Bruno, Francesca ;
Cocchi, Daniela ;
Vagheggini, Alessandro
(2011)
Finite population properties of predictors based on spatial patterns.
Bologna, IT:
Dipartimento di Scienze Statistiche "Paolo Fortunati", Alma Mater Studiorum Università di Bologna,
p. 38.
DOI
10.6092/unibo/amsacta/3044.
In: Quaderni di Dipartimento. Serie Ricerche
ISSN 1973-9346.
Full text disponibile come:
Abstract
When statistical inference is used for spatial prediction, the model-based framework known as kriging is commonly used. The predictor for an unsampled element of a population is a weighted combination of sampled values, in which weights are obtained by estimating the spatial covariance function. This solution can be affected by model misspecification and can be influenced by sampling design properties. In classical design-based finite population inference, these problems can be overcome; nevertheless, spatial solutions are still seldom used for this purpose. Through the efficient use of spatial information, a conceptual framework for design-based estimation has been developed in this study. We propose a standardized weighted predictor for unsampled spatial data, using the population information regarding spatial locations directly in the weighting system. Our procedure does not require model estimation of the spatial pattern because the spatial relationship is captured exclusively based on the Euclidean distances between locations (which are fixed and do not require assessment after sample selection). The individual predictor is a design-based ratio estimator, and we illustrate its properties for simple random sampling.
Abstract
When statistical inference is used for spatial prediction, the model-based framework known as kriging is commonly used. The predictor for an unsampled element of a population is a weighted combination of sampled values, in which weights are obtained by estimating the spatial covariance function. This solution can be affected by model misspecification and can be influenced by sampling design properties. In classical design-based finite population inference, these problems can be overcome; nevertheless, spatial solutions are still seldom used for this purpose. Through the efficient use of spatial information, a conceptual framework for design-based estimation has been developed in this study. We propose a standardized weighted predictor for unsampled spatial data, using the population information regarding spatial locations directly in the weighting system. Our procedure does not require model estimation of the spatial pattern because the spatial relationship is captured exclusively based on the Euclidean distances between locations (which are fixed and do not require assessment after sample selection). The individual predictor is a design-based ratio estimator, and we illustrate its properties for simple random sampling.
Tipologia del documento
Monografia
(Working paper)
Autori
Parole chiave
spatial sampling; ratio estimator; design-based inference; model-based inference; spatial information in finite population inference
campionamento spaziale, stimatore del rapporto, inferenza da disegno, inferenza da modello; informazione spaziale nell’inferenza da popolazioni finite
Settori scientifico-disciplinari
ISSN
1973-9346
DOI
Data di deposito
24 Giu 2011 08:53
Ultima modifica
28 Set 2011 10:35
URI
Altri metadati
Tipologia del documento
Monografia
(Working paper)
Autori
Parole chiave
spatial sampling; ratio estimator; design-based inference; model-based inference; spatial information in finite population inference
campionamento spaziale, stimatore del rapporto, inferenza da disegno, inferenza da modello; informazione spaziale nell’inferenza da popolazioni finite
Settori scientifico-disciplinari
ISSN
1973-9346
DOI
Data di deposito
24 Giu 2011 08:53
Ultima modifica
28 Set 2011 10:35
URI
La presente opera può essere liberamente consultata ed utilizzata, può essere riprodotta in via permanente in formato digitale (c.d. salvataggio) e può esserne effettuata la stampa su carta con apparecchiature private (senza ricorso a terzi operatori professionali), per fini strettamente ed esclusivamente personali, di ricerca o didattica, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale, salvo diverso accordo espresso fra il singolo utente e l'autore o il titolare dei diritti sull'opera.
Ogni altro diritto sull'opera è riservato. In particolare, non è consentita la ritrasmissione via rete telematica, la distribuzione 'invio in qualunque forma, compresa quella con indirizzamento personale per via telematica (e-mail).
Statistica sui download
Statistica sui download
Gestione del documento: