AEQUITAS. WP7. T7.3. Hiring Data For STEM Field. v1.0

Borghesi, Andrea (2024) AEQUITAS. WP7. T7.3. Hiring Data For STEM Field. v1.0. University of Bologna. DOI 10.6092/unibo/amsacta/7716. [Dataset]
Full text disponibile come:
[thumbnail of AEQUITAS_Akkodis_STEM_dataset] Archivio (AEQUITAS_Akkodis_STEM_dataset)
Accesso riservato (solo Staff) fino al 31 Ottobre 2025.
Licenza: Creative Commons: Attribuzione 4.0(CC BY 4.0)

Download (2MB) | Richiedi una copia
[thumbnail of AEQUITAS_Akkodis_STEM_dataset_README] Documento di testo(rtf) (AEQUITAS_Akkodis_STEM_dataset_README)
Accesso riservato (solo Staff) fino al 31 Ottobre 2025.
Licenza: Creative Commons: Attribuzione 4.0(CC BY 4.0)

Download (81kB) | Richiedi una copia

Abstract

This dataset contains information about the hiring process conducted by Akkodis for job positions and candidates belonging to the STEM field. The data of the candidates have been thoroughly anonymized. The data contains the curricula of candidates and the details of the job positions to which they were matched. The candidates and job positions are explicitly selected among the STEM field (including but not limited: computer science, engineering, physics, mathematics, chemistry, etc.). More detailed information can be found in the README file included in the compressed archive. The goal of the data is to allow the study of bias in terms of: 1) class imbalanced dataset in favour of the election of a specific gender, age, race, social background, thus against a selected group of people or minorities; 2) interpretation (recruiter) bias. This activity is part of the HORIZON-CL4-2021-HUMAN-01-24-AEQUITAS project (g.a. 101070363). The aim of AEQUITAS to address and tackle the multiple manifestations of bias and unfairness in Artificial Intelligence (AI) from a variety of dimensions, such as the development of AI tools, the data used to train, test and validate them or the interpretation practices developed around them.

Abstract
Tipologia del documento
Dataset
Autori
AutoreAffiliazioneORCID
Borghesi, AndreaUniversity of Bologna0000-0002-2298-2944
Settori scientifico-disciplinari
DOI
Contributors
Contributor
Affiliazione
ORCID
Tipo
Ciatto, Giovanni
University of Bologna
Researcher
Parletta, Daniela-Angela
Akkodis
Data collector
Calegari, Roberta
University of Bologna
Researcher
Borghesi, Andrea
University of Bologna
Contact person
Data di deposito
27 Mag 2024 09:06
Ultima modifica
27 Mag 2024 09:06
Nome del Progetto
AEQUITAS - ASSESSMENT AND ENGINEERING OF EQUITABLE, UNBIASED, IMPARTIAL AND TRUSTWORTHY AI SYSTEMS
Programma di finanziamento
EC - HE
URI

Altri metadati

Statistica sui download

Statistica sui download

Gestione del documento: Visualizza il documento

^