Probability of digits by dividing random numbers: a psi and zeta functions approach

Gambini, Alessandro ; Mingari Scarpello, Giovanni ; Ritelli, Daniele (2012) Probability of digits by dividing random numbers: a psi and zeta functions approach. Expositiones Mathematicae, 30 (3). p. 223238. ISSN 0723-0869
Full text disponibile come:
[img]
Anteprima
Documento PDF
Licenza Creative Commons Attribution Non-commercial (CC BY-NC 3.0)

Download (1MB) | Anteprima

Abstract

This paper begins with the statistics of the decimal digits of n/d with n, d randomly chosen. Starting with a statement by E. Cesàro on probabilistic number theory we evaluate, through the Euler psi function, an integral appearing there. Furthermore the probabilistic statement itself is proved, using a different approach.The theorem is then generalized to real numbers (Theorem 1) and to the alpha-th power of the ratio of integers (Theorem 2), via an elementary approach involving the psi function and the Hurwitz zeta function. The article provides historic remarks, numerical examples, and original theoretical contributions: also it complements the recent renewed interest in Benford's law among number theorists.

Abstract
Tipologia del documento
Articolo
Autori
AutoreAffiliazioneORCID
Gambini, Alessandro
Mingari Scarpello, Giovanni
Ritelli, Daniele
Parole chiave
Elementary probability, Euler psi function, Hurwitz zeta function
Settori scientifico-disciplinari
ISSN
0723-0869
DOI
Data di deposito
31 Ott 2012 09:57
Ultima modifica
29 Gen 2013 10:16
URI

Altri metadati

Statistica sui download

Statistica sui download

Gestione del documento: Visualizza il documento

^