Esiste un'altra versione di questo documento. Clicca qui per vederla.
Anteprima |
Documento PDF
Download (230kB) | Anteprima |
Abstract
Reeb graphs provide a method for studying the shape of a manifold by encoding the evolution and arrangement of level sets of a simple Morse function defined on the manifold. Since their introduction in computer graphics they have been gaining popularity as an effective tool for shape analysis and matching. In this context one question deserving attention is whether Reeb graphs are robust against function perturbations. Focusing on 1-dimensional manifolds, we define an editing distance between Reeb graphs of curves, in terms of the cost necessary to transform one graph into another. Our main result is that changes in Morse functions induce smaller changes in the editing distance between Reeb graphs of curves, implying stability of Reeb graphs under function perturbations.
Altri metadati
Versioni disponibili di questo documento
- Stability of Reeb Graphs under function perturbations: the case of closed curves. (deposited 25 Mar 2010 09:57) [Attualmente visualizzato]
La presente opera può essere liberamente consultata ed utilizzata, può essere riprodotta in via permanente in formato digitale (c.d. salvataggio) e può esserne effettuata la stampa su carta con apparecchiature private (senza ricorso a terzi operatori professionali), per fini strettamente ed esclusivamente personali, di ricerca o didattica, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale, salvo diverso accordo espresso fra il singolo utente e l'autore o il titolare dei diritti sull'opera. E' altresì consentita, sempre per i medesimi fini sopra citati, la ritrasmissione via rete telematica, la distribuzione o l'invio in qualunque forma dell'opera, compresa quella con indirizzamento personale per via telematica (e-mail), purchè sia sempre chiaramente indicato il link completo alla pagina del Sito di Alma DL in cui detta opera è presente. Ogni altro diritto sull'opera è riservato.