Enz, Christian
(2000)
MOS Transistor Modeling for RF IC Design.
In: Gallium Arsenide applications symposium. GAAS 2000, 2-6 october 2000, Paris.
Full text disponibile come:
Abstract
The design of radio-frequency (RF) integrated circuits (ICs) in deep-submicron CMOS processes requires accurate and scalable compact models of the MOS transistor that are valid in the GHz frequency range and beyond. Unfortunately, the currently available compact models give inaccurate results if they are not modified adequately. This paper presents the basis of the modeling of the MOS transistor for circuit simulation at RF. A physical and scalable equivalent circuit that can easily be implemented as a Spice subcircuit is described. The small-signal and noise models are discussed and mea-surements made on a 0.25µm CMOS process are presented that validate the RF MOST model up to 10GHz.
Abstract
The design of radio-frequency (RF) integrated circuits (ICs) in deep-submicron CMOS processes requires accurate and scalable compact models of the MOS transistor that are valid in the GHz frequency range and beyond. Unfortunately, the currently available compact models give inaccurate results if they are not modified adequately. This paper presents the basis of the modeling of the MOS transistor for circuit simulation at RF. A physical and scalable equivalent circuit that can easily be implemented as a Spice subcircuit is described. The small-signal and noise models are discussed and mea-surements made on a 0.25µm CMOS process are presented that validate the RF MOST model up to 10GHz.
Tipologia del documento
Documento relativo ad un convegno o altro evento
(Atto)
Autori
Settori scientifico-disciplinari
DOI
Data di deposito
17 Giu 2004
Ultima modifica
17 Feb 2016 13:41
URI
Altri metadati
Tipologia del documento
Documento relativo ad un convegno o altro evento
(Atto)
Autori
Settori scientifico-disciplinari
DOI
Data di deposito
17 Giu 2004
Ultima modifica
17 Feb 2016 13:41
URI
Statistica sui download
Statistica sui download
Gestione del documento: