Anteprima |
Documento PDF
Download (894kB) | Anteprima |
Abstract
In meteorology, the traditional approach to forecasting employs deterministic models mimicking atmospheric dynamics. Forecast uncertainty due to the partial knowledge of initial conditions is tackled by Ensemble Predictions Systems (EPS). Probabilistic forecasting is a relatively new approach which may properly account for all sources of uncertainty. In this work we propose a hierarchical Bayesian model which develops this idea and makes it possible to deal with an EPS with non-identifiable members using a suitable definition of the second level of the model. An application to Italian small-scale temperature data is shown.
Altri metadati
La presente opera può essere liberamente consultata ed utilizzata, può essere riprodotta in via permanente in formato digitale (c.d. salvataggio) e può esserne effettuata la stampa su carta con apparecchiature private (senza ricorso a terzi operatori professionali), per fini strettamente ed esclusivamente personali, di ricerca o didattica, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale, salvo diverso accordo espresso fra il singolo utente e l'autore o il titolare dei diritti sull'opera. E' altresì consentita, sempre per i medesimi fini sopra citati, la ritrasmissione via rete telematica, la distribuzione o l'invio in qualunque forma dell'opera, compresa quella con indirizzamento personale per via telematica (e-mail), purchè sia sempre chiaramente indicato il link completo alla pagina del Sito di Alma DL in cui detta opera è presente. Ogni altro diritto sull'opera è riservato.