Fluorescent Neuronal Cells

Clissa, Luca ; Morelli, Roberto ; Squarcio, Fabio ; Hitrec, Timna ; Luppi, Marco ; Rinaldi, Lorenzo ; Cerri, Matteo ; Amici, Roberto ; Bastianini, Stefano ; Berteotti, Chiara ; Lo Martire, Viviana ; Martelli, Davide ; Occhinegro, Alessandra ; Tupone, Domenico ; Zoccoli, Giovanna ; Zoccoli, Antonio (2021) Fluorescent Neuronal Cells. University of Bologna. DOI 10.6092/unibo/amsacta/6706. [Dataset]
Avviso

Esiste un'altra versione di questo documento. Clicca qui per vederla.

Full text disponibile come:
[thumbnail of Archivio (yellow marker (Cholera Toxin sub-unit b - CTb))] Archivio (Archivio (yellow marker (Cholera Toxin sub-unit b - CTb)))
Licenza: Creative Commons: Attribuzione - Condividi allo stesso modo 4.0 (CC BY-SA 4.0)

Download (414MB)

Abstract

By releasing this dataset, we aim at providing a new testbed for computer vision techniques using Deep Learning. The main peculiarity is the shift from the domain of "natural images" proper of common benchmark dataset to biological imaging. We anticipate that the advantages of doing so could be two-fold: i) fostering research in biomedical-related fields - for which popular pre-trained models perform typically poorly - and ii) promoting methodological research in deep learning by addressing peculiar requirements of these images. Possible applications include but are not limited to semantic segmentation, object detection and object counting. The data consist of 283 high-resolution pictures (1600x1200 pixels) of mice brain slices acquired through a fluorescence microscope. The final goal is to individuate and count neurons highlighted in the pictures by means of a marker, so to assess the result of a biological experiment. The corresponding ground-truth labels were generated through a hybrid approach involving semi-automatic and manual semantic segmentation. The result consists of black (0) and white (255) images having pixel-level annotations of where the stained neurons are located. For more information, please refer to Morelli, R. et al., 2021. Automating cell counting in fluorescent microscopy through deep learning with c-ResUnet. Scientific reports, (in press). https://doi.org/10.1038/s41598-021-01929-5. The collection of original images was supported by funding from the University of Bologna (RFO 2018) and the European Space Agency (Research agreement collaboration 4000123556).

Abstract
Tipologia del documento
Dataset
Autori
AutoreORCIDAffiliazioneROR
Clissa, Luca0000-0002-4876-5200University of Bologna
Morelli, Roberto0000-0001-5090-9026University of Bologna
Squarcio, Fabio0000-0002-6033-1042University of Bologna
Hitrec, Timna0000-0002-9296-3482University of Bologna
Luppi, Marco0000-0002-9462-5014University of Bologna
Rinaldi, Lorenzo0000-0001-9608-9940University of Bologna
Cerri, Matteo0000-0003-3556-305XUniversity of Bologna
Amici, Roberto0000-0002-9692-2215University of Bologna
Bastianini, Stefano0000-0003-2468-1704University of Bologna
Berteotti, Chiara0000-0002-4143-9445University of Bologna
Lo Martire, Viviana0000-0001-8696-0835University of Bologna
Martelli, Davide0000-0001-6523-9598University of Bologna
Occhinegro, AlessandraUniversity of Bologna
Tupone, Domenico0000-0002-4238-1011University of Bologna
Zoccoli, Giovanna0000-0002-9670-9959University of Bologna
Zoccoli, Antonio0000-0002-0993-6185University of Bologna
Parole chiave
semantic segmentation; object detection; object counting; neuronal cells; fluorescent microscopy
Settori scientifico-disciplinari
DOI
Contributors
Contributor
ORCID
Tipo
Affiliazione
Clissa, Luca
Contact person
University of Bologna
Data di deposito
15 Nov 2021 13:43
Ultima modifica
15 Nov 2021 13:43
Risorse collegate
Tipologia
Relazione
Identificativo
DOI
questo contributo è un supplemento di
DOI
questo contributo è un supplemento di
URI

Altri metadati

Versioni disponibili di questo documento

Statistica sui download

Statistica sui download

Gestione del documento: Visualizza il documento

^