Schlechtweg, Michael ; Tessmann, Axel ; Leuther, Arnulf ; Schwörer, Christoph ; Lang, Manfred ; Nowotny, Ulrich ; Kappeler, Otmar
(2003)
Integrated Circuits Based on 300 GHz fT Metamorphic HEMT Technology for Millimeter-Wave and Mixed-Signal Applications.
In: Gallium Arsenide applications symposium. GAAS 2003, 6-10 October 2003, Munich.
Full text available as:
Abstract
Advanced circuits based on metamorphic HEMT (MHEMT)technologies on 4 ”GaAs substrates for both millimeter-wave,and mixed- signal applications are presented.Extrinsic cut-off frequencies of ft =293 GHz and fmax =337 GHz were achieved for a 70 nm gate length metamorphic HEMT echnology.The MMIC process obtains high yield on transistor and circuit level.Single-stage low-noise amplifiers demonstrate a small signal gain of 13 dB and a noise figure of 2.8 dB at 94 GHz.An amplifier MMIC developed for D-Band operation features a gain of 15 dB at 160 GHz.The achieved results are comparable to state- of-the-art InP-based HEMT technologies.In order to realize 80 Gbit/s digital circuits,a process with 100 nm gate length enhancement type HEMTs with a transit frequency of 200 GHz is used.Three metalization layers are available for interconnects.The parasitic capacitance of the interconnects is kept low by using BCB and plated air bridge technology.Based on this process,static and dynamic frequency dividers achieve a maximu toggle frequency of 70 GHz and 108 GHz,respectively .
Abstract
Advanced circuits based on metamorphic HEMT (MHEMT)technologies on 4 ”GaAs substrates for both millimeter-wave,and mixed- signal applications are presented.Extrinsic cut-off frequencies of ft =293 GHz and fmax =337 GHz were achieved for a 70 nm gate length metamorphic HEMT echnology.The MMIC process obtains high yield on transistor and circuit level.Single-stage low-noise amplifiers demonstrate a small signal gain of 13 dB and a noise figure of 2.8 dB at 94 GHz.An amplifier MMIC developed for D-Band operation features a gain of 15 dB at 160 GHz.The achieved results are comparable to state- of-the-art InP-based HEMT technologies.In order to realize 80 Gbit/s digital circuits,a process with 100 nm gate length enhancement type HEMTs with a transit frequency of 200 GHz is used.Three metalization layers are available for interconnects.The parasitic capacitance of the interconnects is kept low by using BCB and plated air bridge technology.Based on this process,static and dynamic frequency dividers achieve a maximu toggle frequency of 70 GHz and 108 GHz,respectively .
Document type
Conference or Workshop Item
(Paper)
Creators
Subjects
DOI
Deposit date
17 Jun 2004
Last modified
17 Feb 2016 13:54
URI
Other metadata
Document type
Conference or Workshop Item
(Paper)
Creators
Subjects
DOI
Deposit date
17 Jun 2004
Last modified
17 Feb 2016 13:54
URI
Downloads
Downloads
Staff only: