Small area estimation of inequality measures using mixtures of betas

De Nicolò, Silvia ; Ferrante, Maria Rosaria ; Pacei, Silvia (2022) Small area estimation of inequality measures using mixtures of betas. Bologna: Dipartimento di Scienze Statistiche "Paolo Fortunati", Alma Mater Studiorum Università di Bologna, p. 28. DOI 10.6092/unibo/amsacta/7073. In: Quaderni di Dipartimento. Serie Ricerche (2). ISSN 1973-9346.
Full text available as:
[thumbnail of Quaderni_2022_2_DeNicolòFerrantePacei_Small.pdf]
Preview
Text(pdf)
License: Creative Commons: Attribution-Noncommercial-No Derivative Works 3.0 (CC BY-NC-ND 3.0)

Download (701kB) | Preview

Abstract

Economic inequalities referring to specific regions are crucial in deepening spatial heterogeneity. Income surveys are generally planned to produce reliable estimates at countries or macro region levels, thus we implement a small area model for a set of inequality measures (Gini, Relative Theil and Atkinson indexes) to obtain microregion estimates. Considering that inequality estimators are unit-interval defined with skewed and heavy-tailed distributions, we propose a Bayesian hierarchical model at area level involving a Beta mixture. An application on EU-SILC data is carried out and a design-based simulation is performed. Our model outperforms in terms of bias, coverage and error the standard Beta regression model. Moreover, we extend the analysis of inequality estimators by deriving their approximate variance functions.

Abstract
Document type
Monograph (Working Paper)
Creators
CreatorsAffiliationORCID
De Nicolò, SilviaDipartimento di Scienze Statistiche “P.Fortunati”, Alma Mater Studiorum Università di Bologna0000-0001-5052-6527
Ferrante, Maria RosariaDipartimento di Scienze Statistiche “P.Fortunati”, Alma Mater Studiorum Università di Bologna0000-0001-9813-2420
Pacei, SilviaDipartimento di Scienze Statistiche “P.Fortunati”, Alma Mater Studiorum Università di Bologna0000-0002-2413-7584
Subjects
ISSN
1973-9346
DOI
Deposit date
07 Nov 2022 07:43
Last modified
07 Nov 2022 07:43
URI

Other metadata

Downloads

Downloads

Staff only: View the document

^