Time-domain neural network characterization for dynamic behavioral models of power amplifiers

Orengo, G. ; Colantonio, P. ; Serino, A. ; Giannini, F. ; Ghione, G. ; Pirola, M. ; Stegmayer, G. (2005) Time-domain neural network characterization for dynamic behavioral models of power amplifiers. In: Gallium Arsenide applications symposium. GAAS 2005, 3-7 ottobre 2005, Parigi.
Full text disponibile come:
[thumbnail of GA051891.PDF]
Anteprima
Documento PDF
Download (304kB) | Anteprima

Abstract

This paper presents a black-box model that can be applied to characterize the nonlinear dynamic behavior of power amplifiers. We show that time-delay feed-forward Neural Networks can be used to make a large-signal input-output time-domain characterization, and to provide an analytical form to predict the amplifier response to multitone excitations. Furthermore, a new technique to immediately extract Volterra series models from the Neural Network parameters has been described. An experiment based on a power amplifier, characterized with a two-tone power swept stimulus to extract the behavioral model, validated with spectra measurements, is demonstrated.

Abstract
Tipologia del documento
Documento relativo ad un convegno o altro evento (Atto)
Autori
AutoreAffiliazioneORCID
Orengo, G.
Colantonio, P.
Serino, A.
Giannini, F.
Ghione, G.
Pirola, M.
Stegmayer, G.
Settori scientifico-disciplinari
DOI
Data di deposito
15 Feb 2006
Ultima modifica
17 Feb 2016 14:23
URI

Altri metadati

Statistica sui download

Statistica sui download

Gestione del documento: Visualizza il documento

^