Mind the income gap: bias correction of inequality estimators in small-sized samples

De Nicolò, Silvia ; Ferrante, Maria Rosaria ; Pacei, Silvia (2022) Mind the income gap: bias correction of inequality estimators in small-sized samples. Bologna: Dipartimento di Scienze Statistiche "Paolo Fortunati", Alma Mater Studiorum Università di Bologna, p. 23. DOI 10.6092/unibo/amsacta/7069. In: Quaderni di Dipartimento. Serie Ricerche (1). ISSN 1973-9346.
Full text available as:
[thumbnail of Quaderni_2022_1_DeNicolòFerrantePacei_Mind.pdf]
Preview
Text(pdf)
License: Creative Commons: Attribution-Noncommercial-No Derivative Works 3.0 (CC BY-NC-ND 3.0)

Download (776kB) | Preview

Abstract

Income inequality estimators are biased in small samples, leading generally to an underestimation. This aspect deserves particular attention when estimating inequality in small domains. After investigating the nature of the bias, we propose a bias correction framework for a large class of inequality measures comprising Gini Index, Generalized Entropy and Atkinson index families by accounting for complex survey designs. The proposed methodology is based on Taylor’s expansions and does not require any parametric assumption on income distribution, being very flexible. Design-based performance evaluation of our proposal has been carried out using data taken from the EU-SILC survey, showing a noticeable bias reduction for all the measures. Lastly, a small area estimation exercise shows the risks of ignoring prior bias correction in a basic area-level model, determining model misspecification.

Abstract
Document type
Monograph (Working Paper)
Creators
CreatorsAffiliationORCID
De Nicolò, SilviaDipartimento di Scienze Statistiche “P.Fortunati”, Alma Mater Studiorum Università di Bologna0000-0001-5052-6527
Ferrante, Maria RosariaDipartimento di Scienze Statistiche “P.Fortunati”, Alma Mater Studiorum Università di Bologna0000-0001-9813-2420
Pacei, SilviaDipartimento di Scienze Statistiche “P.Fortunati”, Alma Mater Studiorum Università di Bologna0000-0002-2413-7584
Subjects
ISSN
1973-9346
DOI
Deposit date
07 Nov 2022 07:45
Last modified
07 Nov 2022 07:45
URI

Other metadata

Downloads

Downloads

Staff only: View the document

^