The NeRF-Stereo Dataset

Tosi, Fabio ; Tonioni, Alessio ; De Gregorio, Daniele ; Poggi, Matteo (2023) The NeRF-Stereo Dataset. University of Bologna. DOI 10.6092/unibo/amsacta/7218. [Dataset]
Full text disponibile come:
[thumbnail of Raw image sequences and COLMAP poses - part 1] Archivio (Raw image sequences and COLMAP poses - part 1)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (13GB)
[thumbnail of Raw image sequences and COLMAP poses - part 2] Archivio (Raw image sequences and COLMAP poses - part 2)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (12GB)
[thumbnail of Raw image sequences and COLMAP poses - part 3] Archivio (Raw image sequences and COLMAP poses - part 3)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (11GB)
[thumbnail of Raw image sequences and COLMAP poses - part 4] Archivio (Raw image sequences and COLMAP poses - part 4)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (13GB)
[thumbnail of Raw image sequences and COLMAP poses - part 5] Archivio (Raw image sequences and COLMAP poses - part 5)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (11GB)
[thumbnail of Raw image sequences and COLMAP poses - part 6] Archivio (Raw image sequences and COLMAP poses - part 6)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (12GB)
[thumbnail of Raw image sequences and COLMAP poses - part 7] Archivio (Raw image sequences and COLMAP poses - part 7)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (12GB)
[thumbnail of Raw image sequences and COLMAP poses - part 8] Archivio (Raw image sequences and COLMAP poses - part 8)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (14GB)
[thumbnail of Raw image sequences and COLMAP poses - part 9] Archivio (Raw image sequences and COLMAP poses - part 9)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (14GB)
[thumbnail of Raw image sequences and COLMAP poses - part 10] Archivio (Raw image sequences and COLMAP poses - part 10)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (10GB)
[thumbnail of Raw image sequences and COLMAP poses - part 11] Archivio (Raw image sequences and COLMAP poses - part 11)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (11GB)
[thumbnail of Raw image sequences and COLMAP poses - part 12] Archivio (Raw image sequences and COLMAP poses - part 12)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (12GB)
[thumbnail of Raw image sequences and COLMAP poses - part 13] Archivio (Raw image sequences and COLMAP poses - part 13)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (13GB)
[thumbnail of Raw image sequences and COLMAP poses - part 14] Archivio (Raw image sequences and COLMAP poses - part 14)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (6GB)
[thumbnail of Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 1] Archivio (Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 1)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (10GB)
[thumbnail of Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 2] Archivio (Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 2)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (10GB)
[thumbnail of Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 3] Archivio (Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 3)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (9GB)
[thumbnail of Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 4] Archivio (Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 4)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (10GB)
[thumbnail of Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 5] Archivio (Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 5)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (9GB)
[thumbnail of Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 6] Archivio (Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 6)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (10GB)
[thumbnail of Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 7] Archivio (Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 7)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (9GB)
[thumbnail of Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 8] Archivio (Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 8)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (10GB)
[thumbnail of Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 9] Archivio (Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 9)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (11GB)
[thumbnail of Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 10] Archivio (Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 10)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (10GB)
[thumbnail of Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 11] Archivio (Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 11)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (10GB)
[thumbnail of Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 12] Archivio (Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 12)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (9GB)
[thumbnail of Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 13] Archivio (Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 13)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (10GB)
[thumbnail of Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 14] Archivio (Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 14)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (5GB)
[thumbnail of README file describing data format] Documento di testo(rtf) (README file describing data format)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)

Download (151kB)

Abstract

The dataset contains several image sequences collected with mobile phones and the corresponding image triplets and disparity labels for training deep stereo networks effortlessly and without any ground-truth. By leveraging state-of-the-art neural rendering solutions, we generate stereo training data from image sequences collected with a single handheld camera. On top of them, a NeRF-supervised training procedure is carried out, from which we exploit rendered stereo triplets to compensate for occlusions and depth maps as proxy labels. This results in stereo networks capable of predicting sharp and detailed disparity maps.

Abstract
Tipologia del documento
Dataset
Autori
AutoreAffiliazioneORCID
Tosi, FabioUniversità di Bologna0000-0002-6276-5282
Tonioni, AlessioGoogle Inc.0000-0003-3358-9686
De Gregorio, DanieleEyecan.ai0000-0001-8203-9176
Poggi, MatteoUniversità di Bologna0000-0002-3337-2236
Settori scientifico-disciplinari
DOI
Contributors
Contributor
Affiliazione
ORCID
Tipo
Tosi, Fabio
Università di Bologna
Contact person
Poggi, Matteo
Università di Bologna
Contact person
Data di deposito
08 Giu 2023 15:07
Ultima modifica
09 Giu 2023 17:46
Risorse collegate
Tipologia
Relazione
Identificativo
URI

Altri metadati

Statistica sui download

Statistica sui download

Gestione del documento: Visualizza il documento

^