Anteprima |
Documento PDF
Download (262kB) | Anteprima |
Abstract
We consider non-negative solutions to a class of second order degenerate Kolmogorov operators L in non-divergence form, defined in a bounded open domain Omega contained in R^{N+1}. Let K be a compact subset of the closure of Omega, let z be a point of Omega, and let Sigma be a subset of the boundary of Omega. We give sufficient geometric conditions for the validity of the following Carleson type estimate: There exists a positive constant C, depending only on the Kolmogorov operator L, on Omega, Sigma, K and z, such that sup_K u < C u(z), for every non-negative solution u of Lu = 0 in Omega such that u vanishes on Sigma.
Altri metadati
La presente opera può essere liberamente consultata ed utilizzata, può essere riprodotta in via permanente in formato digitale (c.d. salvataggio) e può esserne effettuata la stampa su carta con apparecchiature private (senza ricorso a terzi operatori professionali), per fini strettamente ed esclusivamente personali, di ricerca o didattica, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale, salvo diverso accordo espresso fra il singolo utente e l'autore o il titolare dei diritti sull'opera. Ogni altro diritto sull'opera è riservato. In particolare, non è consentita la ritrasmissione via rete telematica, la distribuzione 'invio in qualunque forma, compresa quella con indirizzamento personale per via telematica (e-mail).