Booster Dataset - Monocular Split

Zama Ramirez, Pierluigi ; Tosi, Fabio ; Poggi, Matteo ; Alex, Costanzino ; Salti, Samuele ; Mattoccia, Stefano ; Di Stefano, Luigi (2023) Booster Dataset - Monocular Split. University of Bologna. DOI 10.6092/unibo/amsacta/7161. [Dataset]
Full text disponibile come:
[thumbnail of README] Documento di testo(rtf) (README)
Licenza: Creative Commons: Attribuzione - Non Commerciale 4.0 (CC BY-NC 4.0)

Download (111kB)
[thumbnail of Booster Mono] Archivio (Booster Mono)
Licenza: Creative Commons: Attribuzione - Non Commerciale 4.0 (CC BY-NC 4.0)

Download (1GB)

Abstract

Estimating depth from images nowadays yields outstanding results, both in terms of in-domain accuracy and generalization. However, we identify two main challenges that remain open in this field: dealing with non-Lambertian materials and effectively processing high-resolution images. Purposely, we propose a novel dataset that includes accurate and dense ground-truth labels at high resolution, featuring scenes containing several specular and transparent surfaces. Our acquisition pipeline leverages a novel deep space-time stereo framework, enabling easy and accurate labeling with sub-pixel precision. The dataset is composed of 606 samples collected in 85 different scenes, each sample includes both a high-resolution pair (12 Mpx) as well as an unbalanced stereo pair (Left: 12 Mpx, Right: 1.1 Mpx). Additionally, we provide manually annotated material segmentation masks and 15K unlabeled samples. We divide the dataset into a training set, and two testing sets, the latter devoted to the evaluation of stereo and monocular depth estimation networks respectively to highlight the open challenges and future research directions in this field.

Abstract
Tipologia del documento
Dataset
Autori
AutoreORCIDAffiliazioneROR
Zama Ramirez, Pierluigi0000-0001-7734-5064University of Bologna
Tosi, Fabio0000-0002-6276-5282University of Bologna
Poggi, Matteo0000-0002-3337-2236University of Bologna
Alex, Costanzino0000-0001-9859-8482University of Bologna
Salti, Samuele0000-0001-5609-426XUniversity of Bologna
Mattoccia, Stefano0000-0002-3681-7704University of Bologna
Di Stefano, Luigi0000-0001-6014-6421University of Bologna
Parole chiave
Depth Monocular non-Lambertian Unbalanced High-resolution
Settori scientifico-disciplinari
DOI
Data di deposito
10 Feb 2023 08:50
Ultima modifica
02 Apr 2023 21:00
Risorse collegate
Tipologia
Relazione
Identificativo
DOI
questo contributo è un supplemento di
URI

Altri metadati

Statistica sui download

Statistica sui download

Gestione del documento: Visualizza il documento

^