Cavaliere, Giuseppe ;
Georgiev, Iliyan ;
Taylor, A.M. Robert
(2011)
Wild bootstrap of the mean in the infinite variance case.
Bologna, IT:
Dipartimento di Scienze Statistiche "Paolo Fortunati", Alma Mater Studiorum Università di Bologna,
p. 15.
DOI
10.6092/unibo/amsacta/3059.
In: Quaderni di Dipartimento. Serie Ricerche
ISSN 1973-9346.
Full text disponibile come:
Abstract
It is well known that the standard i.i.d. bootstrap of the mean is inconsistent in a location model with infinite variance (alfa-stable) innovations. This occurs because the bootstrap distribution of a normalised sum of infinite variance random variables tends to a random distribution. Consistent bootstrap algorithms based on subsampling methods have been proposed but have the drawback that they deliver much wider confidence sets than those generated by the i.i.d. bootstrap owing to the fact that they eliminate the dependence of the bootstrap distribution on the sample extremes. In this paper we propose sufficient conditions that allow a simple modification of the bootstrap (Wu, 1986, Ann.Stat.) to be consistent (in a conditional sense) yet to also reproduce the narrower confidence sets of the i.i.d. bootstrap. Numerical results demonstrate that our proposed bootstrap method works very well in practice delivering coverage rates very close to the nominal level and significantly narrower confidence sets than other consistent methods.
Abstract
It is well known that the standard i.i.d. bootstrap of the mean is inconsistent in a location model with infinite variance (alfa-stable) innovations. This occurs because the bootstrap distribution of a normalised sum of infinite variance random variables tends to a random distribution. Consistent bootstrap algorithms based on subsampling methods have been proposed but have the drawback that they deliver much wider confidence sets than those generated by the i.i.d. bootstrap owing to the fact that they eliminate the dependence of the bootstrap distribution on the sample extremes. In this paper we propose sufficient conditions that allow a simple modification of the bootstrap (Wu, 1986, Ann.Stat.) to be consistent (in a conditional sense) yet to also reproduce the narrower confidence sets of the i.i.d. bootstrap. Numerical results demonstrate that our proposed bootstrap method works very well in practice delivering coverage rates very close to the nominal level and significantly narrower confidence sets than other consistent methods.
Tipologia del documento
Monografia
(Working paper)
Autori
Parole chiave
Bootstrap, distribuzioni stabili, misure di probabilità stocastiche, convergenza debole
Bootstrap, stable distributions, random probability measures, weak convergence
Settori scientifico-disciplinari
ISSN
1973-9346
DOI
Data di deposito
13 Lug 2011 09:48
Ultima modifica
16 Set 2011 10:27
URI
Altri metadati
Tipologia del documento
Monografia
(Working paper)
Autori
Parole chiave
Bootstrap, distribuzioni stabili, misure di probabilità stocastiche, convergenza debole
Bootstrap, stable distributions, random probability measures, weak convergence
Settori scientifico-disciplinari
ISSN
1973-9346
DOI
Data di deposito
13 Lug 2011 09:48
Ultima modifica
16 Set 2011 10:27
URI
La presente opera può essere liberamente consultata ed utilizzata, può essere riprodotta in via permanente in formato digitale (c.d. salvataggio) e può esserne effettuata la stampa su carta con apparecchiature private (senza ricorso a terzi operatori professionali), per fini strettamente ed esclusivamente personali, di ricerca o didattica, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale, salvo diverso accordo espresso fra il singolo utente e l'autore o il titolare dei diritti sull'opera.
Ogni altro diritto sull'opera è riservato. In particolare, non è consentita la ritrasmissione via rete telematica, la distribuzione 'invio in qualunque forma, compresa quella con indirizzamento personale per via telematica (e-mail).
Statistica sui download
Statistica sui download
Gestione del documento: