Anteprima |
Documento PDF
Download (58kB) | Anteprima |
Abstract
A novel approach to the detection of masses and clustered microcalcification is presented. Lesion detection is considered as a two-class pattern recognition problem. In order to get an effective and stable representation, the detection scheme codifies the image by using a ranklet transform. The vectors of ranklet coefficients obtained are classified by means of an SVM classifier. Our approach has two main advantages. First it does not need any feature selected by the trainer. Second, it is quite stable, with respect to the image histogram. That allows us to tune the detection parameters in one database and use the trained CAD on other databases without needing any adjustment. In this paper, training is accomplished on images coming from different databases (both digitized and digital). Test results are calculated on images coming from a few FFDM Giotto Image MD clinical units. The sensitivity of our CAD system is about 85% with a false-positive rate of 0.5 marks per image.
Altri metadati
La presente opera può essere liberamente consultata ed utilizzata, può essere riprodotta in via permanente in formato digitale (c.d. salvataggio) e può esserne effettuata la stampa su carta con apparecchiature private (senza ricorso a terzi operatori professionali), per fini strettamente ed esclusivamente personali, di ricerca o didattica, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale, salvo diverso accordo espresso fra il singolo utente e l'autore o il titolare dei diritti sull'opera. E' altresì consentita, sempre per i medesimi fini sopra citati, la ritrasmissione via rete telematica, la distribuzione o l'invio in qualunque forma dell'opera, compresa quella con indirizzamento personale per via telematica (e-mail), purchè sia sempre chiaramente indicato il link completo alla pagina del Sito di Alma DL in cui detta opera è presente. Ogni altro diritto sull'opera è riservato.