Testing the performances of different image representations for mass classification in digital mammograms

Angelini, Enrico ; Campanini, Renato ; Iampieri, Emiro ; Lanconelli, Nico ; Masotti, Matteo ; Roffilli, Matteo (2006) Testing the performances of different image representations for mass classification in digital mammograms. International Journal of Modern Physics C, 17 (1). pp. 113-131.

Questa è la versione più aggiornata di questo documento.

Full text disponibile come:
[thumbnail of masotti06testing.pdf]
Anteprima
Documento PDF
Licenza: Creative Commons Attribution Non-commercial 3.0 (CC BY-NC 3.0)

Download (310kB) | Anteprima

Abstract

The classification of tumoral masses and normal breast tissue is targeted. A mass detection algorithm which does not refer explicitly to shape, border, size, contrast or texture of mammographic suspicious regions is evaluated. In the present approach, classification features are embodied by the image representation used to encode suspicious regions. Classification is performed by means of a support vector machine (SVM) classifier. To investigate whether improvements can be achieved with respect to a previously proposed overcomplete wavelet image representation, a pixel and a discrete wavelet image representations are developed and tested. Evaluation is performed by extracting 6000 suspicious regions from the digital database for screening mammography (DDSM) collected by the University of South Florida (USF). More specifically, 1000 regions representing biopsy-proven tumoral masses (either benign or malignant) and 5000 regions representing normal breast tissue are extracted. Results demonstrate very high performance levels. The area Az under the receiver operating characteristic (ROC) curve reaches values of 0.973 +/- 0.002, 0.948 +/- 0.004 and 0.956 +/- 0.003 for the pixel, discrete wavelet and overcomplete wavelet image representations, respectively. In particular, the improvement in the Az value with the pixel image representation is statistically significant compared to that obtained with the discrete wavelet and overcomplete wavelet image representations (two-tailed p-value < 0.0001). Additionally, 90% true positive fraction (TPF) values are achieved with false positive fraction (FPF) values of 6%, 11% and 7%, respectively.

Abstract
Tipologia del documento
Articolo
Autori
AutoreAffiliazioneORCID
Angelini, Enrico
Campanini, Renato
Iampieri, Emiro
Lanconelli, Nico
Masotti, Matteo
Roffilli, Matteo
Parole chiave
Computer-aided detection, Mammography, Support Vector Machine, Image Processing, Wavelets
Settori scientifico-disciplinari
DOI
Data di deposito
11 Lug 2006
Ultima modifica
31 Ott 2012 11:52
URI

Altri metadati

Versioni disponibili di questo documento

Statistica sui download

Statistica sui download

Gestione del documento: Visualizza il documento

^