Caporali, Alessio ; 
Galassi, Kevin ; 
Zanella, Riccardo ; 
Palli, Gianluca
  
(2022)
REMODEL. WP4. Vision-based Perception. T4_3. Cable Detection and Tracking. Fast Segmentation of Deformable Linear Objects. v0.
    University of Bologna.
     DOI 
10.6092/unibo/amsacta/7036.
    [Dataset]
  
  
 
  
  	
  	
	
  
  
  
  
  
  
  
    
  
    
      Full text disponibile come:
      
    
  
  
  
    
      Abstract
      The dataset contains the source code and model weights utilized for the experimental validation on segmentation of deformable linear objects. The developed approach is called FASTDLO. The source code algorithm comprises a deep convolutional neural network employed for background segmentation, the intersections between different Deformable Linear Objects (DLOs) are solved with a similarity-based network combined to a skeletonization algorithm. FASTDLO also describes each DLO instance with a sequence of 2D coordinates. The associated publication is the following:
A. Caporali, K. Galassi, R. Zanella and G. Palli, "FASTDLO: Fast Deformable Linear Objects Instance Segmentation," in IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 9075-9082, Oct. 2022, doi: 10.1109/LRA.2022.3189791.
     
    
      Abstract
      The dataset contains the source code and model weights utilized for the experimental validation on segmentation of deformable linear objects. The developed approach is called FASTDLO. The source code algorithm comprises a deep convolutional neural network employed for background segmentation, the intersections between different Deformable Linear Objects (DLOs) are solved with a similarity-based network combined to a skeletonization algorithm. FASTDLO also describes each DLO instance with a sequence of 2D coordinates. The associated publication is the following:
A. Caporali, K. Galassi, R. Zanella and G. Palli, "FASTDLO: Fast Deformable Linear Objects Instance Segmentation," in IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 9075-9082, Oct. 2022, doi: 10.1109/LRA.2022.3189791.
     
  
  
    
    
      Tipologia del documento
      Dataset
      
      
      
      
        
          Autori
          
          
        
      
        
      
        
      
        
      
        
          Settori scientifico-disciplinari
          
          
        
      
        
      
        
      
        
          DOI
          
          
        
      
        
          Contributors
          
          
        
      
        
      
        
      
        
          Data di deposito
          26 Ott 2022 09:19
          
        
      
        
          Ultima modifica
          26 Ott 2022 09:19
          
        
      
        
          Risorse collegate
          
          
        
      
      
        Nome del Progetto
        
        Programma di finanziamento
        EC - H2020
      
      URI
      
      
     
   
  
    Altri metadati
    
      Tipologia del documento
      Dataset
      
      
      
      
        
          Autori
          
          
        
      
        
      
        
      
        
      
        
          Settori scientifico-disciplinari
          
          
        
      
        
      
        
      
        
          DOI
          
          
        
      
        
          Contributors
          
          
        
      
        
      
        
      
        
          Data di deposito
          26 Ott 2022 09:19
          
        
      
        
          Ultima modifica
          26 Ott 2022 09:19
          
        
      
        
          Risorse collegate
          
          
        
      
      
        Nome del Progetto
        
        Programma di finanziamento
        EC - H2020
      
      URI
      
      
     
   
  
  
  
  
  
  
  
  
  
  
  
  
    
    Statistica sui download
    Statistica sui download
    
    
      Gestione del documento: 
      
        