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Abstract — We present a large signal model for Si/SiGe
HBTSs using an Artificial Neural Network (ANN). The ANN
is used to model the DC non-linearities of the intrinsic
device. In this way, physical phenomena such as nonideal
leakage currents and the Kirk effect can be modeled without
time-consuming extraction. Capacitive nonlinearities are
modeled by the well-known relationship between the
capacitance and the junction voltage, ignoring the diffusion
capacitance. By comparing ANN model results to
measurements, we show that a good agreement for DC and
nonlinear characteristics is obtained.

1. INTRODUCTION

There is a high demand for Si/SiGe HBTs in the area of
Si-based microwave MMICs due to their superior high
frequency performance [1]. For the design of non-linear
circuits such as oscillators and power amplifiers, a non-
linear model needs to be developed. The most common
models for HBTs are compact models such as VBIC,
HICUM, and MEXTRAM. The general drawback of
compact models is the difficulty to extract their
parameters, as many kinds of measurements and setups
are required for this purpose. The alternative modeling
approach are equivalent scheme models. In [2], the
authors extend a small-signal equivalent circuit model to
incorporate nonlinearities arising from the base-emitter
(B-E) junction and from the collector current source.
They used a well known diode current equation to
represent the resistive current of (B-E) junction and
Taylor expansion to model both of the capacitive part of
the (B-E) junction and the collector current source. We
modify this work by using the ANN representation
instead of the diode equation to model the DC resistive
current of the B-E junction and instead of approximated
Taylor expansion to model the collector current source,
and this as function of both terminal voltages } gy and
Ve .- This approach has many advantages: firstly, the
ANN can closely approximate the nonlinear function and
its derivatives (responsible of non-linear behavior of the
device)[3]. Secondly, ANN has a sigmoid basis function
that can represent well the shape of the device
nonlinearities and that is less prone to convergence
problems than polynomials. Thirdly, it is a more physical
approach, as example the Early effect is taken into
account via the V- dependency. Fourthly, we have not
to extract the physical parameters of the device like
saturation current /; or 7] the ideality factor of the (B-E)
junction or [f§ current gain factor Finally, the ANN
model is very easy to build. The capacitive non-linearity
remains formulated using the classical capacitance-
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voltage junction relationship in reverse bias, and by linear
extrapolation in the forward region, its parameters
extracted by iterative method. The diffusion part of the B-
E capacitance is not taken into account, as the junction
part dominates [2].

The paper is organized as follows: First, the extraction
of the small-signal elements is summarized in Section II.
Then, we show the theory of A.N.N in section. III, the
proposed non-linear large-signal model is covered in
section IV. Model validation is presented in section V.
Finally the conclusions are drawn in Section VI.

II. SMALL SIGNAL MODELING OF THE DEVICE

The first step in the modeling procedure is the
extraction of the small-signal equivalent scheme. The
complete scheme as seen from the probe tips can be
subdivided into two parts: the intrinsic core of the device
and the external parasitics as shown in Fig. 1. Details of
our extraction procedure can be found in [4]. The
extrinsic elements are determined by measuring open,
short, and pad dummy structures. The values are used to
de-embed the measurements carried out using both DC
which used to build the model (sec. IV) and LSNA which
used to validate the model (sec. V). The intrinsic circuit
shown in Fig.2 contains 9 elements, i.e., one additional
element ‘C; © over the models found in literature, in order
to model the base distributed effect through Cand Cy,. In
this way, current crowding phenomena are incorporated.
The intrinsic elements values are determined by means of
a random search algorithm.
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Fig. 1. Representation of the SiGe HBT in the measurement
configuration. The actual transistor is represented by the
rectangle called ‘intrinsic transistor’. The series impedances and
parallel admittances model the probe pads and access
transmission lines.
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Fig. 2. Intrinsic small-signal model

III. ARTIFICIAL NEURAL NETWORK

In this Section, the concept of artificial neural networks
is briefly reviewed to support the proposed model
development in Section IV.

ANN is a mathematical tool to represent the nonlinear
relationship between a set of input and a set of output
data. In general, due to its architecture and choice of base
functions, an ANN model suffers less from convergence
problems than the alternative multi-dimensional
polynomial. The architecture is shown in Fig. 3. Its basic
representation consists of three layers: the input layer,
one hidden layer, and the output layer. The input layer
represents the input variables, e.g., the DC bias voltages.
The output layer represents the output variables, e.g., the
DC currents. The relationship between the input and
output variables is modeled by means of one or more
hidden layers, with each having some number of hidden
neurons. The base functions are called ‘activation
functions’. There are different kinds of ANNs according
to the type of the used activation function, namely Multi-
Layer Perceptron (MLP), the Radial Basic Function
(RBF), and the rational neural network. In this work, we
adopt the three-layer MLP architecture with the sigmoid
as base function.

The ANN is constructed through learning from a set of
input/output data (training set). The wused training
algorithm is the back-propagation algorithm [5], as
implemented in the Neuro-Modeler program [6]. After
training, the ANN is able to generalize the relationship
between the input and output, in the sense that for a given
input value, which is not in the training set, it can predict
the corresponding output.

The mapping between the input vector x with N, the
number of input neurons, and the output vector y with N,

the number of output neurons, can be determined as
follows:

The inputs to the hidden layer are the ¥, calculated
from the input variables by:

NX
Ve =| 2w |+ 6.

i=1
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Where N, is the number of neurons in the hidden layer,
wy; is the weighting factor and @, is the bias term. Let the

activation function of the hidden layer be the sigmoid
function f({), where

1
f)=—— @
I+e
then the output from the ky, neuron of the hidden layer
is z, asin Eq.3.

2k = (Vi) 3)
the output of the jy, neuron in the output layer is,
NZ
y}.:(szwij+nj, =12, Ny €))
k=1

with w Jk being the weighting factor and 7 ; the bias

term.
The training process is in fact an optimization problem

to find the best values for wy;,60,w ;.7 ; to minimize

the objective function, which is square of the difference
between the output from the ANN and the training data.

Output layer
Hidden layer

Input layer

Fig. 3. The used 3-layer MLP structure.

IV. NONLINEAR MODEL

The nonlinear model equivalent of the intrinsic small—
signal circuit is shown in Fig. 4. We model the non-linear

DC currents [ and I as a function of Vi and Vi ie.
Iy =Igp=feWVpe.Ver) &)

Ie=1cg=fcVpgVer) (6)
We construct the two functions fz and f- with an ANN of
the MLP-3 type. For that purpose, we collect 350 sample
measured DC data. The range of measurements takes into
account non-ideal currents (low base voltage region) and
Kirk effect (high base voltage region). We bias our

device with Vpranging from 0.6 V to 1.2 V, for V- from
0 voltage to 2 V, and measure the terminal currents [z

and /.. We subdivide our set of data into two sets: 250

sample data are used for training, while the other 100 are
used to test the ANN. Our neural network consists of 3

layers: an input layer (2 inputs) for Vpp and Vg, a
hidden layer (8 neurons), and an output layer (2 outputs)
for Iz and I . The test error is less than 1%.
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Fig. 4. Intrinsic non-linear model

The non-linear capacitance is modeled using [7], which
assumes linear extrapolation in forward bias:

Ve
% ....................................... Ve <2
1- BE )"’/0 (7)
CB'E(VB'E) = VO
2/7;/'0C 2 VB'E +1-— Vo >V70
BEO| 2mj, 7[/0 L7l N BE 27,

with Cpgo the value of the emitter-base junction
capacitance at V=0 V, V, the emitter-base barrier
potential, and m;, the emitter-base capacitance gradient
factor. These three parameters are extracted by varying
iteratively them up to get the best non-linear matching.

V. MODEL VERIFICATION

The nonlinear model for a 0.8 um x 9.6 um Si/SiGe
HBT was extracted and implemented in ADS. To validate
the model, we first compare the DC measured and

modeled currents. Fig. 5 shows [~ where an excellent
agreement is noticed. The same excellent agreement
for I 5 is shown in Fig. 6. For large-signal validation, we
compare measured and simulated output harmonics in
Fig. 7. The device is biased at V=09 V, V=15V,

the fundamental frequency f, equals 5.5 GHz and the
power is varied between —40 dBm to —10 dBm. The
model predicts well the measured fundamental and
harmonics, Fig. 7 shows this fact. Using LSNA
measurement setup, a time domain comparison is made
for i, in Fig. 8 and i, in Fig. 9 at an input power of —10

dBm.
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Fig. 5.a. Measured /¢ as function of V3 and V¢
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Fig. 5.b. Modeled I, as function of V3 and V¢
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Fig. 6.a.. Measured I as function of V3 and V.
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Fig. 6.b. Modeled I3 as function of V3 and V¢
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Fig. 7. Comparison between measured (m) and modeled (A)
fundamental, second, and third harmonics
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Fig. 8. Comparison between de-embedded measured (m), and
modeled (A) 7. f,=5.5 GHz,P;,=-10 dBm.
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Fig. 9. Comparison between de-embedded measured (m), and
modeled (A) i f,=5.5 GHz,P;,=-10 dBm.

VI. CONCLUSION

We developed a new ANN-based nonlinear model for
Si/SiGe HBT. In comparison to compact models, ANN is
simple to extract. Moreover, we can include all non-linear
effects via the ANN model. DC and large-signal
measurements have validated the model.
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