Neural-Based Nonlinear Device Models for Intermodulation Analysis

Giannini, F. ; Colantonio, P. ; Leuzzi, G. ; Orengo, G. ; Serino, A. (2003) Neural-Based Nonlinear Device Models for Intermodulation Analysis. In: Gallium Arsenide applications symposium. GAAS 2003, 6-10 October 2003, Munich.
Full text disponibile come:
[thumbnail of G_11_03.pdf]
Anteprima
Documento PDF
Download (111kB) | Anteprima

Abstract

A new procedure to learn a nonlinear model together with its derivative parameters using a composite neural network is presented.So far neural networks have never been used to extract large-signal device model accounting for distortion parameters.Applying this method to FET devices leads to nonlinear models for current- voltage functions which allow improved prediction of weak and mildly device nonlinearities in the whole bias region. The resulting models have demonstrated to be suitable for both small-signal and large-signal analyses,including intermodulation distortion prediction.

Abstract
Tipologia del documento
Documento relativo ad un convegno o altro evento (Atto)
Autori
AutoreAffiliazioneORCID
Giannini, F.
Colantonio, P.
Leuzzi, G.
Orengo, G.
Serino, A.
Settori scientifico-disciplinari
DOI
Data di deposito
17 Giu 2004
Ultima modifica
17 Feb 2016 13:53
URI

Altri metadati

Statistica sui download

Statistica sui download

Gestione del documento: Visualizza il documento

^