|
Archivio (Raw image sequences and COLMAP poses - part 1)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)
Download (13GB)
|
|
Archivio (Raw image sequences and COLMAP poses - part 2)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)
Download (12GB)
|
|
Archivio (Raw image sequences and COLMAP poses - part 3)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)
Download (11GB)
|
|
Archivio (Raw image sequences and COLMAP poses - part 4)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)
Download (13GB)
|
|
Archivio (Raw image sequences and COLMAP poses - part 5)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)
Download (11GB)
|
|
Archivio (Raw image sequences and COLMAP poses - part 6)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)
Download (12GB)
|
|
Archivio (Raw image sequences and COLMAP poses - part 7)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)
Download (12GB)
|
|
Archivio (Raw image sequences and COLMAP poses - part 8)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)
Download (14GB)
|
|
Archivio (Raw image sequences and COLMAP poses - part 9)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)
Download (14GB)
|
|
Archivio (Raw image sequences and COLMAP poses - part 10)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)
Download (10GB)
|
|
Archivio (Raw image sequences and COLMAP poses - part 11)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)
Download (11GB)
|
|
Archivio (Raw image sequences and COLMAP poses - part 12)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)
Download (12GB)
|
|
Archivio (Raw image sequences and COLMAP poses - part 13)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)
Download (13GB)
|
|
Archivio (Raw image sequences and COLMAP poses - part 14)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)
Download (6GB)
|
|
Archivio (Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 1)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)
Download (10GB)
|
|
Archivio (Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 2)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)
Download (10GB)
|
|
Archivio (Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 3)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)
Download (9GB)
|
|
Archivio (Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 4)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)
Download (10GB)
|
|
Archivio (Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 5)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)
Download (9GB)
|
|
Archivio (Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 6)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)
Download (10GB)
|
|
Archivio (Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 7)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)
Download (9GB)
|
|
Archivio (Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 8)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)
Download (10GB)
|
|
Archivio (Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 9)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)
Download (11GB)
|
|
Archivio (Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 10)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)
Download (10GB)
|
|
Archivio (Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 11)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)
Download (10GB)
|
|
Archivio (Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 12)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)
Download (9GB)
|
|
Archivio (Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 13)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)
Download (10GB)
|
|
Archivio (Training set used in "NeRF-Supervised Deep Stereo", CVPR 2023 - part 14)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)
Download (5GB)
|
|
Documento di testo(rtf) (README file describing data format)
Licenza: Creative Commons: Non Commerciale - Condividi allo stesso modo 4.0 (CC BY-NC-SA 4.0)
Download (151kB)
|
Abstract
The dataset contains several image sequences collected with mobile phones and the corresponding image triplets and disparity labels for training deep stereo networks effortlessly and without any ground-truth. By leveraging state-of-the-art neural rendering solutions, we generate stereo training data from image sequences collected with a single handheld camera. On top of them, a NeRF-supervised training procedure is carried out, from which we exploit rendered stereo triplets to compensate for occlusions and depth maps as proxy labels. This results in stereo networks capable of predicting sharp and detailed disparity maps.
Abstract
The dataset contains several image sequences collected with mobile phones and the corresponding image triplets and disparity labels for training deep stereo networks effortlessly and without any ground-truth. By leveraging state-of-the-art neural rendering solutions, we generate stereo training data from image sequences collected with a single handheld camera. On top of them, a NeRF-supervised training procedure is carried out, from which we exploit rendered stereo triplets to compensate for occlusions and depth maps as proxy labels. This results in stereo networks capable of predicting sharp and detailed disparity maps.