Extending the Applicability Condition in the Formal System \lambda\delta

Guidi, Ferruccio (2015) Extending the Applicability Condition in the Formal System \lambda\delta. [Preprint]
Full text disponibile come:
[thumbnail of ld_tr_4.pdf]
Anteprima
Documento PDF
Licenza: Creative Commons Attribution Non-commercial 3.0 (CC BY-NC 3.0)

Download (537kB) | Anteprima

Abstract

The formal system \lambda\delta is a typed lambda calculus derived from \Lambda\infinity, aiming to support the foundations of Mathematics that require an underlying theory of expressions (for example the Minimal Type Theory). The system is developed in the context of the Hypertextual Electronic Library of Mathematics as a machine-checked digital specification, that is not the formal counterpart of previous informal material. The first version of the calculus appeared in 2006 and proved unsatisfactory for some reasons. In this article we present a revised version of the system and we prove three relevant desired properties: the confluence of reduction, the strong normalization of an extended form of reduction, known as the ``big tree'' theorem, and the preservation of validity by reduction. To our knowledge, we are presenting here the first fully machine-checked proof of the ``big tree'' theorem for a calculus that includes \Lambda\infinity.

Abstract
Tipologia del documento
Preprint
Autori
AutoreAffiliazioneORCID
Guidi, Ferruccio
Parole chiave
explicit substitutions, extended applicability condition, extended transition system, infinite degrees of terms, preservation of validity, strong normalization, terms as types
Settori scientifico-disciplinari
DOI
Data di deposito
09 Dic 2015 08:25
Ultima modifica
15 Dic 2015 08:06
URI

Altri metadati

Statistica sui download

Statistica sui download

Gestione del documento: Visualizza il documento

^