Palumbo, Pierpaolo ; Palmerini, Luca ; Bandinelli, Stefania ; Chiari, Lorenzo
(2015)
Fall Risk Assessment Tools for Elderly Living in the Community: Can We Do Better?
PLOS ONE, 10
(12).
ISSN 1932-6203
Full text disponibile come:
Abstract
Background
Falls are a common, serious threat to the health and self-confidence of the elderly. Assessment of fall risk is an important aspect of effective fall prevention programs.
Objectives and methods
In order to test whether it is possible to outperform current prognostic tools for falls, we analyzed 1010 variables pertaining to mobility collected from 976 elderly subjects (InCHIANTI study). We trained and validated a data-driven model that issues probabilistic predictions about future falls. We benchmarked the model against other fall risk indicators: history of falls, gait speed, Short Physical Performance Battery (Guralnik et al. 1994), and the literature-based fall risk assessment tool FRAT-up (Cattelani et al. 2015).
Parsimony in the number of variables included in a tool is often considered a proxy for ease of administration. We studied how constraints on the number of variables affect predictive accuracy.
Results
The proposed model and FRAT-up both attained the same discriminative ability; the area under the Receiver Operating Characteristic (ROC) curve (AUC) for multiple falls was 0.71. They outperformed the other risk scores, which reported AUCs for multiple falls between 0.64 and 0.65. Thus, it appears that both data-driven and literature-based approaches are better at estimating fall risk than commonly used fall risk indicators.
The accuracy–parsimony analysis revealed that tools with a small number of predictors (~1-5) were suboptimal. Increasing the number of variables improved the predictive accuracy, reaching a plateau at ~20-30, which we can consider as the best trade-off between accuracy and parsimony. Obtaining the values of these ~20-30 variables does not compromise usability, since they are usually available in comprehensive geriatric assessments.
Abstract
Background
Falls are a common, serious threat to the health and self-confidence of the elderly. Assessment of fall risk is an important aspect of effective fall prevention programs.
Objectives and methods
In order to test whether it is possible to outperform current prognostic tools for falls, we analyzed 1010 variables pertaining to mobility collected from 976 elderly subjects (InCHIANTI study). We trained and validated a data-driven model that issues probabilistic predictions about future falls. We benchmarked the model against other fall risk indicators: history of falls, gait speed, Short Physical Performance Battery (Guralnik et al. 1994), and the literature-based fall risk assessment tool FRAT-up (Cattelani et al. 2015).
Parsimony in the number of variables included in a tool is often considered a proxy for ease of administration. We studied how constraints on the number of variables affect predictive accuracy.
Results
The proposed model and FRAT-up both attained the same discriminative ability; the area under the Receiver Operating Characteristic (ROC) curve (AUC) for multiple falls was 0.71. They outperformed the other risk scores, which reported AUCs for multiple falls between 0.64 and 0.65. Thus, it appears that both data-driven and literature-based approaches are better at estimating fall risk than commonly used fall risk indicators.
The accuracy–parsimony analysis revealed that tools with a small number of predictors (~1-5) were suboptimal. Increasing the number of variables improved the predictive accuracy, reaching a plateau at ~20-30, which we can consider as the best trade-off between accuracy and parsimony. Obtaining the values of these ~20-30 variables does not compromise usability, since they are usually available in comprehensive geriatric assessments.
Tipologia del documento
Articolo
Autori
Parole chiave
Elderly Falls Forecasting Risk assessment Geriatrics
Settori scientifico-disciplinari
ISSN
1932-6203
DOI
Data di deposito
26 Gen 2016 13:12
Ultima modifica
26 Feb 2016 10:34
Nome del Progetto
Programma di finanziamento
EC - FP7
URI
Altri metadati
Tipologia del documento
Articolo
Autori
Parole chiave
Elderly Falls Forecasting Risk assessment Geriatrics
Settori scientifico-disciplinari
ISSN
1932-6203
DOI
Data di deposito
26 Gen 2016 13:12
Ultima modifica
26 Feb 2016 10:34
Nome del Progetto
Programma di finanziamento
EC - FP7
URI
Statistica sui download
Statistica sui download
Gestione del documento: