Anteprima |
Documento PDF
Download (89kB) | Anteprima |
Abstract
The Hausdorff distance, the Gromov-Hausdorff, the Fréchet and the natural pseudo-distances are instances of dissimilarity measures widely used in shape comparison. We show that they share the property of being defined as $inf_{\rho} F(\rho)$ where $F$ is a suitable functional and $\rho$ varies in a set of correspondences containing the set of homeomorphisms. Our main result states that the set of homeomorphisms cannot be enlarged to a metric space $K$, in such a way that the composition in $K$ (extending the composition of homeomorphisms) passes to the limit and, at the same time, $K$ is compact.
Altri metadati
La presente opera può essere liberamente consultata ed utilizzata, può essere riprodotta in via permanente in formato digitale (c.d. salvataggio) e può esserne effettuata la stampa su carta con apparecchiature private (senza ricorso a terzi operatori professionali), per fini strettamente ed esclusivamente personali, di ricerca o didattica, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale, salvo diverso accordo espresso fra il singolo utente e l'autore o il titolare dei diritti sull'opera. E' altresì consentita, sempre per i medesimi fini sopra citati, la ritrasmissione via rete telematica, la distribuzione o l'invio in qualunque forma dell'opera, compresa quella con indirizzamento personale per via telematica (e-mail), purchè sia sempre chiaramente indicato il link completo alla pagina del Sito di Alma DL in cui detta opera è presente. Ogni altro diritto sull'opera è riservato.