Symmetric tensor rank with a tangent vector : a generic uniqueness theorem

Ballico, Edoardo ; Bernardi, Alessandra (2011) Symmetric tensor rank with a tangent vector : a generic uniqueness theorem. [Preprint]
Full text disponibile come:
[thumbnail of BB.pdf]
Anteprima
Documento PDF
Download (203kB) | Anteprima

Abstract

Let $X_{m,d}\subset \mathbb {P}^N$, $N:= \binom{m+d}{m}-1$, be the order $d$ Veronese embedding of $\mathbb {P}^m$. Let $\tau (X_{m,d})\subset \mathbb {P}^N$, be the tangent developable of $X_{m,d}$. For each integer $t \ge 2$ let $\tau (X_{m,d},t)\subseteq \mathbb {P}^N$, be the joint of $\tau (X_{m,d})$ and $t-2$ copies of $X_{m,d}$. Here we prove that if $m\ge 2$, $d\ge 7$ and $t \le 1 + \lfloor \binom{m+d-2}{m}/(m+1)\rfloor$, then for a general $P\in \tau (X_{m,d},t)$ there are uniquely determined $P_1,\dots ,P_{t-2}\in X_{m,d}$ and a unique tangent vector $\nu$ of $X_{m,d}$ such that $P$ is in the linear span of $\nu \cup \{P_1,\dots ,P_{t-2}\}$, i.e. a degree $d$ linear form $f$ associated to $P$ may be written as $$f = L_{t-1}^{d-1}L_t + \sum _{i=1}^{t-2} L_i^d$$ with $L_i$, $1 \le i \le t$, uniquely determined (up to a constant) linear forms on $\mathbb {P}^m$.

Abstract
Tipologia del documento
Preprint
Autori
AutoreAffiliazioneORCID
Ballico, Edoardo
Bernardi, Alessandra
Parole chiave
Veronese variety; tangential variety; join; weak defectivity
Settori scientifico-disciplinari
DOI
Data di deposito
01 Mar 2011 11:04
Ultima modifica
16 Mag 2011 12:17
URI

Altri metadati

La presente opera può essere liberamente consultata ed utilizzata, può essere riprodotta in via permanente in formato digitale (c.d. salvataggio) e può esserne effettuata la stampa su carta con apparecchiature private (senza ricorso a terzi operatori professionali), per fini strettamente ed esclusivamente personali, di ricerca o didattica, con espresso divieto di qualunque utilizzo direttamente o indirettamente commerciale, salvo diverso accordo espresso fra il singolo utente e l'autore o il titolare dei diritti sull'opera. E' altresì consentita, sempre per i medesimi fini sopra citati, la ritrasmissione via rete telematica, la distribuzione o l'invio in qualunque forma dell'opera, compresa quella con indirizzamento personale per via telematica (e-mail), purchè sia sempre chiaramente indicato il link completo alla pagina del Sito di Alma DL in cui detta opera è presente. Ogni altro diritto sull'opera è riservato.

Statistica sui download

Statistica sui download

Gestione del documento: Visualizza il documento

^