HARNACK INEQUALITY FOR HYPOELLIPTIC ULTRAPARABOLIC
EQUATIONS WITH A SINGULAR LOWER ORDER TERM

SERGIO POLIDORO — MARIA ALESSANDRA RAGUSA

Abstract. We prove a Harnack inequality for the positive solutions of ultraparabolic
equations of the type

Lou + Vu =0,
where L is a linear second order hypoelliptic operator and V belongs to a class of
functions of Stummel-Kato type. We also obtain the existence of a Green function and
an uniqueness result for the Cauchy-Dirichlet problem.

1. INTRODUCTION

We prove some regularity results for the solutions of the equation in RV*!
Lou +Vu =0, (1.1)

where V is a singular potential belonging to a Stummel-Kato class (see Definition 1.1
below) and Ly is a linear second order operator of the form

Lo=) X} +Xo—0 (1.2)
k=1

We always denote by z = (z,t) the point in R¥*1; the X}’s in (1.2) are smooth vector
fields on RY, i.e.

N
Xi(z) :Za;?(x)axj, k=0,...,m,
=1

where any af is a C*° function. In the sequel we also consider the X}’s as vector fields in
RYN*! and we denote

Y =Xy — 0. (1.3)
We say that a curve v : [0,T] — RN+ is L-admissible if it is absolutely continuous and
satisfies

Y (s) =D M) Xi(3(s) + u(s)Y (4(s)),  ae. in [0,7],

for suitable piecewise constant real functions \q,..., A\, u, with 4 > 0. We next state
our main assumptions:

[H.1]: there exists a homogeneous Lie group G = (RN +1o, 5A) such that
(i): Xi,..., X, Y are left translation invariant on G;
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(i): Xy,...,X,, are dy\-homogeneous of degree one and Y is §)-homogeneous of
degree two;
[H.2]: for every (z,t),(&,7) € RN with ¢ > 7, there exists an L-admissible path
v 1[0, T] — R¥*! such that v(0) = (z,t), ¥(T) = (£, 7).

Operators of this kind have been studied by Kogoj and Lanconelli in [11]. The above
hypotheses and the main properties of homogeneous Lie groups will be discussed in detail
in the next section, here we recall that assumptions [H.1]-[H.2] yield the well known
Hérmander condition [10]:

rank Lie{X),..., X,,,Y}(2) = N +1, for every z € RN, (1.4)

then Ly is hypoelliptic (i.e. every distributional solution to Lou = 0 is a smooth, classic
solution; see, for instance, Proposition 10.1 in [11]). Hence Ly belongs to the general
class of the hypoelliptic operators on homogeneous groups first studied by Folland [8].
We recall that a general theory of function spaces related to Hormander operators has
been developed by Rothschild and Stein in [23], and by Nagel, Stein and Wainger in [20].
An invariant Harnack inequality for the positive solutions of Lou = 0 and a Gaussian
upper estimate of its fundamental solution I'y have been proved in [11]. We also recall
that Gaussian lower bounds for operators verifying assumptions [H.1]-[H.2] on Lie group
of step three have been given in [21]; and one-side Liouville theorems are provided in [12].

Let us point out that several meaningful examples of operators of the form (1.2) satisfy
assumptions [H.1]-[H.2]:

e heat operators on Carnot groups
AG - at7 (]‘5)

where Ag = >"}" | X7 denotes the sub-Laplacian on a homogeneous Carnot group
G (see Varopoulos, Saloff-Coste and Coulhon [27]);
e heat operators with drift on Carnot groups

AG+X0 _aty (16)

(see Alexopoulos [1]);
e Kolmogorov type operators

ARm + <Bl’, V) - at, (17)

where Agrm is the Laplace operator on R™ and B is a constant NV x N real matrix
(see [15] and its bibliography for a survey on known results on Kolmogorov type
operators. In [17] necessary and sufficient conditions are given on matrix B in
order to satisfy assumptions [H.1]-[H.2]);

e operators on the “link of a Carnot and a Kolmogorov group”

Ag + (Bz, V) — 0, (1.8)

here the domain of the solution is R™ x R? x R? x R, G is a Carnot group on
R™ x RP and B is a (m+ ¢q) X (m+ ¢) matrix as in the Kolmogorov operator (1.7)
(see [11] Example 9.7).
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We are concerned with the regularity of the operator
Ly =Ly+V, (1.9)

where V belongs to the following Stummel-Kato class (defined by the fundamental solution
Fo of ,C())

Definition 1.1. Let Q be an open subset contained in RN A function V € L'(Q)
belongs to the space SK () related to Ly if

lim y(h) = 0, lim (1) = . (1.10)
where
nv(h) = sup/ Co(z, t,y,s)V(y, s)|dyds,
(z,0)eQ J (y,5)€Q, t—h2<s<t (1.11)
my(h) = sup/ Loz, t,y,s)|V(z,t)|dzdt.
(y,5)€Q J (z,t)€Q, s<t<s+h?2

We say that u is a weak solution of Lyu = 0 if

(1) there exists p > 1 such that u, Xju, ..., X;u € LY (),

(3) fQ S XpuXip + fQ uY*p + fQ uVyp = 0, for every ¢ € C5°(9).

As in the Euclidean setting, the Stummel-Kato class can be related to the Morrey spaces
LPA(Q, Ly); in Section 3 we will prove the inclusion L' (€, £y) € SK(Q) for A €]Q—2,Q)|,
where @) is the homogeneous dimension of G (see Section 2 for the definitions). We also
give a simple sufficient condition for the integrability of Vu: we show that, if the derivatives
Xju, X;Xpu, for j,k=1,...,m and Yu belong to LL _(Q) then Vu € L] .(Q).

Our main result is an invariant Harnack inequality for the positive solutions to Lyu = 0.
The proof of the Harnack inequality given by Kogoj and Lanconelli in [11] (for the solutions
to Lou = 0) is based on a mean value theorem and follows the same lines of the classical
proof of the Harnack inequality for harmonic functions. That approach has been used
in the study of Kolmogorov operators (1.7) by Kuptsov in [13], later by Garofalo and
Lanconelli in [9] then by Lanconelli and Polidoro in [17] and relies on some accurate
estimates of the derivatives X1I'g, ... X,,I'g of the fundamental solution of L£y. Here we
use a method based on the Green function Gy of Ly related to suitable “cylindrical”
open sets and on a pointwise lower bounds for GGg. This technique is inspired by some
arguments by Safanov in [24], and used in [14] where Kusuoka and Stroock obtain Harnack
inequality for solutions to certain degenerate equations. It has been also used by Fabes
and Stroock in [6], [7] to study uniformly elliptic and parabolic operators with measurable
coefficients and later adapted by Montanari in [19] to obtain an Harnack inequality for
Ly belonging to a class of totally degenerate hypoelliptic operators. The same method
has been successfully used by the authors in [22], in the study of Kolmogorov operators
(1.7).

We finally recall some papers where the second order part of the operator £y has non-
smooth coefficients. We quote Sturm [26] and Zhang [28], that consider the operator
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(1.9) where L, is uniformly parabolic, Citti, Garofalo and Lanconelli [5], and Lu [18],
that consider the Schrodinger operator related to sum of square of Hormander’s vector
fields £ = >~ X7 +V, Zhang [29], who study the analogous parabolic operator £y, =
S X2 —0,+V as (1.5). Recently Bramanti and Brandolini in [4] consider operators,
without potential function, of the following type: £ = E?:szl a;; () X;X;, where a;; belong
to to the Sarason class VM O. They extend to spaces of homogeneous type some regularity
estimates.

We end this introduction with a short outline of this paper. In Section 2 we recall the
known facts about homogeneous Lie groups and on the boundary value problems for L,
that will needed through in the sequel, then we state our main results. In Section 3 we
discuss the main properties of the fundamental solution and of the Green function for L.
In Section 4 we construct a Green function for £y, by the Levi parametrix method; some
L? estimates and a pointwise lower bound for the Green function are proved. Then, in
Section 5 we prove the results of this paper, in a preliminary statement only for bounded
potentials V, then, by a limiting argument, for every )V in the Stummel-Kato class.

2. KNOWN FACTS AND STATEMENT OF MAIN RESULTS

In this section we briefly recall the basic properties of homogeneous Lie groups; we then
give the statements of our main results.

A Lie group G = (RN +1 o) is said homogeneous if there exists a family of dilations
(0x) oo Of the form

S RNFU RN 5 (e ) = (AN, . AN £y, AO)
for some positive aq, ... ay, g, with the following property
5x(20¢) = (6x2) 0 (6x¢), for every z,¢ € R¥* and A > 0. (2.1)
Hypotheses [H.1]-[H.2] imply that RY has a direct sum decomposition
RV=Vi®---aV,

such that, if we decompose any point z € RN as . = 2 + ... + 2™ with 2 € V}, then
the dilations are

5A($(1) 4o x(”),t) — ()\x(l) 44 )\nx(n)7)\2t), (2.2)

for any A > 0. If we let m; = dimV}, the natural number
Q =24 Z k‘mk
k=1

is usually called the homogeneous dimension of G with respect to (J) We also intro-

duce the following §,-homogeneous norms on R¥*! and RV:

1
L ! n n! 2nt
Iz, D)l = <Z 2% 1 W”) |z]e = (Z |$(k)\2k>
k=1 k=1

A>0°

1
2n!
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(‘:1:("’)‘ is the Euclidean norm of 2®)). We denote by
-1
d(z,¢) =€ o zlle

the quasi-distance between two points z,( € RV*! and by
B.(z) ={Ce R 1 d(2,¢) <r}

the ball with center at z and radius r. Recall that there exists a positive constant ¢ such
that

d(z,w) < c(d(z,¢) + d(¢,w)), d(z,w) < cd(w, z), (2.3)
for every z,(,w € RVT! (see [8], Proposition 1.4).

We also recall that, due to the fact that X, ... X,, only depend on the space variable
x, the composition law o is Euclidean in the time variable ¢, i.e.

(x,t) o (y,s) = (o(x,t,y,s),t+s) (2.4)

for a suitable smooth function o (see [11], Proposition 10.2). Moreover, since X7, ..., X,
and Y are homogeneous vector fields of degree 1 and 2, respectively, we have

1 k
((z,t) 0 (y,9) =20 + 90 ((@,0) 0 (,9)" = 2® +y® + o (2, t,y,5)  (2.5)

for k = 2,...,m, where ox(z,t,y,s) is a polynomial function that only depends on
a®HD oo () D oM and s, As a consequence, the determinant of the
Jacobian matrix of the function z +— 2y o z equals one, thus the Lebesgue measure of
RN+ s left-invariant under left translations, namely

meas (zo 0 F) = meas (E) (2.6)

for every zp € R¥*! and every measurable set £ C RV*L,
Another consequence of the homogeneity of the vector fields Xi, ..., X,, and Y is that
they are of the form

Xk:Za;?_l(a:(l),...,x(j_l))-V(j), k=1,...,m,
j=1

N (2.7)
Y = Z bj,Q(ZC(l), e ,.Cl,’(jim) . V(J) - 8t,
j=2
where VU) = (0, 0,0 6ys 50 ), 0, ,O) denotes the gradient with respect to the
1 m;

variable () and a;? and b; are dy—homogeneous polynomial functions of degree j with
values in V4, and Vs respectively. As a first consequence we have that X; = —Xj, for
k=1,...,mand Y* = =Y, thus the formal adjoint of Ly is Lo* = -, X} — Y.

Let us explicitly note that hypothesis [H.2] and formula (2.7) imply that, if we write
Lo as

N N
Ly = Z i,j(7) Oz, + ij(:c)axj — 0y, (2.8)
j=1

ij=1
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then the m xm block matrix (a; ;()), ._, . is constant and positive definite. From (2.7)
it also follows that Y (0) = by - V) — 9, for a constant vector by € V5, thus, up to a linear
change of coordinates, we may assume that by = 0.

We next recall some results, due to Lanconelli and Pascucci [16], concerning the bound-
ary value problem for £y. Let £ € N and € > 0 be two constants that well be chosen in
the sequel. We denote

0= Beucl(kel,k+ka) N Beucl(—k’ehk—i-ka)v (29)

where Beyei(z,r) is the Euclidean ball of RY with center at = and radius r. Moreover, for
positive T" we let

Q) =0x]0,T[, S=0x{0}, S(T)=0x{T}, and M(T)=00x]0,T]|
be the “unit” cylinder of R¥*! its lower and upper basis (resp.), and its lateral boundary.
We will call parabolic boundary of Q(T') the set

9,Q(T) = SU (80 x [0,T]).
Finally, for every positive R and for any (&,7) € RV*! we set
QR<€7 T, T) = (67 T) © 5R (Q(RiQT)) )
and, analogously,
MR(éa T, T) :(57 T) © 6R (M(R_2T>) ) SR(§7 T) = (57 7—) o 6R (S) )
SR(&) T, T) :(Ea T) © (SR (S<R72T)) ) aTQR<£7 T, T) = (67 T) © 5R (arQ(R72T>)
(note that, by (2.2) and (2.4), T is the true height of the sets Qr(&, 7,T), Mg(&, 7,T) and
O,Qr(&,7,T), and Sg(&,7,T) = Qr(&, 7, T) N {(z,t): t =7+ T}). We also remark that,
by (2.2) and (2.6), we have
meas (QR(S, T, RzT)) — R%meas (Q(T)) .
Moreover
meas (Sg(&,7)) = R9 *meas (S), (2.10)
where, with a slight abuse of notations, meas (Sg(&, 7)) is the N-dimensional measure of
the set Sg(&, 7) and, obviously,

meas (Qr(&, 7, R*T)) = T R%meas (). (2.11)

Consider the Cauchy-Dirichlet problem in the unit cylinder

Lou=f inQ(T)

{ u=20 in 0,Q(7T) (2.12)
with f € C5°(Q(T')). As noticed before, the m xm block matrix (a;;(x)), ;_, _,, in (2.8)is
constant and positive definite so that, in particular, a;; > 0. Then, by Proposition 2.4 and
Theorem 2.5 in [16]" there exists a positive ¢ in the definition of O such that the Dirichlet

Lin [16] it is assumed that Ly is the heat operator out of a compact set of RN*1. Ly can be suitably
modified outside Q(T') in order to fulfill such a requirement.
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problem (2.12) has a unique (classical) solution v € C(Q(T) U 0,Q(T)) N C(Q(T)) (in
the sequel ¢ in the definition of O will be always chosen as above).

We say that G : (Q(T) U 8,Q(T)) x Q(T) — R is a Green function for Q(T) if, for
every f € Cy(Sg), the function

u(z) = — /Q Gz 01(Q)c

is solution of the Cauchy-Dirichlet problem (2.12). In [16], Theorem 2.7 it is proved that
a Green function Gy exists and is smooth out of the diagonal of the set (Q(T)Ud,Q(T)) x
QT); Golir, 1,€,7) > 0; for any (z, ), (€,7) € RN, G, £,€,7) = 01if, £ < 7.

The function G§(z, () = Go((, 2) is a Green function for the adjoint operator Ly*. For
every positive R and for any (¢, 7) € RV the function Go((&,7) 0 dr(€), (§,7) 0 dr(2)) is
a Green function for the set Qr(&,7,T). The Green function can be characterized as

Go(z,t,y,7) = To(z,t,y,7) — h(x,t,y, 1), (2.13)
where (-, -, y,0) is the solution of the boundary value problem
u=0 in M(T) (2.14)

u="Tq(-,y,0) inS

The Perron-Wiener-Brelot-Bauer method provides a generalized solution h (see [2]); by
the hypoellipticity of Ly it is a smooth classical solution to Lou = 0 in Q(T"). A local
barrier for every point of M(7") U S has been constructed in the proof of Theorem 2.5 in
[16], then h attains the boundary data by continuity. Since Go(, -) is a Green function
for the adjoint operator Ly*, we have that h is smooth for (z,t) # (y,0). By the minimum
principle it plainly follows h > 0, then

Go(z,t,y,s) < Dola,t,y,s), forevery (z,t),(y,s) € RVTL (2.15)
We finally note that, for any ¢ € Co(RY), the function

u@iy_AQF&mt%mwwﬂy

is a classical solution to the Cauchy problem Lou = 0 in RY x R, u(z,0) = ¢p(z); as a
consequence, for every ¢ € Cy(5), the function

et = [ Goltp,0)p(w)dy
S
is a classical solution to the Cauchy-Dirichlet problem Lyu =0 in Q(T), u = ¢ in S and
u=0in M(T).

We next state the main results of this note. For every R,7 > 0 and (£,7) € RV FL,
consider the Cauchy-Dirichlet problem

Lou=f inQu&,mT)
{uio in 0,0n(é.7.T) (2.16)
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with f € Co(Qr(&,7,T)). We say that u is a weak solution of (2.16) if it is a weak solution
to Lyu = f in Qgr(&,7,T), it belongs to C(Qr(&,7,T) U 0,Qr(&,7,T)) and attains the
boundary data by continuity. We say that

G (QR(£7T7 T) U aTQR(gaTa T)) X QR(éuTu T) — R
is a Green function for (2.16) if G(-,w) is a weak solution to (2.16), for every w €

QR(£> T, T)

Theorem 2.1. The Cauchy-Dirichlet problem (2.16) has a unique weak solution u. More-
over a Green function G for Qr(§,7,T) exists, and the function G*((,z) = G(z,() is a
Green function for the adjoint operator Ly".

Before stating our second result, we introduce two further notations. Let us consider
the cylinder Qr(&, 7, R?) and, for every «, 3,7,d €]0,1[: a < 8 < 7, let us set

Q = {(m,t) € Qsr(&, T R*) :T+aR* <t < T+6R2},
Q" ={(z,t) € Qsr(&, 7, R?) : T+ yR* < t}.

Theorem 2.2. (Harnack). Let V € SK(Q2). Then there exist two constants Ry > 0
and &y €]0, 1] such that, for every Qr(&, 7, R?) CC Q, with R < Ry and QT,Q~ as above,
with § €]0, d[, we have

supu < M inf u,

Q" QF
for every positive weak solution uw of Lyu = 0. Here M is a positive constant that depends
on ny,ny, and on the constants «, 3,7, 9.

Proposition 2.3. Let u be a weak solution of Lyu = 0 in Q, with V € SK(2). Then
u s continuous and there exist two positive constants Cy and Cs, only dependent on Ly,
such that

u(z) — u(zo)| < (Cld<Z>ZO)1/2 + 2mv(Co d(zazo)l/z)) sup |u]
B4T‘(ZO)
for every zy € Q, r €]0, 1] such that By (20) C Q and for every z € B,2(2).
Furthermore if V € LY (Q, Lo) with A\ €]Q — 2, Q| (see Definition 3.3 below) then

[u(z) — u(z)| < C(l + ||V||LM(Q,1:U)) sup |ul - d(z, 20)%,

Byr ZO)

A—Q+2 } '

i {1
wherea-m1n{2, 5

3. PRELIMINARY RESULTS

In this section we recall some result about the fundamental solution and to the Green
function Gy for operators satisfying assumptions [H.1]-[H.2]; we then prove a lower bound
for Go. We end the section with some remarks on the Stummel-Kato class SK(£2).

In [11], Kogoj and Lanconelli prove the existence of a fundamental solution I'y(z, ¢) for
the operators Ly satisfying conditions [H.1]-[H.2]. The main properties of Iy are analogous
to the properties of the heat equation: I'g is smooth in {(z, () ERNFL X RNFL: 5 £ C};
Lo(z,t,&,7) > 0; for any (x,t), (&,7) € RN Ty(x,t,&,7) > 0 if, and only if, t > 7.
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[y is invariant with respect to the translations of G:
To(2,() =To(C 1 o2z,0)=Ty(¢C oz), forevery 2z (€ RN
and it is dy-homogeneous of degree 2 — ) with respect to the dilations of G:
Lo(6x(2)) = A7 9L(2) for every z€ RV A >0; (3.1)

as a consequence we have that lim Ty(z) = 0;limsupI'g(2) = +o0o and Ty € L (RN +1).

|z|—o0 z—0

For every ¢ € C°(RM*1) and 2z € RM*! we have

Lo [ T 09Odc=—p() [ To(e0LaplQdC = —plz). (32)

and Loly(z, -) = =9I, (the Dirac measure centered at z). Moreover

loc

/ Lo(z,t)dx =1, for every ¢ >0.
RN

The function I'j(z, () = o((, 2) is the fundamental solution of the adjoint operator Ly*.

Since I'y is a d)-homogeneous functions of degree —@) + 2 and the derivatives X;I'y,
for 7 = 1,...m, are dy-homogeneous functions of degree —(@) + 1, from the general theory
of function spaces on homogeneous Lie groups (see for instance Folland [8], Proposition
(1.15); see also Rothschild and Stein [23] for a more developed analysis of differential
operators on Lie groups) it follows that there exist a positive constant C' such that, for
every 21,2, € RV* with d(z1,¢) > 2d(z1, 22) we have

d
Fofe1.€) ~ To(en, )| <Ol
(e, 2)
d
XOTa(e1,0) = X0l 0 < CqE2 2 Qg,

for j = 1,...,m (the notation X ;C) means that the vector field X; acts on the variable ().
Moreover, if we set for f € LP(RN 1)

73) = [ Tole 00 (3.4
we have (see (8], Theorem (5.14)):

i) if 1 <p < ¢, then Ty € LYRN*), for 2 =1 — Z and
1T¢llg < Collflp; (3.5)
ii) if p > %, then
|T¢(z1) — Tp(z2)| < Cpd(z1, 22)%| f1], for every z;, z, € RN ™! (3.6)

for some positive constant €}, and a = min {1, 2 — %}
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Finally, for j = 1,...,m we have

XiTy(2) = XiTo(2, Q) f(€)d¢ (3.7)

RN+1

and, analogously,

i) if 1 <p<Q, then X;T € LY(RN*!), with % = % - %, and
1 X5 T¢llq < Cpll flp3 (3-8)
i) if p > @, then
XTyter) = X5 < Goden, )M Fora=1-2 9

Note that, by (3.5), formula (3.2) extends to

Lo [ o OFQUOAC = —F)u(2), (3.10)

for any f € LY (RN*Y) with 1 <p < %, and any cut-off function ¢). We also recall that

loc

Q2
T} is continuous from L'(R¥*1) to L 2

w2 (RN more specifically, there exists a positive
constant C' such that

Q-2

c\ @
meas{z € RY* | Ty(2) > a} < (5) I fl a1y, for every a > 0

(see [8], Proposition (1.10)) hence we will also use formula (3.10) for f € L} (RN*1).

loc
We next prove a lower bound for the Green function Gy for Lg:
Proposition 3.1. For any positive R and T and every (£,7) € RVt and a €]0, 1] there
ezist dg, € €)0, 1] such that
2e
meas(Sgr(&, 7))
for every 6 €]0,0¢],y € Ssr(&,7) and (z,t) € Qsr(&,7,T), such that t > 7+ «aT.

Go(z,t,y,7) >

PrROOF Thanks to the invariance of the operator with respect to the translations and the
dilations of the Lie group G, it is not restrictive to assume (£, 7) = (0,0) and R = 1; we also
denote S = 51(0,0). Aiming to prove that G(0,¢,0,0) > 0, for every t €]0,T], we recall

(2.13). We first note that k is a bounded function in the set {(z,¢,0,0) € Q(T) x{(0,0)}}.
On the other hand I'g(0,¢) = t_%FO(O, 1) by (3.1), then

Go(0,t,0,0) = ['x(0,t) — h(0,,0,0) — +o0

as t — 04. Then G((0,¢,0,0) > 0 for any positive small ¢. Since Gy > 0 by the Bony’s
maximum principle ([3], Theorem 3.2) Go(0,¢,0,0) > 0 for t €]0,7]. In order to prove

our claim we let .
e=7 meas(5) [2}%% Go(0,t,0,0);
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it is not restrictive to suppose € < 1. Since Gy is a continuous function, there exists
do €]0, 1] such that

2e
meas(5)’
for every (z,t) € Q5(0,0,T), such that ¢ > oT and y € S5(0,0), with § €]0,d]. This
proves the claim for (¢,7) = (0,0) and R = 1. The result in the general case follows by
using the invariance with respect to the Lie group structure.

G()(ﬁlf, t7 Y, O) Z

We end this section with some remarks about our definition of the Stummel-Kato class.
We first recall the upper gaussian estimate for the fundamental solution provided by Kogoj
and Lanconelli (see (5.1) in [11]), that allows us to establish whether a given function V
does satisfy condition (1.10): for every t > 0,z € RY

To(z,t) < C’; exp (—%> (3.11)

for some positive constant C'.

We next observe that, unlike in the usual definition of the Stummel-Kato class, in
formula (1.11) we integrate V on an unbounded set. A definition more similar to that one
of the elliptic case should be given in terms of the following functions

(k) = sup / Loz, t,y,5)V(y, 5)dyds,
(z,t)eQ
QNQp (x,t,h?)

(k) = sup / Lo, t,y, 8)[V(z, 1)\ dudt;
(y,5)€Q
QNQ% (y,s,h?)

(3.12)

however, it turns out that 7, and 73, define the same class as 7y and 7;,.

Remark 3.2. We have that

limny(h) =0 < limip(h) =0
}L{T%]ﬁv(h) =0 < }ggnv(h) =0.

One of the two implications is an easy consequence of the inequalities Ny (h) < ny(h) and
ny(h) < ni(h). The other one easily follows from the homogeneity of I'y, with respect to
the dilation of the Lie group, and from the absolute continuity of the integral.

We next compare the spaces SK(Q2) and the following Morrey spaces LPA(Q, L)

Definition 3.3. Let Q be an open subset of R¥*1 and let p, A € R be such that 1 < p < 0o
and 0 < X < Q. We say that a function f € LY () belongs to the Morrey space
LPAMQ, Lo) if || fl| or,ce) < 00, where

P

1
oy = ( s !f(w)|pdw)

r>0,2eQ 7" JonB,(z)
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Although the class SK () and the spaces LP*(Q, L) are defined analogously to the
classic ones, we observe some substantial differences between them. In the case of elliptic
equations we have

L'"Q)CSKQ)CL"™(Q), 0<pu<n—2<Ai<n. (3.13)

An analogous result is true for the sum of the squares of the Hormander fields, however in
the case of parabolic (and degenerate parabolic) operators, we can prove the first inclusion,
but the second one seems false (see example 2.10 in [22]).

Proposition 3.4. We have
LY (Q, Ly) C SK(Q), for every X €]Q — 2,Q].

PROOF. By using the homogeneity of the fundamental solution I'y we find
1
oo tw)Vw)de <ol @2 [ pwlde,  (319)
h* JonB, (@)
QNQp (x,t,h?)

for every V € L, L), and by Remark 3.2 this inequality yields the desired inclusion.
Since we are concerning with weak solutions to Lyu = 0, we need a sufficient condition

for the requirement Vu € L . We recall that, in the case of uniformly elliptic operators,

Vu € L (Q) provided that u belongs to the space H._(2) (see Schechter [25]) and a
similar condition holds for the sum of squares of Hérmander vector fields (see [5]). Here
we prove that Vu is locally integrable when u belongs to the Sobolev-Folland-Stein space
W21(Q, Ly), namely if the following norm

ullwzi @0y = lullrey + > IXull@ + Y I1XiXul ey + 1Yl o)
j=1 i,7=1

is finite.

Lemma 3.5. Ifu € I/Vli’Cl(Q, Lo) and H, K are two compact sets such that K CC H C €2,
then there ezists a positive constant C, dependent only on H, K and V € SK(S), such
that

| V@@ < Cllulwasinen (3.15)
K
PrROOF We first claim that, for every v € C§°(Q2), we have

| W@d: < Gl (3.16)
Q

where () is a positive constant dependent only on V and on the support of v. Indeed, if
we denote by H the support of v then

| venea< [ pe) ( / ro<z,c>|£ov<c>|d<) 0z <

[ 120w sup ([ =) < e lollwnsin
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where cy = max{|t — 7| : (z,t),(&,7) € H}. This proves (3.16). The thesis follows from
a standard density argument.

4. THE GREEN FUNCTION FOR Ly

In this section we use the parametriz method to prove the existence of a Green function
G for the operator Ly, related to any given cylinder Qr(&,7,T). We construct G as a
perturbation of Gjy:

Gz, w) = Golz, w) + / Go(zm)® (1, w)di.

R

for some unknown function ®. A formal argument, based on the fact that LoGo(z,w) =
—0,(z) and on the requirement that £,G(z, w) = —d,(z) leads to the following Volterra
equation for ¢

B(2,¢) = V(2)Go(=.0) + / V(2)Go(z,m)®(n, C)diy

R

The successive approximation method then gives:

G(z,w) = Go(z,w) + Y _ Ju(z,w), (4.1)

k=1

where

Ji(zw) = / Golz, )V () Goln, w)dy

QR(§7T7T) (4'2)

Jera(z0) = / Golz,)V(n)Ji(, w)dn.
Qr(&7,T)

We will prove that these integrals Ji are well defined, then the L” convergence of the series
and we finally show that G is a Green function for £y,. Aiming to unify the notations, in
the sequel we will denote Jy = Gg so that J;(z,w) = fQR(ETT) Go(z,m)V(n)Jo(n, w)dn.

Lemma 4.1. The functions in (4.2) belong to L*(QR&, T, T)) for every p € |1, %) and
there exists a positive constant c, such that
176z, ), LP(Qr(&, 7 D) < emi(T)", (43)

k(s w0), LP(Qr(&, 7, T))I| < e (T)*,

for every w,z € Qr(&,7,T). Moreover, Jy(x,t,y,s) = 0 for every t < s. We can also
write Jy41 as

Jenr (2 w) = / Je(z ) V() Goln, w)dy. (4.4)
Qr&,7,T)

Proor. We let V() = |V(n)| and define ‘7’% by using formulas (4.2) with V. Note that
m(T) = np(T) and 73,(T) = n3(T), then V € SK(Qr) if and only if V € SK(Qr).
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We first prove the inequalities in (4.3) for the non-negative functions jk, the required
estimates will follow from the trivial inequality |Ji| < J.

Due to the fact that every jk is non-negative, (4.4) is immediate. In order to prove the
LP estimates for j;ﬂ we note that

[ Ml [ Tyl = m@),
Qr(&TT) Qr(§7T) (45)

/ Goln, w)|V(n)|dn < / Fo(n, w)|[V(n)ldn = m5(T),
Qr(&,1,T) Qr(&,7,T)

since Gy < T'g. We next define the sequences:

5= sup / Te(zmIVn)ldn,
ZEQR(&TvT) QR(g T7T)

si= s [ eI
T]EQR(EvTvT) QR(&?TvT)

and we prove the following inequalities

sp < m(T) s < (1) (4.6)

by induction on k. For k£ = 1 we have

s < sup /Q ol VO

ZEQR(évaT) £»TrT)

A sw Golw, ) V) |dn ) d¢ < (1),
weQR(gﬂ_vT) QR(gvTvT)

by (4.5). The same argument and (4.2) gives
sia1 < sem(T),

for any k£ > 1, then the first inequality in (4.6) is proved. The proof of the second one is
analogous.
To obtain the L? estimate for J;, we set, for p € [1, &) :
T = {90 € CSO(QR(gaTv T)) o2 0, ||90||LP’(QR(§,7—,T)) < 1}

For any ¢ € 7, we have

[ GGaede= [ Geapml( [ G wetede)d
QR(&:TvT) QR(£7T’T) QR(£7T7T)

< Cp||90||Lp’(QR(g,T,T))3k < Cpnx*;(T)kHa
by (4.4) and (4.6), where

o= sup Lo, )llzr@nierr))-
n€Qr(&,7,T)
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Thus

17z, )| r(@nteny = SUD / Tz w)p(w)dw < ey (T)*
(pET QR(€77_7T)

and the first inequality in (4.3) holds for every k& € N. In the same way we obtain the

second one. Since |Ji(z, w)| < Ji(z,w), the estimates (4.3) and the identity (4.4) also
hold for every Ji, and the Lemma is completely proved.

Proposition 4.2. Let T' > 0 be such that ny(T) < 1 and n5;,(T) < 1. Then

i) for every p € [1, &) the series introduced in (4.1) converges in LP(Qr(&,7,T))

and there exists a positive constant c, such that

1G (2 )l zr@ntemmy < e Y m(T) s IIGCw)lr@nerry < ¢ Y m(T)"
k=0 k=0

i) G(z,t,y,s) =0 fort <s;
iii) the derivatives

X,G(- w) = X;Gol - w)+ ) / X,Gol -, m)V(n) (5, w)dn,

k=1 QR(§77_7T)

~ (4.7)
X,G(z, ) = X,Golz, )+ Y / o VDX Golo, i

k=1 Y Qr(&TT

are defined as elements of the space L} (Qr(&,7,T)) for any p € [1, %) and,

for every compact set K C Qr(&,7,T), there exists a positive constant ¢, such that

<G ny(T) g )
k=0

HXJG( W)

<z T)*, HX-G .
Lo (K) ka:OWV( ) J ( ) L (K)

forj =1, .. m;
iv) for every (z,t) € Qr(&, 7,T),

/ |G, by, 7)|dy <> (1) / Gy, 7+ T, t)|dy <> mi(T)";
Sr(&,7) k=1 Sr(&7,T) k=1

v) for every z € Qr(&,7,T), we have

/Q G V)| < om0 /Q PLGECEEEIWHGE

R(g’TvT) S,T,T)

PROOF. Assertions (i) and (ii) are direct consequences of Lemma 4.1. In order to prove
(iii), we show that the series

o0

S [ G v,
QR(&vTvT)

k=1
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is convergent in LV (Qgr(&,7,T)). Let K be a compact subset of Qr(&,7,T); for any
@ € T, such that supp(¢) C K, we have

/K (/@R@,T,T) XiGolz MV ) A w)dﬁ> p(2)dz

<@leliwa s [ @ wdn <)
weRr(,T, Qr(& 7T

by (4.6), where

&= sup [ X;Go(-,n)lec)-
WEQR(&TvT)

Hence

| X6 vt ws
Qr(&mT) Lr(K)

— sup / ( / X,Golzm)V(n)Ji(n, w)dn> o(2)dz < Ty (T)F
K Qr(&,7,T)

peT

This proves the first identity in (4.7) and the estimate

o0
<t = (T)*.
Lo(K) p;m;( )

The same argument gives the second identity and the corresponding estimate.
In order to prove (iv), we note that, for every k € N,

‘ / Jk(x7t7y77—)dy‘
Sr(&,7)

<|[ gty ( [ Gonyridy)an] < @),
Qr(&7T) Sr(&T)

HX]-G(Z, )

by (4.6). This proves the first estimate, the proof of the second one is analogous.
Finally, (v) is an immediate consequence of (4.6). This concludes the proof of Propo-
sition 4.2.

Corollary 4.3. The function G defined in (4.1) is solution, in the distribution sense, of
£VG( " <) = _6C7 £V*G<Zv ’ ) = _52 Namely: G( ’ ’C>7XjG( ' 7<) S Lp(QR(éa T, T)); fO’f’
some p > 1 and for j = 1,...m,GV € LY (Qr(&,7,T)) and Vp € C(Qr(&,7,T)), we
have

/Q (&r (Z XiG(2, O Xselz) + Gz OV lz) = Gl C)V(2)¢(2)> dz = 9(0),
/Q - (Z X;G(2,0)X;0(C) — G(2,Q)Yo(¢) — G(z, g)v(g)¢(<)> dC = o).
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PROOF. Since (G is the Green function of L, we have

/Q - (Z XjGo(z,Q)X;p(2) + Go(z, C)Yw(Z)) dz = ¢((),

Jj=1

for every ¢ € C§°(Qgr(&,7,T)). For any k € N, we multiply the above identity by
V(¢)Jr—1(¢,w) and integrate on Qg (&, 7,T); we find

m

X X;Go(z,O)V(C)Jp—1(C,w)d
/QR(&T,T)<Z (,0(2) /QR(&T,T) O(Z C) (C) k 1(C w) (+

Jj=1

Yol2) /Q G <>V<<>Jk_1<<7w)d<) dz —

/ S OV(O) o (¢ w)dC
Qr(&,7,T)

and the first identity follows from the definition (4.1), (4.2) and from (4.7). In analogue
way we can proceed for the second equality.

Proposition 4.4. Let T > 0 be such that ny,(T) < 1 and n},(T) < 1. Then, for any
(&,7) € RN*L the function G defined by (4.1) is the Green function for the Cauchy-
Dirichlet problem (2.16) related to Qr(&,7,T).

Moreover G*(w, z) = G(z,w) is the Green function for the Cauchy-Dirichlet problem

Ly'v=yg inQr(&TT)
{ vV: 0 in 6:1223(5,7, T) (4.8)

with g € Co(Qr(&,7,T)), namely the function
== [ G s
QR(E?TrT)
is a weak solution to Ly™v = g in Qr(&,7,T) and attains the boundary data by continuity
(in (4.8) 0FQr(&,7,T) = (&, 7)00r (0;Q(R™2T)), where 0:Q(T) = S(T)U (80 X [O,T])).

PROOF. As said in Section 2, G is a Green function for the Cauchy-Dirichlet problem
(2.16) if, for any f € Co(Qr(&, 7, T)), the function

u(z) = — G(z, d
(=) /Q PR CEONITS

is a weak solution to Lyu = f in Qr(§, 7,T) and attains the boundary data by continuity.
The fact that u solves Lyu = f is a direct consequence of Corollary 4.3.
In order to verify that u continuously vanishes at 0,Qr(&, 7,7 we first note that

Lou(z) = f(z) = V(2)u(2),
then

u(z) = — / Golz,m)f(n)dn + / Gole, t, )V (n)uln)di,
Qr(&7,T) Qr(&7,T)
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for every z € Qgr(&,7,T). Since the function

ug(2) = —/ Go(z,m) f(n)dn
Qr(&1,T)

is a solution to the boundary value problem (2.12) (which is related to L) it is known
that it continuously vanishes at 0,Qgr(§, 7,7). Hence, we have to show that

im [ GoataVinutidn =0, (49)
(@t)=(@o.t0) JQr(e,r,T)
for every (z¢, 1) € 0,Qr(&, 7,T).
In order to prove (4.9) we observe that u is a bounded function, by Proposition 4.2 (7).
Let us first consider a point (xg,tg) € Sr(&, 7). Since V belongs to the Stummel-Kato
class, we have

\/ Gola t.n)V(mu()dn| < lulleomy(t) — 0 as ¢ — 0%,
Qr(&7,T)

This proves that u(x,t) — 0 as (z,t) — (0, to), for any (x¢,ty) € Sr(£, 7).
We next consider a point (zg,ty) € Mg(&,7,T). For every positive e there exists a
0 > 0 such that

/ Gl 1,1 $)V{y, )y, )dyds| < [ullm(8) < e
(y,S)EQR(g,T,T)itO*6<S<t0
V(x,t) € Qr(&,7,T), since V € SK(£). Moreover there exists a positive constant H such

that Go(z,t,y,s) < H, for every (z,t),(y,s) € Qgr(§,7,T)) such that s < t; — ¢ and
t >ty — /2. Hence

Go(z, t,m)V(n)u(n)dn = 0,

lim /

(z,t)—(zo,to) neEQr(&,1,T):s<to—d
that proves (4.9). This completes the proof that u(x,t) — 0 as (x,t) — (zo, 1) for every
(xo,t0) € 0,Qr(§,7,T), thus G is a Green function for £y in Qgr(&,7,T).

The proof that G* is a Green function for £y* in Qr(&,7,7T) is analogous and will be
omitted.

We next prove a lower bound for GG analogous to Proposition 3.1.

Proposition 4.5. For every ag €0, 1] there exist £,0¢ €]0, 1[, and Ry > 0 such that, if
R €]0, Ro], 0 €]0,0¢], and G is the Green function related to Qr(&, 7, R?) then

€
Gz, t,y,7) > meas(Sg(§, 7))

for every y € Ssr(€,7) and for every (z,t) € Qsr(&, 7, R?), such that t > T + agR?

PrROOF. We claim that there exists a positive constant ¢ such that

‘Jk(xvtajva’ < ;@(UV@_E)—FTK)&_E))k? (410)
0%
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for every k € N and any (z,t), (z,t) € Qgr(§, 7, R*). As a consequence, from (4.1) and
Proposition 3.1 we get

c )
G(.T,t,y,T) ZGO<x>t7y77—) - WZ % t_T) +77V(t_7—))k >
2¢

meas(Sg(£, 7)) (t—r)%

for any y € Ssgr(&,7) and for every (z,t) € Qsr(&, 7, R?), such that ¢t > 7 + apR%.
Moreover, since meas(Sg(£,7)) = R92 meas(S) and aORQ < t—17 < R? the above
inequality gives

o >t —7) +np(t —7)"
k=1

2¢ d - s p_ )k
Gl ty,7m) 2 meas(Sg(£, 7)) B meas(Sg(£, 7)) ; (ot =) (e 28

for some positive constant ¢’. The claim then follows by choosing Ry suitably small.
We next prove (4.10) by induction. We first recall (3.11), then

C

G0($,t,y, 3) < FO($7t7y7 8) < PEERNCER
(t_S)T

(4.11)

for every (z,t), (y,s) € Qr(&, 7, R?). Since
t+7’
hatar) = [ [ Golant sV )Gl s 2. g+
Sr(&,7,8)

+ / / Go(a, 1y, )V (y, $)Goly, s, 7, 7)dyds,
HTT Sr(&,T,s

we have
C 5
el <e [ [ T s . ndyds
(75__7')T Sr(&,1,8)
2
C t
S / | Talets) V. olduds,
(t_TT) 2 BT JSr(&ms)
so that (4.10) follows for k = 1.
For k > 1 we argue analogously: we write

t+7'
Jpi1(x, 6,2, 7) / / Je(x,t,y,s)V(y, s)Goly, s, &, T)dyds+
Sr(&,T,8)

+ / / Ju(@,t,y, $)V(y, 8)Goly, 5, T, 7)dyds,
47T Sr(&,T,s)

and we use (4.6) in the second integral. This completes the proof.
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5. PROOF OF THE MAIN RESULTS

In this section we prove the main results of this paper. As said in the introduction,
the main difficulty is in the fact that V' is unbounded, then we cannot rely on the usual
maximum principle. To overcome this problem, we first prove Proposition 2.3 and an
uniqueness result for bounded solutions, then we prove the Harnack inequality (Theorem
2.2) for a bounded function V, with the constant M depending on 7, and 7, but not on
the L* norm of V. We finally remove the hypotheses of boundedness from w and V, by
using a technique due to Zhang [28]. We consider the sequence of operators

Ly, = Lo+ Vi, (5.1)
where

—m if V(z,t) < —

Vio(z,t) =< V(z,t) if —m < V(x,t)<m,

m if V(z,t) >m
and we approximate the solution u to £y = 0 by a sequence u,, of solutions to Ly, = 0.
Since ny,,(T') < ny(T'), and 3, (T') < ny,(h), the Harnack inequality for bounded solutions
extends to u.

Lemma 5.1. Let u be a bounded weak solution of Lyu =0 in Q, withV € SK(Q2). Then
u 18 continuous and there exists a positive constant C', dependent only on Ly, such that
u(2) — u(zo)| < (Cd(z, 20)"* + 2nv (5 d(z, 20)'/?)) sup |u]

Bur(z0)
for every zy € Q, r €]0,1] such that Bu.(20) C Q and for every z € B,2(2) (c is the
constant in (2.3)).
Moreover, if V € LYQ, L) with X €)Q — 2,Q|, then
u(z) = u(z0)| < C(L+[Vllzr@ey) sup ful-d(z,20)%,

Bar(20

where oc = min {1, )‘7?” .
PROOF. Let z5 € 2, r € (0,1) be such that By,(29) C © and let z € B,2(2). We choose
0 = 24/d(zp, 2) and a function ¢ € C§°(Ba,(20)) such that ¢ = 1 in B,(zp) and that
[ Xl < £, 1X; jg0| < & ford,j=1,..,mand Y| < 5, for some positive constant c
only dependmg on the operator L.

Since ¢ < 2r, we have Bs,(29) C Bar(20) C 2 and (pu): Bay(z0) — R satisfies

Lo(pu) = Z XZ(pu) + Y (pu) = pLou +ulop + 2 Z X;joXu.
j=1 =1
By the representation formula (3.10) we have that

wz) == [ To0Lw(0 dc—zz > Dol O X

N+1

(5.2)
/R Tz OVIQUCROC = Ai(2) + Aa(z) + As(), ¥ 2 € Byfzo).
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Note that d(zp,2) < 1 and o = 2y/d(20,2), then d(zo,() > 2d(29, 2), for every ( €
By,(20)\B,(20). From the first inequality in (3.3) we estimate the two terms in A; as
follows

) = M)l < [ o200 = Tl O [Eap(Ou(O1dC <

~ d
C sup |uLoyp| @1—"2;)_1dC§Cd(z,zo)l/2 sup |ul,
Bag(20) Bag(0)\Bo(20) (21, €) Bag(20)

for some positive constant C' depending on C in (3.3) and on Lyep.
We next consider A;. We integrate by parts

Aa(2) =23 | X (o= O X5(0)) ()G =
23 [, Toe: X360 e +QZ / XD, 0X50(6) (),

(as in (3.3), the notation Xj(»o means that the vector field X acts on the variable ¢). We
then estimate the first sum by the same argument as A;; for the second one we use the
third inequality in (3.3).

We finally consider As. Let us first observe that, in view of (2.3), we have d(z,() <

2 (d(z,20) +20) < 5c®y/d(z,2) for every ¢ € supp(y), and z € B,.(2). Moreover, if
¢=(&7) and 2z = (x,t), then |t — 7| < d?(2,(), so that

|A3(2)] < sup |uf Lo(z,Q)V(Q)|d¢ < sup |u] - my(5cV/d(z, 2)),
B2, (z0) Ba,(20) B2, (20)

for every z € By(z). This proves the first claim of Lemma 5.1. The second assertion
directly follows from Proposition 3.4 (see (3.14)).

We next prove an uniqueness result for Cauchy-Dirichlet problem (2.16).

Lemma 5.2. If u is a bounded solution to the problem
Lyu=0 1inQgr(1,T) (5.3)
u=0 in 0,Qgr(&,1,T), '
then u = 0.

PrROOF. By the maximum principle, if v and v are weak solutions of the problem

{Lw:f in Qr(&,7,T)
u=20 in 0,Qgr(&,7,7T)

with f € LY (Qr(&,7,T)), then u = v. Hence, if u is a solution of the non-homogeneous
problem

Lou+Vu=f in Qr(&,7,7T)
{ u=0 in 0,Qr(&,7,7T)
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with f € LY(Qr(&,7,T)), then u is almost everywhere equal to
o= [ Gula AU - FONC. (.4)
QR(§77_?T)
Suppose now that u is a solution of the homogeneous problem (5.3) . We then have

wle, 1) = / Golz, t,y, 5)V(y, s)uly, s)dyds.
Qr(&TT)

for every (z,t) € Qr(§, 7, h). Then recalling that Go(z,t,y,s) = 0 for t < s we have for
t<1t+96

[ull e @niern < mv(O)||ullLoe(@uero-
Thus, if we choose § such that ny(9) < 1, we have u = 0 in Qg(&, 7,0). We then conclude
the proof by iterating this method.

Arguing as above, we can easily prove the following property.

Remark 5.3. If the function V' is bounded and u is a solution to the problem
Lyu=[ inQr(&T1,T)
u=>0 in Mp(&,1,T)
u=g in Sr(§, )
fO?" some f S Ll(QR(éa T, T)) and g e CO(‘SR(f?T)); then
ue) = [ Gewnewds- [ G
SR(£7T) QR(&TvT)

In order to state our next result, we introduce some further notations. For a given
(&,7) € RV and R > 0, we set

Q;{ = QE(&? T, RQ) = QR(f*v 7—*7 R2)7 where (g*a T*) = (€7 T) © (07 _R2)
Note that 7* = 7 — R? by (2.4), then we may consider Q% as the cylinder whose upper
basis is centered at (&, 7). We also set set

M(R) = sup u, m(R) = iQn*fu Osc(u, &, 7, R) = M(R) — m(R).

R

Lemma 5.4. Let w > 0 be a bounded solution of Lyu = 0 in Q. Then there exist
5,0 € (0,1) and a positive Ry, which depend on ny and Ly, such that

Osc(u, &, 7,0R) < oM(R)
for every R €]0, Ry).
PrROOF. The method is inspired by that in [28] (and has been used in [22]). Let ¢, and

Ry be as in Proposition 4.5, and set

S = {(I,T*) € Sr(&, 1) ru(x, ) >

M(R) +m(R) }
5 ;

Consider two possibility.
Case 1: meas(S) > imeas(Sg(£%,77)) .
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Define the function
v@) = [ Gle Nty ) = mlB)dy+ [ Gl OVIOu(O)de
SR(S*»T*) Q*R
and note that it is a solution to

Lov=—Vu in Qr(&*, 7" R?)
v=u—m(R) in Sg(&*,1")
v<u—m(R) in Mp(&*, 7%, R?).

The function u — m(R) is non-negative in Q% and Lo(u — m(R)) = —Vu, then, by the
comparison principle, we find

u(z) - m(R) > / Golz,y, ™) (uly, ™) — m(R))dy + /Q Golz OV(Qu(¢)dC

SR(f*vT*) *R

for almost every z € Q%. We next apply Proposition 3.1 with 7= R? and we obtain

Golzry, 7)(uly, 7*) — m(R))dy > / Golzsy, 7)(uly, 7*) — m(R))dy

Sr(&*,7*)
M(R) — m(R) . M(R) — m(R) e
e T e e A o
> Z(M(R) = m(R)), for every 2 € Qjn(&, 7, (5R)?).

On the other hand, we have

‘/* GO(Z’OV(QU(C)CZC‘ < M(R)ny(R?),

where the integral sufficiently small provided that we fix Ry such that ny(R?) < ¢ for any
R €]0, Ry]. Observing that
m(3R) = m(R) > ~(M(R) —m(R)) - <M (R)
it follows
€ 3 €
- <(1-:2 _ - <(1-:2 .
M(SR) — m(SR) < (1 4) (M(R) = m(R)) + M(R) < (1 8) M(R)

This concludes the the proof in the first case, since € €]0, 1[.
Case 2: meas(S) < smeas(Sg(£*,77)). In this case we set
w@) = [ Goly ) OIER) ~ g Ny + [ Gl OVQuQ)de,
SR(£*>T*) Q}%

Following the method used in Case 1 we find

M)~ () 2 [ Gl ) OM(R) ~ uly, 7)) dy — SM(R)
Sr(&*m)N\S
> Z(M(R) —m(R)) — %M(R), fora.e. z € Q5p(&, 7, (OR)?)
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and then
M(SR) — m(6R) < (1 - g) M(R).

The proof of Lemma 5.4 is then accomplished.

Proposition 5.5. Let Ry and oy as in Proposition 4.5. Let u > 0 be a solution of Lyu =0
in Q,Qr(&, 7, R?) CC Q, with R < Ry, and let V a bounded function. Then, for every
a, 3,7, €]0,1] such that o < 3 < and 6 < &y there exists a positive M that depends on
v, 15 and on the constants o, 3,7,0, but does not depend on the norm ||V|| e, such that

supu < M inf u.
Q- QF

PrOOF. We first note that the boundedness of V yields the continuity of w, by the
representation formula (3.10) and a standard bootstrap argument. Then there exists
(z,t) € QT such that u(z,t) = mingr u. It is not restrictive to assume u(z,t) = 1.

Following the line of the proof of Theorem 5.4 in [7], we consider, for every r € [0, 3R?|,
the following function

M%ﬂzég oty (o) € Qa7 ).

By the comparison principle (recall that that V is bounded and that u > 0) we obtain
u(z,t) > v(x,t), for every (z,t) € Qr(€, 7, R?), then

u@az/ G(z,F,y, rYuly, r)dy. (5.5)
Sr(&T,r)

Let us fix ¢/ = % and consider, for any A\ > 0, the set
S(T7 )\) = {y € Sé/R<€77—a ’l”) : u(y,r) 2 )‘} :
Then inequality (5.5) and Proposition 4.5 (with ay = v — ) imply that

_ - A emeas(S(r, \))
1:ux,t2/ Gz, t,y,r)u(y,r)dy > : 5.6
(1) o (Z, 8y, r)uly, r)dy moas(Sa(E. 7)) (5.6)
We set )
1 1 R 4 Q-2
K=>(1+- S - .
2 ( " 9) =3 (SA(l - @)) 57
where p is the constant in Lemma 5.4, and we note that
er()\) (67 T, (5T(/\))2> N SR(é-a T, T) = S(Sr()x) (C? T)
for every r € [t — (6r(\))?,¢]. Then
meas Q5 (&, 7, (07(X))?) N Sr(&, 7, 7)) = meas(Ss.0(¢, 7)) =
(by the analogous of (2.10) for the N-dimensional measure) (5.8)

Q-2
= (6r())% 7 meas(s) = 1

YR meas(S).
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We next prove the following statement. Let A > 0 and (z,t) € Qsgr(&, 7, R?) with
t < 7+ BR? be such that u(z,t) > X and that Q:(A)(l‘,t,T()\)Q) C Qsr(&,7,R?). Then
there exists (2',1') € @y, (7,1, 7(N)?) such that u(z’,t') > KA.

Indeed, from (5.6) it follows that

Q-2

meas (S (r, %(1 - g))> < %meas(é’)
so that, by (5.8), thereis a (¢, 7') € Q5,1 (&, 7, (97(N))?) N Sr(&, 7,7) such that u(¢', 7') <
%(1 — 0). Our claim then follows from Lemma 5.4.

We next show that there exists a positive constant M such that u(z,t) < M for
every (z,t) € Q. The thesis then follows, since u(Z,t) = mingru = 1. Suppose, by
contradiction, that there were a zy € @~ such that u(zy) > M. Then, repeating the
arguments used above to obtain u(a’,t") > K, there exists a sequence (zj) such that

u(z;) > M K7, Zjit+1 € Q;j(zj,r2), where 7; = r(M K’),

J
provided that
Q:j(zj,rf) C Qygr(&,7,R*), for every j € N. (5.9)
In order to prove (5.9) we note that

1

R 4 o2
Hz1,2) < cory = oy (m)

where ¢y = Zeé?(%},%’l) d(z,(0,0)) (recall (2.1)). Hence

1
R 4 TN
d(Zj,Zo> < Cog (W) E K Q-2
i=1

so that we can choose a positive M, that depends on «, d, dyp but does not depend on R,
such that (5.9) holds. Hence the sequence u(z;) is unbounded and we get a contradiction
with the continuity of w. This accomplishes the proof.

In a similar way it is true the next result for the adjoint operator.

Remark 5.6. Let v > 0 be a solution of £3,v = 0 in Qg(&, 7, R?), where V is a bounded
function and it is in the class SK(Qgr(&, 7, R?)). Then

supv < M infw,
o+ Q-

for some positive constant M depending on on 7y, 7;, and on the constants «, 3,7, d, but
that does not depend on ||V||p.

Lemma 5.7. Let u be a solution of Lyu = 0 in Q. Then, for any zo € ) there exists
a compact neighborhood K of zy such that K C 0 and that u is the limit in L'(K) of a
sequence (Upy,)men, where every u,, satisfy

L’Vmum =01 K.
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Moreover, for every compact set H C int(K), there exists a positive constant cy such that

lum(2)| <cyg Vze H, ¥YmeN. (5.10)

PrROOF. Consider a cylindrical set Qgr(&,7,T) such that Qg(§,7,7T) C Q, and suppose
that ny,(T) < 1 and n},(T) < 1. Let also consider a text function ¢ € C3°(Qr(&,7,7))
such that ¢ = 1 in a compact neighborhood K of zy such that K C Qr(&,7,7). We have

Ly, (up) = pLou + ulop + 2 Z X;pXju+upV,, =

=1

(recalling that u is solution of Lou + Vu = 0)

=ulopp + 2 ZngoXju + (Vi — V)ugp.

i=1

In the sequel we will denote f = 2 23"21 XjpXju+ ulyp. We also consider the Green
function G,, related to £y, and set

() = — / Gl O F(Q)C. (5.11)
Qr(&1,T)

We have
‘Cm(um - QOU) = _(Vm - V)SDU n QR(& T, T)
Uy, — ou = 0 in 9,Qr(&,7,7T),

and the function (V,, — V)pu belongs to L'(Qgr(&,7,T)), then, by Remark 5.3, we find
(= o0 = [ G2,V = V)ulQ)de.
QR(§7T7T)
W next integrate over Qg(&,7,T) and use property (i) of Proposition 4.2, for p = 1. We
obtain
[tm — oullzr@rierm) < aall(Vin — V)oullLi@pe ),

for some constant ¢; that does not depend on m. On the other hand

|(Vin(€) = V() e(Qu(Q)] < V(Qp(C)u(C)];
for almost every ¢ € Qr(&,7,T) and the function Vypu € LY(Qr(¢,7,T)), then

lim _([um — ull L1 (@ntermy) = O-

m—

This proves the first claim.
We next prove (5.10). We set

H = supp((X190)2 + o (Xp)? + (YSD)2)

and note that f(¢) = 0 for every ¢ ¢ H. We next prove that there exists a positive
constant ¢, that depends on H and H, but does not depends on m, such that

G(2,() <¢ forevery z € H,¢ € H. (5.12)
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As a consequence, by formula (5.11) we obtain

mm|</a (Q)d¢ < Efl L @niery):

for every z € H, and the proof is concluded, since

||fHL1(QR(£7TvT)) S k(z |’XJUHL1(QR(§7T»T)) + ||u||L1(QR(£’TfT))>7
7j=1

for a positive constant k£ that only depends on ¢ and on L.

We prove (5.12) by using the Harnack inequality stated in Remark 5.6. Let z be a
point of H. For every ( € H we consider a cylindrical open set Q C Qr(&,7,T) such that
(€ Q+ and Q N H = 0. Since Gp,(z,-) is a positive solution to L3, v =0, by Remark 5.6
we have

sup G (z,-) < M inf G,,(z, ),
o+ Q-

for some positive constant M that does not depend on m. On the other hand
meas(@ )int Gu(2) < [ Guls e <y (D)
Q- Qr(&7.T) k=0

where ¢; is the constant appearing in the statement (i ) of Proposition 4.2. Thus G,,(z,() <
k, for every z € H and ¢ € Q*, where the constant k depends on M, ¢; and my(T'). The

estimate (5.12) then follows from a standard covering argument for the compact set H.
This completes the proof.

PROOF OF PROPOSITION 2.3. Let u be a solution of the equation Lyu = 0 in . By
Lemma 5.7, u is the limit, in L] () of a sequence of bounded functions (t,)men such
that Evmum =01in a Sultable compact set K C 2. We then apply Lemma 5.1 to every
function u,,, then there exists a subsequence (upm, ),y that converges uniformly to u in
K. Thus the estimate of the modulus of continuity stated in Lemma 5.1 extends to u.
This completes the proof.

PROOF OF THEOREM 2.1. Let Qg(&, 70,7 be any cylindrical set. If ny(7T") < 1, and
Ny (T) < 1, the result immediately follows from Proposition 4.2.

If otherwise ny (T') > 1, or n{,(T") > 1, we choose h > 0 such that ny(h) < 1, i, (h) < 1.
Consider the cylinders

Q(S)(T()) = OX]S, S + T(][, QR (fo,Tg,Tg) (50, 7'0) @) 5RQ (R72T0)
S =0 x {s}, Sz(:f)(anTO) = (§0,70) © 655

and let G©) denote the Green function related to QS) (&0, 70, h) (we can employ the ar-
gument used in Proposition 4.2 without any change). We then extend the definition
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of G given in Proposition 4.2 as follows: for every (x,t) € Qr(&,70,7) such that
s+ h<t<s+2h, we set

G(z,t,y,s) = / GE (z, t w, s + h)G®(w, s + h,y, s)dw.
SS)(EOJO)

It is easy to verify that G is a Green function for the set Qg (&, 70, 2h) and that G*({, z) =
G(z,() is a Green function for the adjoint operator £y,*. For for (x,t) € Qr(&o, 70, T") such

that s +2h <t < s+ 4h we repeat the above argument and define the Green function in
the set Qr(&o, 70,4h) as

G(x,t,y,s) = / GUT2M) (g, t,w, s + 2h)G(S) (w, s+ 2h,y, s)dw.
Sg)(ﬁo,‘m)

After a finite number of iterations we obtain a Green function for Qr(&y,m0,7"). This
completes the proof.

PROOF OF THEOREM 2.2. As in Proposition 2.3, we obtain the result by using Lemma
5.7 and Proposition 5.5.
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