

be the “unit” cylinder of RN+1, its lower and upper basis (resp.), and its lateral boundary.
We will call parabolic boundary of Q(T ) the set

∂rQ(T ) = S ∪ (
∂O × [0, T ]

)
.

Finally, for every positive R and for any (ξ, τ) ∈ RN+1, we set

QR(ξ, τ, T ) = (ξ, τ) ◦ δR

(
Q(R−2T )

)
,

and, analogously,

MR(ξ, τ, T ) =(ξ, τ) ◦ δR

(
M(R−2T )

)
, SR(ξ, τ) = (ξ, τ) ◦ δR (S) ,

SR(ξ, τ, T ) =(ξ, τ) ◦ δR

(
S(R−2T )

)
, ∂rQR(ξ, τ, T ) = (ξ, τ) ◦ δR

(
∂rQ(R−2T )

)

(note that, by (2.2) and (2.4), T is the true height of the sets QR(ξ, τ, T ),MR(ξ, τ, T ) and
∂rQR(ξ, τ, T ), and SR(ξ, τ, T ) = QR(ξ, τ, T ) ∩ {

(x, t) : t = τ + T
}
). We also remark that,

by (2.2) and (2.6), we have

meas
(
QR(ξ, τ, R2T )

)
= RQmeas (Q(T )) .

Moreover

meas (SR(ξ, τ)) = RQ−2meas (S) , (2.10)

where, with a slight abuse of notations, meas (SR(ξ, τ)) is the N -dimensional measure of
the set SR(ξ, τ) and, obviously,

meas
(
QR(ξ, τ, R2T )

)
= T RQmeas (S) . (2.11)

Consider the Cauchy-Dirichlet problem in the unit cylinder{ L0u = f in Q(T )
u = 0 in ∂rQ(T )

(2.12)

with f ∈ C∞
0 (Q(T )). As noticed before, the m×m block matrix (ai,j(x))i,j=1,...,m in (2.8) is

constant and positive definite so that, in particular, a11 > 0. Then, by Proposition 2.4 and
Theorem 2.5 in [16]1 there exists a positive ε in the definition of O such that the Dirichlet

1in [16] it is assumed that L0 is the heat operator out of a compact set of RN+1. L0 can be suitably
modified outside Q(T ) in order to fulfill such a requirement.
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problem (2.12) has a unique (classical) solution u ∈ C(Q(T ) ∪ ∂rQ(T )) ∩ C∞(Q(T )) (in
the sequel ε in the definition of O will be always chosen as above).

We say that G0 :
(
Q(T ) ∪ ∂rQ(T )

) × Q(T ) → R is a Green function for Q(T ) if, for
every f ∈ C0(SR), the function

u(z) = −
∫

Q(T )

G0(z, ζ)f(ζ)dζ

is solution of the Cauchy-Dirichlet problem (2.12). In [16], Theorem 2.7 it is proved that
a Green function G0 exists and is smooth out of the diagonal of the set

(
Q(T )∪∂rQ(T )

)×
Q(T ); G0(x, t, ξ, τ) ≥ 0; for any (x, t), (ξ, τ) ∈ RN+1, G0(x, t, ξ, τ) = 0 if, t ≤ τ .

The function G∗
0(z, ζ) ≡ G0(ζ, z) is a Green function for the adjoint operator L0

∗. For
every positive R and for any (ξ, τ) ∈ RN+1 the function G0((ξ, τ) ◦ δR(ζ), (ξ, τ) ◦ δR(z)) is
a Green function for the set QR(ξ, τ, T ). The Green function can be characterized as

G0(x, t, y, τ) = Γ0(x, t, y, τ) − h(x, t, y, τ), (2.13)

where h(·, ·, y, 0) is the solution of the boundary value problem



L0u = 0 in Q(T )
u = 0 in M(T )
u = Γ0(·, ·, y, 0) in S

(2.14)

The Perron-Wiener-Brelot-Bauer method provides a generalized solution h (see [2]); by
the hypoellipticity of L0 it is a smooth classical solution to L0u = 0 in Q(T ). A local
barrier for every point of M(T ) ∪ S has been constructed in the proof of Theorem 2.5 in
[16], then h attains the boundary data by continuity. Since G0(ζ, · ) is a Green function
for the adjoint operator L0

∗, we have that h is smooth for (x, t) 6= (y, 0). By the minimum
principle it plainly follows h ≥ 0, then

G0(x, t, y, s) ≤ Γ0(x, t, y, s), for every (x, t), (y, s) ∈ RN+1. (2.15)

We finally note that, for any ϕ ∈ C0(RN), the function

u(x, t) =

∫

RN

Γ0(x, t, y, 0)ϕ(y)d y

is a classical solution to the Cauchy problem L0u = 0 in RN × R+, u(x, 0) = ϕ(x); as a
consequence, for every ϕ ∈ C0(S), the function

v(x, t) =

∫

S

G0(x, t, y, 0)ϕ(y)d y

is a classical solution to the Cauchy-Dirichlet problem L0u = 0 in Q(T ), u = ϕ in S and
u ≡ 0 in M(T ).

We next state the main results of this note. For every R, T > 0 and (ξ, τ) ∈ RN+1,
consider the Cauchy-Dirichlet problem

{ LVu = f in QR(ξ, τ, T )
u = 0 in ∂rQR(ξ, τ, T )

(2.16)
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with f ∈ C0(QR(ξ, τ, T )). We say that u is a weak solution of (2.16) if it is a weak solution
to LVu = f in QR(ξ, τ, T ), it belongs to C(QR(ξ, τ, T ) ∪ ∂rQR(ξ, τ, T )) and attains the
boundary data by continuity. We say that

G : (QR(ξ, τ, T ) ∪ ∂rQR(ξ, τ, T ))×QR(ξ, τ, T ) → R
is a Green function for (2.16) if G( · , w) is a weak solution to (2.16), for every w ∈
QR(ξ, τ, T ).

Theorem 2.1. The Cauchy-Dirichlet problem (2.16) has a unique weak solution u. More-
over a Green function G for QR(ξ, τ, T ) exists, and the function G∗(ζ, z) = G(z, ζ) is a
Green function for the adjoint operator LV∗.

Before stating our second result, we introduce two further notations. Let us consider
the cylinder QR(ξ, τ, R2) and, for every α, β, γ, δ ∈]0, 1[: α < β < γ, let us set

Q− =
{
(x, t) ∈ QδR(ξ, τ, R2) : τ + αR2 ≤ t ≤ τ + βR2

}
,

Q+ =
{
(x, t) ∈ QδR(ξ, τ, R2) : τ + γR2 ≤ t

}
.

Theorem 2.2. (Harnack). Let V ∈ SK(Ω). Then there exist two constants R0 > 0
and δ0 ∈]0, 1[ such that, for every QR(ξ, τ, R2) ⊂⊂ Ω, with R ≤ R0 and Q+, Q− as above,
with δ ∈]0, δ0[, we have

sup
Q−

u ≤ M inf
Q+

u,

for every positive weak solution u of LVu = 0. Here M is a positive constant that depends
on ηV , η∗V and on the constants α, β, γ, δ.

Proposition 2.3. Let u be a weak solution of LVu = 0 in Ω, with V ∈ SK(Ω). Then
u is continuous and there exist two positive constants C1 and C2, only dependent on L0,
such that

|u(z)− u(z0)| ≤
(
C1d(z, z0)

1/2 + 2ηV(C2 d(z, z0)
1/2)

)
sup

B4r(z0)

|u|

for every z0 ∈ Ω, r ∈]0, 1[ such that B4r(z0) ⊂ Ω and for every z ∈ Br2(z0).
Furthermore if V ∈ L1,λ(Ω,L0) with λ ∈]Q− 2, Q[ (see Definition 3.3 below) then

|u(z)− u(z0)| ≤ C
(
1 + ‖V‖L1,λ(Ω,L0)

)
sup

B4r(z0)

|u| · d(z, z0)
α,

where α = min
{

1
2
, λ−Q+2

2

}
.

3. Preliminary results

In this section we recall some result about the fundamental solution and to the Green
function G0 for operators satisfying assumptions [H.1]-[H.2]; we then prove a lower bound
for G0. We end the section with some remarks on the Stummel-Kato class SK(Ω).

In [11], Kogoj and Lanconelli prove the existence of a fundamental solution Γ0(z, ζ) for
the operators L0 satisfying conditions [H.1]-[H.2]. The main properties of Γ0 are analogous
to the properties of the heat equation: Γ0 is smooth in

{
(z, ζ) ∈ RN+1 × RN+1 : z 6= ζ

}
;

Γ0(x, t, ξ, τ) ≥ 0; for any (x, t), (ξ, τ) ∈ RN+1, Γ0(x, t, ξ, τ) > 0 if, and only if, t > τ .
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Γ0 is invariant with respect to the translations of G:

Γ0(z, ζ) = Γ0(ζ
−1 ◦ z, 0) ≡ Γ0(ζ

−1 ◦ z), for every z, ζ ∈ RN+1,

and it is δλ-homogeneous of degree 2−Q with respect to the dilations of G:

Γ0(δλ(z)) = λ2−QΓ0(z) for every z ∈ RN+1, λ > 0; (3.1)

as a consequence we have that lim
|z|→∞

Γ0(z) = 0; lim sup
z→0

Γ0(z) = +∞ and Γ0 ∈ L1
loc(RN+1).

For every ϕ ∈ C∞
0 (RN+1) and z ∈ RN+1 we have

L0

∫

RN+1

Γ0(z, ζ)ϕ(ζ)d ζ = −ϕ(z),

∫

RN+1

Γ0(z, ζ)L0ϕ(ζ)d ζ = −ϕ(z), (3.2)

and L0Γ0(z, · ) = −δz (the Dirac measure centered at z). Moreover∫

RN

Γ0(x, t)d x = 1, for every t > 0.

The function Γ∗0(z, ζ) ≡ Γ0(ζ, z) is the fundamental solution of the adjoint operator L0
∗.

Since Γ0 is a δλ-homogeneous functions of degree −Q + 2 and the derivatives XjΓ0,
for j = 1, ...m, are δλ-homogeneous functions of degree −Q + 1, from the general theory
of function spaces on homogeneous Lie groups (see for instance Folland [8], Proposition
(1.15); see also Rothschild and Stein [23] for a more developed analysis of differential

operators on Lie groups) it follows that there exist a positive constant C̃ such that, for
every z1, z2, ζ ∈ RN+1, with d(z1, ζ) ≥ 2d(z1, z2) we have

|Γ0(z1, ζ)− Γ0(z2, ζ)| ≤ C̃
d(z1, z2)

d(z1, ζ)Q−1
,

|XjΓ0(z1, ζ)−XjΓ0(z2, ζ)| ≤ C̃
d(z1, z2)

d(z1, ζ)Q
,

|X(ζ)
j Γ0(z1, ζ)−X

(ζ)
j Γ0(z2, ζ)| ≤ C̃

d(z1, z2)

d(z1, ζ)Q
,

(3.3)

for j = 1, ...,m (the notation X
(ζ)
j means that the vector field Xj acts on the variable ζ).

Moreover, if we set for f ∈ Lp(RN+1)

Tf (z) =

∫

RN+1

Γ0(z, ζ)f(ζ)dζ (3.4)

we have (see [8], Theorem (5.14)):

i) if 1 < p < Q
2
, then Tf ∈ Lq(RN+1), for 1

q
= 1

p
− 2

Q
, and

‖Tf‖q ≤ Cp‖f‖p; (3.5)

ii) if p > Q
2
, then

|Tf (z1)− Tf (z2)| ≤ Cpd(z1, z2)
α‖f‖p, for every z1, z2 ∈ RN+1 (3.6)

for some positive constant Cp and α = min
{

1, 2− Q
p

}
.
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Finally, for j = 1, ..., m we have

XjTf (z) =

∫

RN+1

XjΓ0(z, ζ)f(ζ)dζ (3.7)

and, analogously,

i) if 1 < p < Q, then XjTf ∈ Lq(RN+1), with 1
q

= 1
p
− 1

Q
, and

‖XjTf‖q ≤ Cp‖f‖p; (3.8)

ii) if p > Q, then

|XjTf (z1)−XjTf (z2)| ≤ Cpd(z1, z2)
α‖f‖p, for α = 1− Q

p
. (3.9)

Note that, by (3.5), formula (3.2) extends to

L0

∫

RN+1

Γ0(z, ζ)f(ζ)ψ(ζ)d ζ = −f(z)ψ(z), (3.10)

for any f ∈ Lp
loc(RN+1), with 1 < p < Q

2
, and any cut-off function ψ. We also recall that

Tf is continuous from L1(RN+1) to L
Q−2

Q

weak(RN+1); more specifically, there exists a positive
constant C such that

meas
{

z ∈ RN+1 : |Tf (z) > α
}
≤

(
C

α

)Q−2
Q

‖f‖L1(RN+1), for every α > 0

(see [8], Proposition (1.10)) hence we will also use formula (3.10) for f ∈ L1
loc(RN+1).

We next prove a lower bound for the Green function G0 for L0:

Proposition 3.1. For any positive R and T and every (ξ, τ) ∈ RN+1 and α ∈]0, 1[ there
exist δ0, ε ∈]0, 1[ such that

G0(x, t, y, τ) ≥ 2 ε

meas(SR(ξ, τ))

for every δ ∈]0, δ0], y ∈ SδR(ξ, τ) and (x, t) ∈ QδR(ξ, τ, T ), such that t ≥ τ + α T.

Proof Thanks to the invariance of the operator with respect to the translations and the
dilations of the Lie groupG, it is not restrictive to assume (ξ, τ) = (0, 0) and R = 1; we also
denote S = S1(0, 0). Aiming to prove that G0(0, t, 0, 0) > 0, for every t ∈]0, T ], we recall

(2.13). We first note that h is a bounded function in the set
{
(x, t, 0, 0) ∈ Q(T )×{(0, 0)}}.

On the other hand Γ0(0, t) = t−
Q−2

2 Γ0(0, 1) by (3.1), then

G0(0, t, 0, 0) = Γ0(0, t) − h(0, t, 0, 0) → +∞
as t → 0+. Then G0(0, t, 0, 0) > 0 for any positive small t. Since G0 ≥ 0 by the Bony’s
maximum principle ([3], Theorem 3.2) G0(0, t, 0, 0) > 0 for t ∈]0, T ]. In order to prove
our claim we let

ε =
1

4
meas(S) min

[αT,T ]
G0(0, t, 0, 0);
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it is not restrictive to suppose ε < 1. Since G0 is a continuous function, there exists
δ0 ∈]0, 1[ such that

G0(x, t, y, 0) ≥ 2 ε

meas(S)
;

for every (x, t) ∈ Qδ(0, 0, T ), such that t ≥ α T and y ∈ Sδ(0, 0), with δ ∈]0, δ0]. This
proves the claim for (ξ, τ) = (0, 0) and R = 1. The result in the general case follows by
using the invariance with respect to the Lie group structure.

We end this section with some remarks about our definition of the Stummel-Kato class.
We first recall the upper gaussian estimate for the fundamental solution provided by Kogoj
and Lanconelli (see (5.1) in [11]), that allows us to establish whether a given function V
does satisfy condition (1.10): for every t > 0, x ∈ RN

Γ0(x, t) ≤ C

t
Q−2

2

exp

(
−|x|G

Ct

)
(3.11)

for some positive constant C.
We next observe that, unlike in the usual definition of the Stummel-Kato class, in

formula (1.11) we integrate V on an unbounded set. A definition more similar to that one
of the elliptic case should be given in terms of the following functions

η̃V(h) = sup
(x,t)∈Ω

∫

Ω∩Qh(x,t,h2)

Γ0(x, t, y, s)|V(y, s)|dyds,

η̃∗V(h) = sup
(y,s)∈Ω

∫

Ω∩Q∗h(y,s,h2)

Γ0(x, t, y, s)|V(x, t)|dxdt;

(3.12)

however, it turns out that η̃V and η̃∗V define the same class as ηV and η∗V .

Remark 3.2. We have that

lim
h→0

ηV(h) = 0 ⇔ lim
h→0

η̃V(h) = 0;

lim
h→0

η∗V(h) = 0 ⇔ lim
h→0

η̃∗V(h) = 0.

One of the two implications is an easy consequence of the inequalities η̃V(h) ≤ ηV(h) and
η̃∗V(h) ≤ η∗V(h). The other one easily follows from the homogeneity of Γ0, with respect to
the dilation of the Lie group, and from the absolute continuity of the integral.

We next compare the spaces SK(Ω) and the following Morrey spaces Lp,λ(Ω,L0)

Definition 3.3. Let Ω be an open subset of RN+1 and let p, λ ∈ R be such that 1 ≤ p < ∞
and 0 ≤ λ ≤ Q. We say that a function f ∈ Lp

loc(Ω) belongs to the Morrey space
Lp,λ(Ω,L0) if ‖f‖Lp,λ(Ω,L0) < ∞, where

‖f‖Lp,λ(Ω,L0) =

(
sup

r>0,z∈Ω

1

rλ

∫

Ω∩Br(z)

|f(w)|pdw

) 1
p

.
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Although the class SK(Ω) and the spaces Lp,λ(Ω,L0) are defined analogously to the
classic ones, we observe some substantial differences between them. In the case of elliptic
equations we have

L1,λ(Ω) ⊆ SK(Ω) ⊆ L1,µ(Ω), 0 < µ ≤ n− 2 < λ < n. (3.13)

An analogous result is true for the sum of the squares of the Hörmander fields, however in
the case of parabolic (and degenerate parabolic) operators, we can prove the first inclusion,
but the second one seems false (see example 2.10 in [22]).

Proposition 3.4. We have

L1,λ(Ω,L0) ⊆ SK(Ω), for every λ ∈]Q− 2, Q[.

Proof. By using the homogeneity of the fundamental solution Γ0 we find∫

Ω∩Qh(x,t,h2)

Γ0(x, t, w)|V(w)|dw ≤ cλh
λ−Q+2 1

hλ

∫

Ω∩Bh(x,t)

|V(w)|dw, (3.14)

for every V ∈ L1,λ(Ω,L0), and by Remark 3.2 this inequality yields the desired inclusion.

Since we are concerning with weak solutions to LVu = 0, we need a sufficient condition
for the requirement Vu ∈ L1

loc. We recall that, in the case of uniformly elliptic operators,
Vu ∈ L1

loc(Ω) provided that u belongs to the space H1
loc(Ω) (see Schechter [25]) and a

similar condition holds for the sum of squares of Hörmander vector fields (see [5]). Here
we prove that Vu is locally integrable when u belongs to the Sobolev-Folland-Stein space
W 2,1(Ω,L0), namely if the following norm

‖u‖W 2,1(Ω,L0) = ‖u‖L1(Ω) +
m∑

j=1

‖Xju‖L1(Ω) +
m∑

i,j=1

‖XiXju‖L1(Ω) + ‖Y u‖L1(Ω)

is finite.

Lemma 3.5. If u ∈ W 2,1
loc (Ω,L0) and H,K are two compact sets such that K ⊂⊂ H ⊂ Ω,

then there exists a positive constant C, dependent only on H, K and V ∈ SK(Ω), such
that ∫

K

|V(z)u(z)|dz ≤ C‖u‖W 2,1(H,L0). (3.15)

Proof We first claim that, for every v ∈ C∞
0 (Ω), we have∫

Ω

|V(z)v(z)|dz ≤ C0‖v‖W 2,1(Ω,L0), (3.16)

where C0 is a positive constant dependent only on V and on the support of v. Indeed, if
we denote by H the support of v then∫

Ω

|V(z)v(z)|dz ≤
∫

H

|V(z)|
(∫

H

Γ0(z, ζ)|L0v(ζ)|dζ

)
dz ≤

∫

H

∣∣L0v(ζ)
∣∣dζ sup

η∈H

(∫

H

|V(z)|Γ0(z, η)dz

)
≤ η∗V(cH)‖v‖W 2,1(Ω,L0)
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where cH = max{|t− τ | : (x, t), (ξ, τ) ∈ H}. This proves (3.16). The thesis follows from
a standard density argument.

4. The Green function for LV
In this section we use the parametrix method to prove the existence of a Green function

G for the operator LV , related to any given cylinder QR(ξ, τ, T ). We construct G as a
perturbation of G0:

G(z, w) = G0(z, w) +

∫

QR

G0(z, η)Φ(η, w)dη,

for some unknown function Φ. A formal argument, based on the fact that L0G0(z, w) =
−δw(z) and on the requirement that LVG(z, w) = −δw(z) leads to the following Volterra
equation for Φ

Φ(z, ζ) = V(z)G0(z, ζ) +

∫

QR

V(z)G0(z, η)Φ(η, ζ)dη;

The successive approximation method then gives:

G(z, w) = G0(z, w) +
∞∑

k=1

Jk(z, w), (4.1)

where

J1(z, w) =

∫

QR(ξ,τ,T )

G0(z, η)V(η)G0(η, w)dη

Jk+1(z, w) =

∫

QR(ξ,τ,T )

G0(z, η)V(η)Jk(η, w)dη.

(4.2)

We will prove that these integrals Jk are well defined, then the Lp convergence of the series
and we finally show that G is a Green function for LV . Aiming to unify the notations, in
the sequel we will denote J0 = G0 so that J1(z, w) =

∫
QR(ξ,τ,T )

G0(z, η)V(η)J0(η, w)dη.

Lemma 4.1. The functions in (4.2) belong to Lp(QR(ξ, τ, T )) for every p ∈ [1, Q
Q−2

) and

there exists a positive constant cp such that

‖Jk(z, ·), Lp(QR(ξ, τ, T ))‖ ≤ cpη
∗
V(T )k,

‖Jk(·, w), Lp(QR(ξ, τ, T ))‖ ≤ cpηV(T )k,
(4.3)

for every w, z ∈ QR(ξ, τ, T ). Moreover, Jk(x, t, y, s) = 0 for every t ≤ s. We can also
write Jk+1 as

Jk+1(z, w) =

∫

QR(ξ,τ,T )

Jk(z, η)V(η)G0(η, w)dη. (4.4)

Proof. We let Ṽ(η) = |V(η)| and define J̃k, by using formulas (4.2) with Ṽ . Note that

ηV(T ) = ηṼ(T ) and η∗V(T ) = η∗Ṽ(T ), then Ṽ ∈ SK(QT ) if and only if V ∈ SK(QT ).
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We first prove the inequalities in (4.3) for the non-negative functions J̃k, the required

estimates will follow from the trivial inequality |Jk| ≤ J̃k.

Due to the fact that every J̃k is non-negative, (4.4) is immediate. In order to prove the

Lp estimates for J̃k we note that
∫

QR(ξ,τ,T )

G0(z, η)|V(η)|dη ≤
∫

QR(ξ,τ,T )

Γ0(z, η)|V(η)|dη = ηV(T ),

∫

QR(ξ,τ,T )

G0(η, w)|V(η)|dη ≤
∫

QR(ξ,τ,T )

Γ0(η, w)|V(η)|dη = η∗V(T ),

(4.5)

since G0 ≤ Γ0. We next define the sequences:

sk = sup
z∈QR(ξ,τ,T )

∫

QR(ξ,τ,T )

J̃k(z, η)|V(η)|dη,

s∗k = sup
η∈QR(ξ,τ,T )

∫

QR(ξ,τ,T )

|V(z)|J̃k(z, η)dz,

and we prove the following inequalities

sk ≤ ηV(T )k+1, s∗k ≤ η∗V(T )k+1 (4.6)

by induction on k. For k = 1 we have

s1 ≤ sup
z∈QR(ξ,τ,T )

∫

QR(ξ,τ,T )

G0(z, ζ)|V(ζ)| ·

·
(

sup
w∈QR(ξ,τ,T )

∫

QR(ξ,τ,T )

G0(w, η)|V(η)|dη
)
dζ ≤ η2

V(T ),

by (4.5). The same argument and (4.2) gives

sk+1 ≤ skηV(T ),

for any k > 1, then the first inequality in (4.6) is proved. The proof of the second one is
analogous.

To obtain the Lp estimate for J̃k we set, for p ∈
[
1, Q

Q−2

)
:

T = {ϕ ∈ C∞
0 (QR(ξ, τ, T )) : ϕ ≥ 0, ‖ϕ‖Lp′ (QR(ξ,τ,T )) ≤ 1}.

For any ϕ ∈ T , we have
∫

QR(ξ,τ,T )

J̃k+1(z, w)ϕ(w)dw =

∫

QR(ξ,τ,T )

J̃k(z, η)|V(η)|
( ∫

QR(ξ,τ,T )

G0(η, w)ϕ(w)dw
)
dη

≤ cp‖ϕ‖Lp′ (QR(ξ,τ,T ))sk ≤ cpη
∗
V(T )k+1,

by (4.4) and (4.6), where

cp = sup
η∈QR(ξ,τ,T )

‖Γ0(η, ·)‖Lp(QR(ξ,τ,T )).
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Thus

‖J̃k(z, ·)‖Lp(QR(ξ,τ,T )) = sup
ϕ∈T

∫

QR(ξ,τ,T )

J̃k(z, w)ϕ(w)dw ≤ cpη
∗
V(T )k

and the first inequality in (4.3) holds for every k ∈ N. In the same way we obtain the

second one. Since |Jk(z, w)| ≤ J̃k(z, w), the estimates (4.3) and the identity (4.4) also
hold for every Jk, and the Lemma is completely proved.

Proposition 4.2. Let T > 0 be such that ηV(T ) < 1 and η∗V(T ) < 1. Then

i) for every p ∈
[
1, Q

Q−2

)
the series introduced in (4.1) converges in Lp(QR(ξ, τ, T ))

and there exists a positive constant cp such that

‖G(z, ·)‖Lp(QR(ξ,τ,T )) ≤ cp

∞∑

k=0

ηV(T )k; ‖G(·, w)‖Lp(QR(ξ,τ,T )) ≤ cp

∞∑

k=0

η∗V(T )k

ii) G(x, t, y, s) = 0 for t ≤ s;
iii) the derivatives

XjG( · , w) = XjG0( · , w) +
∞∑

k=1

∫

QR(ξ,τ,T )

XjG0( · , η)V(η)Jk(η, w)dη,

XjG(z, · ) = XjG0(z, · ) +
∞∑

k=1

∫

QR(ξ,τ,T )

Jk(z, η)V(η)XjG0(η, · )dη

(4.7)

are defined as elements of the space Lp
loc(QR(ξ, τ, T )) for any p ∈

[
1, Q

Q−1

)
and,

for every compact set K ⊂ QR(ξ, τ, T ), there exists a positive constant cp such that

∥∥∥XjG( · , w)
∥∥∥

Lp(K)
≤ cp

∞∑

k=0

ηV(T )k,
∥∥∥XjG(z, · )

∥∥∥
Lp(K)

≤ cp

∞∑

k=0

η∗V(T )k,

for j = 1, ..., m;
iv) for every (x, t) ∈ QR(ξ, τ, T ),

∫

SR(ξ,τ)

|G(x, t, y, τ)|dy ≤
∞∑

k=1

ηV(T )k;

∫

SR(ξ,τ,T )

|G(y, τ + T, x, t)|dy ≤
∞∑

k=1

η∗V(T )k;

v) for every z ∈ QR(ξ, τ, T ), we have
∫

QR(ξ,τ,T )

|G(z, w)V(w)| dw ≤
∞∑

k=1

ηV(T )k,

∫

QR(ξ,τ,T )

|V(ζ)G(ζ, z)| dζ ≤
∞∑

k=1

η∗V(T )k.

Proof. Assertions (i) and (ii) are direct consequences of Lemma 4.1. In order to prove
(iii), we show that the series

∞∑

k=1

∫

QR(ξ,τ,T )

XjG0( · , η)V(η)Jk(η, w)dη,
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is convergent in Lp
loc(QR(ξ, τ, T )). Let K be a compact subset of QR(ξ, τ, T ); for any

ϕ ∈ T , such that supp(ϕ) ⊂ K, we have
∫

K

(∫

QR(ξ,τ,T )

XjG0(z, η)V(η)Jk(η, w)dη

)
ϕ(z)dz

≤ cp‖ϕ‖Lp′ (K) sup
w∈QR(ξ,τ,T )

∫

QR(ξ,τ,T )

|V(η)|J̃k(η, w)dη ≤ cpη
∗
V(T )k+1

by (4.6), where

cp = sup
η∈QR(ξ,τ,T )

‖XjG0( · , η)‖Lp(K).

Hence ∥∥∥∥
∫

QR(ξ,τ,T )

XjG0( · , η)V(η)Jk(η, w)dη

∥∥∥∥
Lp(K)

= sup
ϕ∈T

∫

K

(∫

QR(ξ,τ,T )

XjG0(z, η)V(η)Jk(η, w)dη

)
ϕ(z)dz ≤ cpη

∗
V(T )k+1.

This proves the first identity in (4.7) and the estimate

∥∥∥XjG(z, · )
∥∥∥

Lp(K)
≤ cp

∞∑

k=0

η∗V(T )k.

The same argument gives the second identity and the corresponding estimate.
In order to prove (iv), we note that, for every k ∈ N,

∣∣∣
∫

SR(ξ,τ)

Jk(x, t, y, τ)dy
∣∣∣

≤
∣∣∣
∫

QR(ξ,τ,T )

Jk−1(x, t, η)V(η)
( ∫

SR(ξ,τ)

G0(η, y, τ)dy
)
dη

∣∣∣ ≤ ηk
V(T ),

by (4.6). This proves the first estimate, the proof of the second one is analogous.
Finally, (v) is an immediate consequence of (4.6). This concludes the proof of Propo-

sition 4.2.

Corollary 4.3. The function G defined in (4.1) is solution, in the distribution sense, of
LVG( · , ζ) = −δζ, LV∗G(z, · ) = −δz. Namely: G( · , ζ), XjG( · , ζ) ∈ Lp(QR(ξ, τ, T )), for
some p > 1 and for j = 1, ..., m, GV ∈ L1(QR(ξ, τ, T )) and ∀ϕ ∈ C∞

0 (QR(ξ, τ, T )), we
have

∫

QR(ξ,τ,T )

(
m∑

j=1

XjG(z, ζ)Xjϕ(z) + G(z, ζ)Y ϕ(z)−G(z, ζ)V(z)ϕ(z)

)
dz = ϕ(ζ),

∫

QR(ξ,τ,T )

(
m∑

j=1

XjG(z, ζ)Xjϕ(ζ)−G(z, ζ)Y ϕ(ζ)−G(z, ζ)V(ζ)ϕ(ζ)

)
dζ = ϕ(z).
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Proof. Since G0 is the Green function of L0, we have
∫

QR(ξ,τ,T )

(
m∑

j=1

XjG0(z, ζ)Xjϕ(z) + G0(z, ζ)Y ϕ(z)

)
dz = ϕ(ζ),

for every ϕ ∈ C∞
0 (QR(ξ, τ, T )). For any k ∈ N, we multiply the above identity by

V(ζ)Jk−1(ζ, w) and integrate on QR(ξ, τ, T ); we find
∫

QR(ξ,τ,T )

( m∑
j=1

Xjϕ(z)

∫

QR(ξ,τ,T )

XjG0(z, ζ)V(ζ)Jk−1(ζ, w)dζ+

Y ϕ(z)

∫

QR(ξ,τ,T )

G0(z, ζ)V(ζ)Jk−1(ζ, w)dζ

)
dz =

∫

QR(ξ,τ,T )

ϕ(ζ)V(ζ)Jk−1(ζ, w)dζ

and the first identity follows from the definition (4.1), (4.2) and from (4.7). In analogue
way we can proceed for the second equality.

Proposition 4.4. Let T > 0 be such that ηV(T ) < 1 and η∗V(T ) < 1. Then, for any
(ξ, τ) ∈ RN+1 the function G defined by (4.1) is the Green function for the Cauchy-
Dirichlet problem (2.16) related to QR(ξ, τ, T ).

Moreover G∗(w, z) = G(z, w) is the Green function for the Cauchy-Dirichlet problem
{ LV∗v = g in QR(ξ, τ, T )

v = 0 in ∂∗rQR(ξ, τ, T )
(4.8)

with g ∈ C0(QR(ξ, τ, T )), namely the function

v(y, s) = −
∫

QR(ξ,τ,T )

G∗(y, s, z)g(z)dz

is a weak solution to LV∗v = g in QR(ξ, τ, T ) and attains the boundary data by continuity
(in (4.8) ∂∗rQR(ξ, τ, T ) = (ξ, τ)◦ δR (∂∗rQ(R−2T )), where ∂∗rQ(T ) = S(T )∪ (

∂O× [0, T ]
)
).

Proof. As said in Section 2, G is a Green function for the Cauchy-Dirichlet problem
(2.16) if, for any f ∈ C0(QR(ξ, τ, T )), the function

u(z) = −
∫

QR(ξ,τ,T )

G(z, ζ)f(ζ)dζ

is a weak solution to LVu = f in QR(ξ, τ, T ) and attains the boundary data by continuity.
The fact that u solves LVu = f is a direct consequence of Corollary 4.3.

In order to verify that u continuously vanishes at ∂rQR(ξ, τ, T ) we first note that

L0u(z) = f(z)− V(z)u(z),

then

u(z) = −
∫

QR(ξ,τ,T )

G0(z, η)f(η)dη +

∫

QR(ξ,τ,T )

G0(x, t, η)V(η)u(η)dη,
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for every z ∈ QR(ξ, τ, T ). Since the function

u0(z) = −
∫

QR(ξ,τ,T )

G0(z, η)f(η)dη

is a solution to the boundary value problem (2.12) (which is related to L0) it is known
that it continuously vanishes at ∂rQR(ξ, τ, T ). Hence, we have to show that

lim
(x,t)→(x0,t0)

∫

QR(ξ,τ,T )

G0(x, t, η)V(η)u(η)dη = 0, (4.9)

for every (x0, t0) ∈ ∂rQR(ξ, τ, T ).
In order to prove (4.9) we observe that u is a bounded function, by Proposition 4.2 (i).

Let us first consider a point (x0, t0) ∈ SR(ξ, τ). Since V belongs to the Stummel-Kato
class, we have

∣∣∣
∫

QR(ξ,τ,T )

G0(x, t, η)V(η)u(η)dη
∣∣∣ ≤ ‖u‖∞ηV(t) → 0 as t → 0+.

This proves that u(x, t) → 0 as (x, t) → (x0, t0), for any (x0, t0) ∈ SR(ξ, τ).
We next consider a point (x0, t0) ∈ MR(ξ, τ, T ). For every positive ε there exists a

δ > 0 such that
∣∣∣
∫

(y,s)∈QR(ξ,τ,T ):t0−δ<s<t0

G0(x, t, y, s)V(y, s)u(y, s)dyds
∣∣∣ ≤ ‖u‖∞ηV(δ) < ε

∀(x, t) ∈ QR(ξ, τ, T ), since V ∈ SK(Ω). Moreover there exists a positive constant H̃ such

that G0(x, t, y, s) ≤ H̃, for every (x, t), (y, s) ∈ QR(ξ, τ, T )) such that s < t0 − δ and
t > t0 − δ/2. Hence

lim
(x,t)→(x0,t0)

∫

η∈QR(ξ,τ,T ):s<t0−δ

G0(x, t, η)V(η)u(η)dη = 0,

that proves (4.9). This completes the proof that u(x, t) → 0 as (x, t) → (x0, t0) for every
(x0, t0) ∈ ∂rQR(ξ, τ, T ), thus G is a Green function for LV in QR(ξ, τ, T ).

The proof that G∗ is a Green function for LV∗ in QR(ξ, τ, T ) is analogous and will be
omitted.

We next prove a lower bound for G analogous to Proposition 3.1.

Proposition 4.5. For every α0 ∈]0, 1[ there exist ε, δ0 ∈]0, 1[, and R0 > 0 such that, if
R ∈]0, R0], δ ∈]0, δ0], and G is the Green function related to QR(ξ, τ, R2) then

G(x, t, y, τ) ≥ ε

meas(SR(ξ, τ))

for every y ∈ SδR(ξ, τ) and for every (x, t) ∈ QδR(ξ, τ, R2), such that t ≥ τ + α0R
2

Proof. We claim that there exists a positive constant c such that

|Jk(x, t, x̄, t̄)| ≤ c

(t− t̄)
Q−2

2

(ηV(t− t̄) + η∗V(t− t̄))k , (4.10)
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for every k ∈ N and any (x, t), (x̄, t̄) ∈ QR(ξ, τ, R2). As a consequence, from (4.1) and
Proposition 3.1 we get

G(x, t, y, τ) ≥G0(x, t, y, τ)− c

(t− τ)
Q−2

2

∞∑

k=1

(ηV(t− τ) + η∗V(t− τ))k ≥

2 ε

meas(SR(ξ, τ))
− c

(t− τ)
Q−2

2

∞∑

k=1

(ηV(t− τ) + η∗V(t− τ))k ,

for any y ∈ SδR(ξ, τ) and for every (x, t) ∈ QδR(ξ, τ, R2), such that t ≥ τ + α0R
2.

Moreover, since meas(SR(ξ, τ)) = RQ−2 meas(S) and α0R
2 ≤ t − τ ≤ R2, the above

inequality gives

G(x, t, y, τ) ≥ 2 ε

meas(SR(ξ, τ))
− c′

meas(SR(ξ, τ))

∞∑

k=1

(ηV(t− τ) + η∗V(t− τ))k ,

for some positive constant c′. The claim then follows by choosing R0 suitably small.
We next prove (4.10) by induction. We first recall (3.11), then

G0(x, t, y, s) ≤ Γ0(x, t, y, s) ≤ C

(t− s)
Q−2

2

, (4.11)

for every (x, t), (y, s) ∈ QR(ξ, τ, R2). Since

J1(x, t, x̄, τ) =

∫ t+τ
2

τ

∫

SR(ξ,τ,s)

G0(x, t, y, s)V(y, s)G0(y, s, x̄, τ)dyds+

+

∫ t

t+τ
2

∫

SR(ξ,τ,s)

G0(x, t, y, s)V(y, s)G0(y, s, x̄, τ)dyds,

we have

|J1(x, t, x̄, τ)| ≤ C
(

t−τ
2

)Q−2
2

∫ t+τ
2

τ

∫

SR(ξ,τ,s)

|V(y, s)|Γ0(y, s, x̄, τ)dyds+

C
(

t−τ
2

)Q−2
2

∫ t

t+τ
2

∫

SR(ξ,τ,s)

Γ0(x, t, y, s)|V(y, s)|dyds,

so that (4.10) follows for k = 1.
For k > 1 we argue analogously: we write

Jk+1(x, t, x̄, τ) =

∫ t+τ
2

τ

∫

SR(ξ,τ,s)

Jk(x, t, y, s)V(y, s)G0(y, s, x̄, τ)dyds+

+

∫ t

t+τ
2

∫

SR(ξ,τ,s)

Jk(x, t, y, s)V(y, s)G0(y, s, x̄, τ)dyds,

and we use (4.6) in the second integral. This completes the proof.
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5. Proof of the main results

In this section we prove the main results of this paper. As said in the introduction,
the main difficulty is in the fact that V is unbounded, then we cannot rely on the usual
maximum principle. To overcome this problem, we first prove Proposition 2.3 and an
uniqueness result for bounded solutions, then we prove the Harnack inequality (Theorem
2.2) for a bounded function V , with the constant M depending on ηV and η∗V , but not on
the L∞ norm of V . We finally remove the hypotheses of boundedness from u and V , by
using a technique due to Zhang [28]. We consider the sequence of operators

LVm = L0 + Vm, (5.1)

where

Vm(x, t) =




−m if V(x, t) ≤ −m
V(x, t) if −m < V(x, t) < m,
m if V(x, t) ≥ m.

and we approximate the solution u to LV = 0 by a sequence um of solutions to LVm = 0.
Since ηVm(T ) ≤ ηV(T ), and η∗Vm

(T ) ≤ η∗V(h), the Harnack inequality for bounded solutions
extends to u.

Lemma 5.1. Let u be a bounded weak solution of LVu = 0 in Ω, with V ∈ SK(Ω). Then
u is continuous and there exists a positive constant C, dependent only on L0, such that

|u(z)− u(z0)| ≤
(
Cd(z, z0)

1/2 + 2ηV(5 c2 d(z, z0)
1/2)

)
sup

B4r(z0)

|u|

for every z0 ∈ Ω, r ∈]0, 1[ such that B4r(z0) ⊂ Ω and for every z ∈ Br2(z0) (c is the
constant in (2.3)).

Moreover, if V ∈ L1,λ(Ω,L0) with λ ∈]Q− 2, Q[, then

|u(z)− u(z0)| ≤ C
(
1 + ‖V‖L1,λ(Ω,L0)

)
sup

B4r(z0)

|u| · d(z, z0)
α,

where α = min
{

1
2
, λ−Q+2

2

}
.

Proof. Let z0 ∈ Ω, r ∈ (0, 1) be such that B4r(z0) ⊂ Ω and let z ∈ Br2(z0). We choose

% = 2
√

d(z0, z) and a function ϕ ∈ C∞
0 (B2%(z0)) such that ϕ ≡ 1 in B%(z0) and that

|Xjϕ| ≤ c
%
, |XiXjϕ| ≤ c

%2 , for i, j = 1, ..., m and |Y ϕ| ≤ c
%2 , for some positive constant c

only depending on the operator L0.
Since % ≤ 2r, we have B2%(z0) ⊂ B4r(z0) ⊂ Ω and (ϕu) : B2%(z0) → R satisfies

L0(ϕu) =
m∑

j=1

X2
j (ϕu) + Y (ϕu) = ϕL0u + uL0ϕ + 2

m∑
j=1

XjϕXju.

By the representation formula (3.10) we have that

u(z) =−
∫

RN+1

Γ0(z, ζ)L0ϕ(ζ)u(ζ)dζ − 2
m∑

j=1

∫

RN+1

Γ0(z, ζ)〈Xjϕ,Xju〉dζ+

∫

RN+1

Γ0(z, ζ)V(ζ)u(ζ)ϕ(ζ)dζ = A1(z) + A2(z) + A3(z), ∀ z ∈ B%(z0).

(5.2)
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Note that d(z0, z) < 1 and % = 2
√

d(z0, z), then d(z0, ζ) ≥ 2d(z0, z), for every ζ ∈
B2%(z0)\B%(z0). From the first inequality in (3.3) we estimate the two terms in A1 as
follows

|A1(z)− A1(z0)| ≤
∫

RN+1

|Γ0(z, ζ)− Γ0(z0, ζ)| · |L0ϕ(ζ)u(ζ)|dζ ≤

C̃ sup
B2%(z0)

|uL0ϕ|
∫

B2%(z0)\B%(z0)

d(z1, z2)

d(z1, ζ)Q−1
dζ ≤ C d(z, z0)

1/2 sup
B2%(z0)

|u|,

for some positive constant C depending on C̃ in (3.3) and on L0ϕ.
We next consider A2. We integrate by parts

A2(z) =2
m∑

j=1

∫

RN+1

X
(ζ)
j (Γ0(z, ζ)Xjϕ(ζ)) u(ζ)dζ =

2
m∑

j=1

∫

RN+1

Γ0(z, ζ)X2
j ϕ(ζ) u(ζ)dζ + 2

m∑
j=1

∫

RN+1

X
(ζ)
j Γ0(z, ζ)Xjϕ(ζ) u(ζ)dζ,

(as in (3.3), the notation X
(ζ)
j means that the vector field Xj acts on the variable ζ). We

then estimate the first sum by the same argument as A1; for the second one we use the
third inequality in (3.3).

We finally consider A3. Let us first observe that, in view of (2.3), we have d(z, ζ) ≤
c2 (d(z, z0) + 2%) ≤ 5c2

√
d(z, z0) for every ζ ∈ supp(ϕ), and z ∈ Br(z0). Moreover, if

ζ = (ξ, τ) and z = (x, t), then |t− τ | ≤ d2(z, ζ), so that

|A3(z)| ≤ sup
B2%(z0)

|u|
∫

B2%(z0)

Γ0(z, ζ)|V(ζ)|dζ ≤ sup
B2%(z0)

|u| · ηV(5c2
√

d(z, z0)),

for every z ∈ B%(z0). This proves the first claim of Lemma 5.1. The second assertion
directly follows from Proposition 3.4 (see (3.14)).

We next prove an uniqueness result for Cauchy-Dirichlet problem (2.16).

Lemma 5.2. If u is a bounded solution to the problem
{ LVu = 0 in QR(ξ, τ, T )

u = 0 in ∂rQR(ξ, τ, T ),
(5.3)

then u ≡ 0.

Proof. By the maximum principle, if u and v are weak solutions of the problem
{ L0u = f in QR(ξ, τ, T )

u = 0 in ∂rQR(ξ, τ, T )

with f ∈ L1(QR(ξ, τ, T )), then u ≡ v. Hence, if u is a solution of the non-homogeneous
problem { L0u+Vu=f in QR(ξ, τ, T )

u = 0 in ∂rQR(ξ, τ, T )
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with f ∈ L1(QR(ξ, τ, T )), then u is almost everywhere equal to

v(z) =

∫

QR(ξ,τ,T )

G0(z, ζ)(V(ζ)u(ζ)− f(ζ))dζ. (5.4)

Suppose now that u is a solution of the homogeneous problem (5.3) . We then have

u(x, t) =

∫

QR(ξ,τ,T )

G0(x, t, y, s)V(y, s)u(y, s)dyds.

for every (x, t) ∈ QR(ξ, τ, h). Then recalling that G0(x, t, y, s) = 0 for t ≤ s we have for
t < τ + δ

‖u‖L∞(QR(ξ,τ,δ)) ≤ ηV (δ)‖u‖L∞(QR(ξ,τ,δ)).

Thus, if we choose δ such that ηV (δ) < 1, we have u ≡ 0 in QR(ξ, τ, δ). We then conclude
the proof by iterating this method.

Arguing as above, we can easily prove the following property.

Remark 5.3. If the function V is bounded and u is a solution to the problem


LVu = f in QR(ξ, τ, T )
u = 0 in MR(ξ, τ, T )
u = g in SR(ξ, τ)

for some f ∈ L1(QR(ξ, τ, T )) and g ∈ C0(SR(ξ, τ)), then

u(z) =

∫

SR(ξ,τ)

G(z, y, τ)g(y)dy −
∫

QR(ξ,τ,T )

G(z, η)f(η)dη.

In order to state our next result, we introduce some further notations. For a given
(ξ, τ) ∈ RN+1 and R > 0, we set

Q∗
R = Q∗

R(ξ, τ, R2) = QR(ξ∗, τ ∗, R2), where (ξ∗, τ ∗) = (ξ, τ) ◦ (0,−R2).

Note that τ ∗ = τ − R2 by (2.4), then we may consider Q∗
R as the cylinder whose upper

basis is centered at (ξ, τ). We also set set

M(R) = sup
Q∗R

u, m(R) = inf
Q∗R

u Osc(u, ξ, τ, R) = M(R)−m(R).

Lemma 5.4. Let u ≥ 0 be a bounded solution of LVu = 0 in Q∗
R. Then there exist

δ, % ∈ (0, 1) and a positive R0, which depend on ηV and L0, such that

Osc(u, ξ, τ, δR) ≤ %M(R)

for every R ∈]0, R0].

Proof. The method is inspired by that in [28] (and has been used in [22]). Let ε, δ and
R0 be as in Proposition 4.5, and set

S =

{
(x, τ ∗) ∈ SR(ξ∗, τ ∗) : u(x, τ ∗) ≥ M(R) + m(R)

2

}
,

Consider two possibility.
Case 1: meas(S) ≥ 1

2
meas(SR(ξ∗, τ ∗)) .



Harnack inequality for hypoelliptic ultraparabolic equations... 23

Define the function

v(z) =

∫

SR(ξ∗,τ∗)
G0(z, y, τ ∗)(u(y, τ ∗)−m(R))dy +

∫

Q∗R

G0(z, ζ)V(ζ)u(ζ)dζ,

and note that it is a solution to


L0v = −Vu in QR(ξ∗, τ ∗, R2)
v = u−m(R) in SR(ξ∗, τ ∗)
v ≤ u−m(R) in MR(ξ∗, τ ∗, R2).

The function u − m(R) is non-negative in Q∗
R and L0(u − m(R)) = −Vu, then, by the

comparison principle, we find

u(z)−m(R) ≥
∫

SR(ξ∗,τ∗)
G0(z, y, τ ∗)(u(y, τ ∗)−m(R))dy +

∫

Q∗R

G0(z, ζ)V(ζ)u(ζ)dζ

for almost every z ∈ Q∗
R. We next apply Proposition 3.1 with T = R2, and we obtain∫

SR(ξ∗,τ∗)
G0(z, y, τ ∗)(u(y, τ ∗)−m(R))dy ≥

∫

S
G0(z, y, τ ∗)(u(y, τ ∗)−m(R))dy

≥ M(R)−m(R)

2

∫

S
G0(z, y, τ ∗)dy ≥ M(R)−m(R)

2

∫

S

ε

meas(SR(ξ∗, τ ∗))
dy

≥ ε

4
(M(R)−m(R)), for every z ∈ Q∗

δR(ξ, τ, (δR)2).

On the other hand, we have
∣∣∣
∫

Q∗R

G0(z, ζ)V(ζ)u(ζ)dζ
∣∣∣ ≤ M(R)ηV(R2),

where the integral sufficiently small provided that we fix R0 such that ηV(R2) ≤ ε
8

for any
R ∈]0, R0]. Observing that

m(δR)−m(R) ≥ ε

4
(M(R)−m(R))− ε

8
M(R)

it follows

M(δR)−m(δR) ≤
(
1− ε

4

)
(M(R)−m(R)) +

ε

8
M(R) ≤

(
1− ε

8

)
M(R).

This concludes the the proof in the first case, since ε ∈]0, 1[.

Case 2: meas(S) ≤ 1
2
meas(SR(ξ∗, τ ∗)). In this case we set

w(z) =

∫

SR(ξ∗,τ∗)
G0(z, y, τ ∗)(M(R)− u(y, τ ∗))dy +

∫

Q∗R

G0(z, ζ)V(ζ)u(ζ)dζ.

Following the method used in Case 1 we find

M(R)− u(z) ≥
∫

SR(ξ∗,τ∗)\S
G0(z, y, τ ∗)(M(R)− u(y, τ ∗))dy − ε

8
M(R)

≥ ε

4
(M(R)−m(R))− ε

8
M(R), for a. e. z ∈ Q∗

δR(ξ, τ, (δR)2)



24 Sergio Polidoro and Alessandra Ragusa

and then

M(δR)−m(δR) ≤
(
1− ε

8

)
M(R).

The proof of Lemma 5.4 is then accomplished.

Proposition 5.5. Let R0 and δ0 as in Proposition 4.5. Let u ≥ 0 be a solution of LVu = 0
in Ω, QR(ξ, τ, R2) ⊂⊂ Ω, with R ≤ R0, and let V a bounded function. Then, for every
α, β, γ, δ ∈]0, 1[ such that α < β < γ and δ < δ0 there exists a positive M that depends on
ηV , η∗V and on the constants α, β, γ, δ, but does not depend on the norm ‖V‖L∞ , such that

sup
Q−

u ≤ M inf
Q+

u.

Proof. We first note that the boundedness of V yields the continuity of u, by the
representation formula (3.10) and a standard bootstrap argument. Then there exists
(x̄, t̄) ∈ Q+ such that u(x̄, t̄) = minQ+ u. It is not restrictive to assume u(x̄, t̄) = 1.

Following the line of the proof of Theorem 5.4 in [7], we consider, for every r ∈ [0, βR2],
the following function

v(x, t) =

∫

SR(ξ,τ,r)

G(x, t, y, r)u(y, r)dy , ∀(x, t) ∈ QR(ξ, τ, R2).

By the comparison principle (recall that that V is bounded and that u ≥ 0) we obtain
u(x, t) ≥ v(x, t), for every (x, t) ∈ QR(ξ, τ, R2), then

u(x̄, t̄) ≥
∫

SR(ξ,τ,r)

G(x̄, t̄, y, r)u(y, r)dy. (5.5)

Let us fix δ′ = δ+δ0
2

and consider, for any λ > 0, the set

S(r, λ) = {y ∈ Sδ′R(ξ, τ, r) : u(y, r) ≥ λ} .

Then inequality (5.5) and Proposition 4.5 (with α0 = γ − β) imply that

1 = u(x̄, t̄) ≥
∫

S(r,λ)

G(x̄, t̄, y, r)u(y, r)dy ≥ λ ε meas(S(r, λ))

meas(SR(ξ, τ))
. (5.6)

We set

K =
1

2

(
1 +

1

%

)
r(λ) =

R

δ

(
4

ελ(1− %)

) 1
Q−2

(5.7)

where % is the constant in Lemma 5.4, and we note that

Q∗
δr(λ)(ξ, τ, (δr(λ))2) ∩ SR(ξ, τ, r) = Sδr(λ)(ζ, τ)

for every r ∈ [t− (δr(λ))2, t]. Then

meas
(
Q∗

δr(λ)(ξ, τ, (δr(λ))2) ∩ SR(ξ, τ, r)
)

= meas(Sδr(λ)(ζ, τ)) =

(by the analogous of (2.10) for the N -dimensional measure)

= (δr(λ))Q−2 ·meas(S) =
4RQ−2

ελ(1− %)
·meas(S).

(5.8)
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We next prove the following statement. Let λ > 0 and (x, t) ∈ Qδ′R(ξ, τ, R2) with
t ≤ τ + βR2 be such that u(x, t) ≥ λ and that Q∗

r(λ)(x, t, r(λ)2) ⊂ Qδ′R(ξ, τ, R2). Then

there exists (x′, t′) ∈ Q∗
r(λ)(x, t, r(λ)2) such that u(x′, t′) ≥ Kλ.

Indeed, from (5.6) it follows that

meas

(
S

(
r,

λ

2
(1− %)

))
≤ 2 RQ−2

λ ε(1− %)
meas(S)

so that, by (5.8), there is a (ξ′, τ ′) ∈ Q∗
δr(λ)(ξ, τ, (δr(λ))2)∩ SR(ξ, τ, r) such that u(ξ′, τ ′) <

λ
2
(1− %). Our claim then follows from Lemma 5.4.
We next show that there exists a positive constant M such that u(x, t) ≤ M for

every (x, t) ∈ Q−. The thesis then follows, since u(x̄, t̄) = minQ+ u = 1. Suppose, by

contradiction, that there were a z0 ∈ Q− such that u(z0) > M . Then, repeating the
arguments used above to obtain u(x′, t′) ≥ Kλ, there exists a sequence

(
zj

)
such that

u(zj) ≥ M Kj, zj+1 ∈ Q∗
rj

(zj, r
2
j ), where rj = r(M Kj),

provided that

Q∗
rj

(zj, r
2
j ) ⊂ Qδ′R(ξ, τ, R2), for every j ∈ N. (5.9)

In order to prove (5.9) we note that

d(zj+1, zj) ≤ c0rj = c0
R

δ

(
4

εM(1− %)Kj

) 1
Q−2

where c0 = max
z∈Q∗1(0,0,1)

d(z, (0, 0)) (recall (2.1)). Hence

d(zj, z0) ≤ c0
R

δ

(
4

εM(1− %)Kj

) 1
Q−2

∞∑
i=1

K− i
Q−2 ,

so that we can choose a positive M , that depends on α, δ, δ0 but does not depend on R,
such that (5.9) holds. Hence the sequence u(zj) is unbounded and we get a contradiction
with the continuity of u. This accomplishes the proof.

In a similar way it is true the next result for the adjoint operator.

Remark 5.6. Let v ≥ 0 be a solution of L∗Vv = 0 in QR(ξ, τ, R2), where V is a bounded
function and it is in the class SK(QR(ξ, τ, R2)). Then

sup
Q+

v ≤ M inf
Q−

v,

for some positive constant M depending on on ηV , η∗V and on the constants α, β, γ, δ, but
that does not depend on ‖V‖L∞ .

Lemma 5.7. Let u be a solution of LVu = 0 in Ω. Then, for any z0 ∈ Ω there exists
a compact neighborhood K of z0 such that K ⊂ Ω and that u is the limit in L1(K) of a
sequence (um)m∈N, where every um satisfy

LVmum = 0 in K.
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Moreover, for every compact set H ⊂ int(K), there exists a positive constant cH such that

|um(z)| ≤ cH ∀z ∈ H, ∀m ∈ N. (5.10)

Proof. Consider a cylindrical set QR(ξ, τ, T ) such that QR(ξ, τ, T ) ⊂ Ω, and suppose
that ηV(T ) < 1 and η∗V(T ) < 1. Let also consider a text function ϕ ∈ C∞

0 (QR(ξ, τ, T ))
such that ϕ ≡ 1 in a compact neighborhood K of z0 such that K ⊂ QR(ξ, τ, T ). We have

LVm(uϕ) = ϕL0u + uL0ϕ + 2
m∑

j=1

XjϕXju + uϕVm =

(recalling that u is solution of L0u + Vu = 0)

= uL0ϕ + 2
m∑

j=1

XjϕXju + (Vm − V)uϕ.

In the sequel we will denote f = 2
∑m

j=1 XjϕXju + uL0ϕ. We also consider the Green
function Gm related to LVm and set

um(z) = −
∫

QR(ξ,τ,T )

Gm(z, ζ)f(ζ)dζ. (5.11)

We have { Lm(um − ϕu) = −(Vm − V)ϕu in QR(ξ, τ, T )
um − ϕu = 0 in ∂rQR(ξ, τ, T ),

and the function (Vm − V)ϕu belongs to L1(QR(ξ, τ, T )), then, by Remark 5.3, we find

(um − ϕu)(z) =

∫

QR(ξ,τ,T )

Gm(z, ζ)(Vm − V)ϕu(ζ)dζ.

W next integrate over QR(ξ, τ, T ) and use property (i) of Proposition 4.2, for p = 1. We
obtain

‖um − ϕu‖L1(QR(ξ,τ,T )) ≤ c1‖(Vm − V)ϕu‖L1(QR(ξ,τ,T )),

for some constant c1 that does not depend on m. On the other hand

|(Vm(ζ)− V(ζ))ϕ(ζ)u(ζ)| ≤ |V(ζ)ϕ(ζ)u(ζ)|,
for almost every ζ ∈ QR(ξ, τ, T ) and the function Vϕu ∈ L1(QR(ξ, τ, T )), then

lim
m→∞

‖um − ϕu‖L1(QR(ξ,τ,T )) = 0.

This proves the first claim.
We next prove (5.10). We set

H̃ = supp
(
(X1ϕ)2 + . . . (Xmϕ)2 + (Y ϕ)2

)

and note that f(ζ) = 0 for every ζ 6∈ H̃. We next prove that there exists a positive

constant c̃, that depends on H and H̃, but does not depends on m, such that

Gm(z, ζ) ≤ c̃ for every z ∈ H, ζ ∈ H̃. (5.12)
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As a consequence, by formula (5.11) we obtain

|um(z)| ≤
∫

H̃

Gm(z, ζ)f(ζ)dζ ≤ c̃‖f‖L1(QR(ξ,τ,T )),

for every z ∈ H, and the proof is concluded, since

‖f‖L1(QR(ξ,τ,T )) ≤ k
( m∑

j=1

‖Xju‖L1(QR(ξ,τ,T )) + ‖u‖L1(QR(ξ,τ,T ))

)
,

for a positive constant k that only depends on ϕ and on L0.
We prove (5.12) by using the Harnack inequality stated in Remark 5.6. Let z be a

point of H. For every ζ ∈ H̃ we consider a cylindrical open set Q̃ ⊂ QR(ξ, τ, T ) such that

ζ ∈ Q̃+ and Q̃ ∩H = ∅. Since Gm(z, ·) is a positive solution to L∗Vm
v = 0, by Remark 5.6

we have

sup
Q̃+

Gm(z, ·) ≤ M inf
Q̃−

Gm(z, ·),

for some positive constant M that does not depend on m. On the other hand

meas(Q̃−) inf
Q̃−

Gm(z, ·) ≤
∫

QR(ξ,τ,T )

Gm(z, ζ)dζ ≤ c1

∞∑

k=0

ηV(T )k,

where c1 is the constant appearing in the statement (i) of Proposition 4.2. Thus Gm(z, ζ) ≤
k̃, for every z ∈ H and ζ ∈ Q̃+, where the constant k̃ depends on M, c1 and ηV(T ). The

estimate (5.12) then follows from a standard covering argument for the compact set H̃.
This completes the proof.

Proof of Proposition 2.3. Let u be a solution of the equation LVu = 0 in Ω. By
Lemma 5.7, u is the limit, in L1

loc(Ω) of a sequence of bounded functions (um)m∈N such
that LVmum = 0 in a suitable compact set K ⊂ Ω. We then apply Lemma 5.1 to every
function um, then there exists a subsequence (umk

)k∈N that converges uniformly to u in
K. Thus the estimate of the modulus of continuity stated in Lemma 5.1 extends to u.
This completes the proof.

Proof of Theorem 2.1. Let QR(ξ0, τ0, T ) be any cylindrical set. If ηV (T ) < 1, and
η∗V (T ) < 1, the result immediately follows from Proposition 4.2.

If otherwise ηV (T ) ≥ 1, or η∗V (T ) ≥ 1, we choose h > 0 such that ηV (h) < 1, η∗V (h) < 1.
Consider the cylinders

Q(s)(T0) = O×]s, s + T0[, Q
(s)
R (ξ0, τ0, T0) = (ξ0, τ0) ◦ δRQ(s)(R−2T0)

S(s) = O × {
s
}
, S

(s)
R (ξ0, τ0) = (ξ0, τ0) ◦ δRS(s),

and let G(s) denote the Green function related to Q
(s)
R (ξ0, τ0, h) (we can employ the ar-

gument used in Proposition 4.2 without any change). We then extend the definition
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of G given in Proposition 4.2 as follows: for every (x, t) ∈ QR(ξ0, τ0, T ) such that
s + h < t ≤ s + 2h, we set

G(x, t, y, s) =

∫

S
(s)
R (ξ0,τ0)

G(s+h)(x, t, w, s + h)G(s)(w, s + h, y, s)dw.

It is easy to verify that G is a Green function for the set QR(ξ0, τ0, 2h) and that G∗(ζ, z) =
G(z, ζ) is a Green function for the adjoint operator LV∗. For for (x, t) ∈ QR(ξ0, τ0, T ) such
that s + 2h < t ≤ s + 4h we repeat the above argument and define the Green function in
the set QR(ξ0, τ0, 4h) as

G(x, t, y, s) =

∫

S
(s)
R (ξ0,τ0)

G(s+2h)(x, t, w, s + 2h)G(s)(w, s + 2h, y, s)dw.

After a finite number of iterations we obtain a Green function for QR(ξ0, τ0, T ). This
completes the proof.

Proof of Theorem 2.2. As in Proposition 2.3, we obtain the result by using Lemma
5.7 and Proposition 5.5.
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helpful discussions.
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