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Abstract – A method for measuring FET noise parameters is presented. It is based on the determination of 
a distributed noise model from 50 Ω noise figure measurements without needing a tuner, and taking into 

account the propagation effects along device electrodes. Experimental results up to 40 GHz are given. 

INTRODUCTION 

Distributed circuit models for FETs have been 
proposed to include propagation effects along the 
device electrodes when the transistor dimensions, in 
particular its gate width, become of the same order of 
magnitude than the wavelength [1]. In [2] a method is 
proposed for extracting the elemental distributed noise 
sources of the device from measurements of its four 
noise parameters through the simplifying assumption 
of no correlation between noise sources 
(Pospieszalski’s model [3]). In this paper, we propose 
the use of the smooth frequency dependence of the 
FET intrinsic noise sources in distributed-element 
circuit models for the determination of the FET noise 
parameters. This method is a generalization of the 
method proposed in [4], where a lumped-element 
circuit model was used. The method determines the 
noise sources of an elemental section of a general 
correlated intrinsic noise-model, which includes a 
correlation coefficient, using only the device noise 
figure for a matched (50 Ω) source (F50) measured at a 
number of frequency points. Therefore, a tuner is not 
required. The distributed model is based in the so-
called slice model [2],[5]. Experimental results of 
measured PHEMT’s noise parameters up to 40 GHz 
are presented.  

DISTRIBUTED NOISE-MODEL 

To model the distributed effects in FETs, a semi-
distributed model composed by a number N of equal 
device elemental sections (slices) is considered here 
[2],[5]. The circuit elements, associated to an elemental 
section, are shown in Figure 1. It is assumed that gate, 
drain and source electrodes behave as transmission 
lines propagating waves through the section. The 
section width Wu’ is defined as Wu’=Wu/N, where Wu 
is the gate-width corresponding to a single gate finger. 
The FET total gate-width is W = Wu · Nbd, where Nbd is 
the number of gate fingers. Each elemental section is 
modelled as a noisy six-port (Figure 2). The hybrid 

configuration (egs - ids) [6] is selected for the intrinsic 
FET noise sources because its noise matrix (Cint) is 
basically frequency independent. Also, the thermal 
noise contribution of the passive elements (RD, RS, Rgg, 
Rdd, Rss) is considered. 

The FET total noise-matrix in its ABCD configuration, 
CAT, is written in terms of the elemental section noise 
correlation matrix, Cint: 
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Figure 1: A section (slice) of the small-signal distributed 

FET model 
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Figure 2: Schematic of an elementary FET section including 
the associated noise sources 
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where Cext is the correlation matrix for the 
contributions of electrodes and pads, CY

GD is the 
admittance noise-matrix of the gate-to-drain passive 
port (element Cgd in Figure 2), PM is the transformation 
matrix from the selected intrinsic noise source 
configuration (in this paper, hybrid) to the admittance 
configuration, Mn is a transformation matrix for the 
slice n, which is a function of the equivalent circuit 
elements only, and the last summation term in (1) is the 
contribution of all the individual slices (Cint) to the 
total noise. Cext and Mn are matrices computed from 
the analysis developed to embed FET total noise-
matrix in ABCD configuration (CAT) from the 
elemental intrinsic correlation matrix (Cint) to the pad 
contributions [7]. Note that Cext, CY

GD, PM and Mn are 
functions of the FET S-parameters and the room 
temperature only. From CAT in (1), the FET noise 
parameters are readily computed using well-known 
formulas [7]. 

The FET noise figure F(ZS
i) (=F50) [7], which is a 

function of the source  impedance ZS
i, is measured at 

Nf frequency points (where i = 1, ..., Nf, is the 
frequency index) and expressed as a function of CAT. 
Then, using (1) the following equation is obtained at 
each frequency: 
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where the left-hand term ∆i is: 
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where k is the Boltzmann constant, T0=290K, Z=[1 
(ZS

i)*] and the matrices in (2-3) are evaluated at each 
frequency. Equation system (2) can also be written as: 
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where Xm (with m =1, 2, 3, 4) is a column vector, with 
Xm

i elements (i=1...Nf), whose are functions of ZS
i. 

Therefore, if a frequency redundancy is considered, the 
system (4) is an over-determined linear equation 
system where the unknowns are C11

int, C22
int, Re(C12

int), 
Im(C11

int), which are the elements of the intrinsic noise 
correlation matrix Cint corresponding to an elemental 
section.  

Assuming a smooth frequency dependence for the 
unknowns C11

int, C22
int, Re(C12

int), Im(C11
int), they are 

interpolated using an L-order polynomial [4]: 
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In this work, a linear approximation is considered 
(L=1) [4] and (4) is solved by least squares using 
pseudo-inverse calculation. The computed coefficients 
are used as initial values in an optimisation algorithm 
that estimates 0

ija  and 1
ija  for the best fit of the 

computed F(ZS
i) in (4) to the measured noise figure in 

(3), using a robust Huber error function.  

EXPERIMENTAL RESULTS 

The FET intrinsic elemental noise sources in a 
distributed noise model of a 0.2 µm gate-length, 4x15 
µm gate-width ED02AH PHEMT from PML, biased 
with VDS=1.5V, IDS=17.4mA, were determined using 
the procedure proposed in this paper. The 
determination of the transistor equivalent circuit 
elements, which are needed to compute the matrices 
required in (2)-(3), is made by applying scaling rules to 
a lumped-element model (with the same topology as 
the intrinsic zone of an elemental section, Figure 2 
(Yint)). The electrode capacitances and inductances are 
calculated from odd and even mode decomposition 
using the analytical method proposed in [8]. The 
transistor noise figure was measured with the 
experimental set-up described in [9]. 

Assuming the Pospieszalski’s model where 
C11

int≈4·k·Ta·Ri, (where Ta is the room temperature), 
C12

int=C21
int=0, and then, at each frequency point there 

is only one unknown, C22
int, that can be obtained from 

(4): 
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Figure 3 compares the extracted intrinsic correlation 
matrix for an elemental section of the PHEMT through 
direct extraction of Pospieszalski’s model using (6), 
and those obtained after optimization using the 
procedure described previously (equations (4)-(5)). The 
direct extraction exhibits a large ripple produced by 
measurement errors. In fact, the elements X1 

i, X2 
i, X3 

i, 
and X4 

i in (4), which depend on the FET S-parameters 
and the source impedance, ZS

i, are weight coefficients 
for the unknowns Cij

int  which one fitted to ∆i, 
computed from FET S-parameters, ZS

i and the 
transistor noise figure, FTRT

i. Thus the S-parameters and 
noise-power measurements uncertainties produce errors 
in the pseudo-inverse calculation (equations (4) and 
(6)); in particular at the lower frequency band, f < 10 
GHz, where the transistor noise figure is very small 
compared to the receiver noise figure. In contrast, when 
the frequency redundancy, in combination with an 
optimization algorithm and the robust Hubert error 
function is used, the large measurement errors are 
neglected. Figure 3 also shows that the intrinsic 
correlation matrix elements associated to the hybrid 
configuration used in this paper (gate voltage and drain 
current sources) are nearly frequency independent and 
can be interpolated using a linear polynomial. 

In Figures 3(b-c) the real and imaginary parts of the 
correlation factor, CH, respectively, are presented, 
where CH is defined as:  
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It can be observed that CH is different from zero in 
contrast with the Pospieszalski’s model, where it 
assumes C12

int=C21
int=0. This difference affects mainly 

to |Γopt|, in agreement with the literature [4] and, as 
shown in Figure 4, where the PHEMT noise parameters 

computed from estimated Cint are presented. Also, in 
Figure 4 can be observed that Fmin, Rn and Φopt 
obtained from the optimized intrinsic noise matrix are 
close to the interpolation of the results obtained from 
direct extraction of the Pospieszalski’s model using (6). 
The differences between Rn and Fmin are due to the 
differences in C11

int, mainly, and C12
int. Therefore, the 

method proposed here reduces the measurement errors 
in the determination of noise parameters. 

In Figure 5 the measured noise figure (F50) and the 
noise figure calculated from the extracted intrinsic 
correlation matrix using the method proposed here 
(which uses a distributed model), and the method 
described in [4] (which uses a lumped model) are 
compared. It can be observed that both methods give a 
similar fit over the entire frequency band. The 
measured noise figure shows a large ripple in the low 
frequency band because the transistor noise figure is 
small compared to the receiver noise figure, and thus 
the measurement uncertainty is larger. This effect is 
translated to the extracted intrinsic matrix and noise 
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Figure 3: Individual slice PHEMT noise matrix Cint, from 
direct extraction (equation (6), Pospieszalski’s model) 

(o), interpolating the results of the direct extraction ( ), 
and using the linear polynomial frequency approximation 

(equation (5)) (-) 
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Figure 4: PHEMT noise-parameters from direct extraction of 
the individual noise matrix Cint (equation (6), Pospieszalski’s 
model) (o), interpolating the results of the direct extraction 

( ), and using the lineal polynomial frequency 
approximation (equation (5)) (-) 
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parameters, as shown in Figures 3 and 4, where at the 
lower frequency band large deviations are observed. 
Figure 6 compares the four noise parameters of the 
PHEMT calculated using both models (lumped and 
distributed) showing some discrepancies which are a 
consequence of the different circuit model topology. 

CONCLUSIONS 

A method for the measurement of the four noise 
parameters of a FET based on the determination of its 
distributed noise-model from noise figure (F50) 
measurements only, without needing a tuner, has been 
presented. Arbitrary intrinsic FET noise models (which 
include correlation) with a smooth frequency 
dependence can be extracted. In this paper, the hybrid 
configuration for the intrinsic noise matrix of an 
elemental section, Cint, has been used. The method has 
been applied to a PHEMT. Measured and fitted F50 
results exhibit good agreement up to 40 GHz, very 
similar to that obtained with a lumped model. The 
transistor noise parameters computed using both 
models present some discrepancies, due to the 
difference between model topologies. Experimental 
results up to 40 GHz show that the elements of Cint 
(hybrid) have a linear frequency dependence and the 
proposed method reduce the uncertainty in the 
determination of the inner noise sources. 
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Figure 6: PHEMT noise- computed from the extracted 
intrinsic correlation matrix, Cint, using a distributed noise 

model (o), and a lumped noise model (∆) 


